

Hands-On Android UI Development

Design and develop attractive user interfaces for Android applications

Jason Morris

BIRMINGHAM - MUMBAI

 Hands-On Android UI Development

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1161117

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-505-1

www.packtpub.com

 Credits

	
Author

Jason Morris

	
Copy Editor

Shaila Kusanale

	Reviewers

Jessica Thornsby

Michael Duivestein
	Project Coordinator

Devanshi Doshi

	Commissioning Editor

Kunal Chaudhari
	Proofreader

Safis Editing

	Acquisition Editor

Noyonika Das
	Indexer

Francy Puthiry

	Content Development Editor

Onkar Wani
	Graphics

Jason Monteiro

	Technical Editor

Sachin Sunilkumar
	Production Coordinator

Arvindkumar Gupta

 About the Author

Jason Morris is a multi-discipline software developer. He has been developing software for as long as he can remember. He's written software for the desktop, server, feature phones and smartphones, and the web and microcontrollers. Jason programs in a wide range of programming languages, and loves a new programming challenge. When he's not writing code or spending time with his family, taking photos or camping, he's probably thinking about programming. In 2010/2011, he wrote Android User Interface Development: A Beginner's Guide, which helped many beginner Android developers take their first steps into the realm of User Interface design and development for mobile devices.

I thank my wife and daughter, who have been so patient while I was writing this book.

 About the Reviewers

Jessica Thornsby studied poetry, prose, and scriptwriting at Bolton University before discovering the world of open source and technical writing, and has never looked back since. Today, she is a freelance technical writer and full-time Android enthusiast, the author of Android UI Design, and the coauthor of iWork: The Missing Manual.

Michael Duivestein is a software engineer living in Cape Town, South Africa.

His curiosity about all things code has meant he has enjoyed a career as a software engineer spanning many industries, including Point of Sale systems, investment management systems, and mobile payment systems.

Currently employed as a backend/API engineer for Travelstart, Africa's leading online travel agency, Michael spends his whole day, practically every day, working with Java and Android. In his spare time, Michael is a Kendo practitioner and enjoys playing Ingress to get out and about.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1788475054.

If you'd like to join our team of regular reviewers, you can email us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

 	
 Preface
 	
 What this book covers

	
 What you need for this book

	
 Who this book is for

	
 Conventions

	
 Reader feedback

	
 Customer support
 	
 Downloading the example code

	
 Errata

	
 Piracy

	
 Questions

	
 Creating Android Layouts
 	
 Material Design

	
 Android Studio

	
 Android application structure

	
 Creating SimpleLayout

	
 Discovering the layout editor

	
 Organizing project files

	
 Summary

	
 Designing Form Screens
 	
 Exploring form screens

	
 Designing a layout

	
 Creating a form layout
 	
 Creating the description box

	
 Adding the amount and date inputs

	
 Creating the category chooser
 	
 Making icons change with state

	
 Creating the category picker layout

	
 Adding the attachment preview

	
 Try it yourself

	
 Test your knowledge

	
 Summary

	
 Taking Actions
 	
 Understanding Android event requirements

	
 Listening for some events

	
 Wiring the CaptureClaimActivity events

	
 Handling events from other activities

	
 Making events quick

	
 Multiple event listeners

	
 Test your knowledge

	
 Summary

	
 Composing User Interfaces
 	
 Designing a modular layout

	
 Creating the DatePickerLayout

	
 Creating the data model
 	
 Creating the Attachment class

	
 Creating the Category enum

	
 Creating the ClaimItem class

	
 Wrapping up the category picker

	
 Creating the Attachment Pager
 	
 Creating the Attachment preview widget

	
 Creating the Attachment Pager Adapter

	
 Creating the Create Attachment Command

	
 Creating the Attachment Pager Fragment

	
 Capturing the ClaimItem data

	
 Try it yourself

	
 Test your knowledge

	
 Summary

	
 Binding Data to Widgets
 	
 Exploring data models and widgets

	
 The Observer pattern

	
 Enabling data binding

	
 Data binding a layout file
 	
 Creating an Observable model

	
 Establishing the AllowanceOverviewFragment

	
 Creating the AllowanceOverview layout

	
 Updating the SpendingStats class

	
 Data binding and fragments

	
 Test your knowledge

	
 Summary

	
 Storing and Retrieving Data
 	
 Data storage in Android

	
 Using the SQLite database

	
 Introducing Room
 	
 Adding Room to the project

	
 Creating an Entity model

	
 Creating the Data Access Layer
 	
 The LiveData class

	
 Implementing Data Access Objects in Room

	
 Creating a database

	
 Accessing your Room database

	
 Test your knowledge

	
 Summary

	
 Creating Overview Screens
 	
 Designing an Overview screen

	
 Elements of an Overview screen

	
 Creating layouts for ViewHolders
 	
 Creating a simple ViewHolder class

	
 Creating a ViewHolder with data binding

	
 Creating a RecyclerView adapter
 	
 Data binding an adapter

	
 Creating the Overview activity
 	
 Creating new ClaimItems with a Fragment

	
 Allowance overview with a Room database

	
 Test your knowledge

	
 Summary

	
 Designing Material Layouts
 	
 Looking at material structure

	
 Introducing CoordinatorLayout

	
 Coordinating the Overview Screen

	
 Swiping to delete

	
 Elevating widgets

	
 Building layouts using grids

	
 Stack view

	
 Test your knowledge

	
 Summary

	
 Navigating Effectively
 	
 Planning navigation

	
 Tabbed navigation
 	
 Bottom tabs navigation

	
 Navigation menus

	
 Navigating using Fragments

	
 Test your knowledge

	
 Summary

	
 Making Overviews Even Better
 	
 Multiple view types

	
 Introducing dividers

	
 Updating by Delta Events

	
 Test your knowledge

	
 Summary

	
 Polishing Your Design
 	
 Choosing colors and theming
 	
 Producing an application palette

	
 Generating palettes dynamically

	
 Adding animations
 	
 Creating custom animations

	
 Activating more animations

	
 Creating custom styles

	
 Test your knowledge

	
 Summary

	
 Customizing Widgets and Layouts
 	
 Creating custom view implementations
 	
 Integrating the SpendingGraphView

	
 Creating a layout implementation

	
 Creating animated views

	
 Test your knowledge

	
 Apply your knowledge

	
 Summary

	
 Activity Lifecycle

	
 Test Your Knowledge Answers
 	
 Chapter 2 - Designing Form Screens

	
 Chapter 3 - Taking Actions

	
 Chapter 4 - Composing User Interface

	
 Chapter 5 - Binding Data to Widgets

	
 Chapter 6 - Storing and Retrieving Data

	
 Chapter 7 - Creating Overview Screens

	
 Chapter 8 - Designing Material Layouts

	
 Chapter 9 - Navigating Effectively

	
 Chapter 10 - Making Overviews Even Better

	
 Chapter 11 - Polishing Your Design

	
 Chapter 12 - Customizing Widgets and Layouts

 Preface

User interfaces represent the single most important aspect of any modern mobile application. They are the primary point of contact with your user, and a good user interface can be the difference between the success and failure of an application. This book will guide you down the path of user interface excellence, teaching you the techniques of great user interface design for Android, and showing you how to implement them.

Building user interfaces is all about building for the user and making their lives easier. It's important that the user interface helps the user achieve their goals within the application without distracting them. This means that each screen must serve a purpose, and every widget must work for its place on the screen. Widgets that are seldom used are distractions and should be moved, or removed, from the application entirely.

User interfaces are not just about pretty colors, fonts, and graphics; they are at the heart of the user experience within an application. How you create your user interfaces is built on the underlying structures you build in your applications code base. If the foundations of the application are not solid, the user experience will suffer. Every action taken by the user should have a quick and positive result, reinforcing their confidence that they can reach their goals within the application.

In this book, we'll be exploring not just how to write user interface code, but how to go about designing great user interfaces as well. We'll look at how lower layers like data storage can impact the user experience, and how to leverage the Android platform and its support libraries to build better applications, applications that look great, run fast, and help ensure that the user can understand the application quickly and is guided through with minimal distractions.

 What this book covers

Chapter 1, Creating Android Layouts, will introduce or reintroduce Android Studio and help create a new Android application project from a template. We'll look at how an Android project is structured and how a user interface is wired together.

Chapter 2, Designing Form Screens, will show you how to design a form screen from scratch. You will learn techniques to decide what to put on the screen and how to layout a form screen to maximize its effectiveness while not disrupting your user's flow of thought.

Chapter 3, Taking Actions, will show you how to handle events in Android. It'll walk you through various types of events and provide you patterns and techniques to keep your application as responsive as possible. It'll also show you techniques to avoid complexity overload in your code base and how to keep your application's internal structure as clean as possible.

Chapter 4, Composing User Interfaces, will give you tools to build modular user interface components. It'll show you how to wrap related logic and user interface structures so that they can be reused, to reduce your code complexity while also making the user experience more consistent.

Chapter 5, Binding Data to Widgets, will introduce the data binding framework in Android. You'll find out why data binding exists, how it works, and how to use it effectively. You'll learn how to create user interface structures that automatically update when the data model changes.

Chapter 6, Storing and Retrieving Data, will cover how the storage and retrieval of data in a mobile app has a direct effect on the user experience. You will learn how best to build offline-first, reactive applications using the Room data access layer and data binding.

Chapter 7, Creating Overview Screens, will explore the RecyclerView and how it is often used in overview screens and dashboards to provide information. You'll learn how to create the data structures that support a RecyclerView and how to leverage data binding to massively reduce the boilerplate traditionally associated with these structures.

Chapter 8, Designing Material Layouts, will introduce several Material Design-specific patterns and widgets for Android apps. You'll learn how to leverage collapsing title bars and customize them to show your user additional information. You'll also learn how to add swipe-to-dismiss behavior, undo snackbars, and elevation to your user interfaces.

Chapter 9, Navigating Effectively, will help you learn to make a design-effective application navigation to guide your user to their intended goals intuitively. This chapter introduces several navigation-specific widgets and layout techniques, and shows where and how they can be most effectively applied.

Chapter 10, Making Overviews Even Better, will revisit the overview screen built in Chapter 7, Creating Overview Screens, and show how to leverage the Android platform API to produce polished overview screens. You'll learn how to use DiffUtil to automatically produce animations in RecyclerView and patterns that allow you to produce more readable overview lists.

Chapter 11, Polishing Your Design, will help you with the polishing of a good design. It'll introduce tools and techniques to help you choose a color scheme for your application. You'll also learn how to generate color schemes on the fly and how to create and use animations to guide your users.

Chapter 12, Customizing Widgets and Layouts, will introduce building your own custom widgets for Android. You'll learn how to render 2D graphics directly from Java code and how to create your own custom layouts. This chapter also shows how to build animation widgets that self-animate while they are visible.

Appendix A, Activity Lifecycle, a diagram and short description covering the lifecycle events delivered to an Android Activity, and when they can be delivered.

Appendix B, Test Your Knowledge Answers, the answers to the Test Your Knowledge section of each chapter.

 What you need for this book

You'll need to download and install at least Android Studio 3.0. Using Android Studio, you will need to download a recent Android SDK so that you can compile and run your code.

 Who this book is for

This book is for novice Android and Java developers who have basic knowledge of Android development and want to start developing stunning user interfaces.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning. Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next lines of code read the link and assign it to the constantSize attribute." A block of code is set as follows:

<selector
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:constantSize="true"
 android:exitFadeDuration="@android:integer/config_shortAnimTime"
 android:enterFadeDuration="@android:integer/config_shortAnimTime">

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

<selector
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:constantSize="true"
 android:exitFadeDuration="@android:integer/config_shortAnimTime"
 android:enterFadeDuration="@android:integer/config_shortAnimTime">

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "In order to download new modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you. You can download the code files by following these steps:

	Log in or register to our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Android-UI-Development. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title. To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the internet, please provide us with the location address or website name immediately so that we can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected pirated material. We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Creating Android Layouts

Mobile App user interfaces have come a long way from the early days, and while users have more devices to choose from than ever, they all expect consistently high-quality experiences from their apps. Apps are expected to run fast and the user interfaces are expected to be smooth; all this while running on a massive array of devices of varied capabilities. Your app needs to run on devices with screens as big as televisions on the one end of the scale, and smartwatches with screens as small as 2.5 cm or even smaller on the other end of the scale. At first glance, this may seem like a nightmare, but there are simple tricks to make building responsive Android apps easy.

In this book, you'll learn a diverse set of skills as well as some theoretical knowledge that you can apply to build fast, responsive, and great-looking Android applications. You'll learn how to go about designing the screens that your application will actually need, and then how to build them for maximum flexibility and performance while keeping your code easy to read and avoiding bugs.

In this chapter, we will look at the basic principles used to build user interfaces for Android applications. You'll need to be familiar with concepts to build even the simplest Android application, so in this chapter, we'll cover the following topics:

	The basic structure of an Android application

	Creating a simple Activity and layout files using Android Studio

	Where to find the most useful parts of the Android Studio layout editor

	How a well-organized project is structured

 Material Design

Since Android was first introduced in 2008, the user interface design has changed radically, from the first early versions of the grey, black, and orange theme, to the Holo theme, which was more of a stylistic change than a fundamental shift in the design language, and eventually culminating in material design. Material Design is more than just a style; it's a design language complete with concepts for navigation, and overall application flow. Central to this idea is the notion of paper and card, the idea that the items on the screen are not simply next to each other but may also be above and below in the third dimension (although this is virtual). This is achieved using the elevation property that is common to all widgets in Android. Along with this basic principle, material design offers some common patterns to help the user identify which components are likely to take which actions, even the first time they are used in the application.

If you look at the original Android theme alongside the Holo Light theme, you can see that while the style changed dramatically, many elements stayed similar or the same. The grey tones flattened, but are very similar, and many of the borders were removed, but the spacing remains very close to the original theme. The material design language is often very similar in its basic styling and design to Holo:

The design language is an essential part of modern user interface design and development. It not only defines the look and feel of your widget toolkit, but also defines how the application should behave on different devices and in different circumstances. For example, on Android, it is common to have a navigation drawer since the slides are from the left, while this would not feel natural to the user on other platforms. Material design defines much more than the look and feel of navigation, it also includes guidelines for motion and animation, how to display various types of errors, and how to guide your users through an application for the first time. As a developer or designer, you may feel like this limits your creative freedom, and to some degree it actually does, but it also creates a clear message for your users on how your app expects to be used. This means that your users can use your app more easily, and it requires less cognitive load.

Another aspect of application development, which is of vital importance in any modern mobile application, is its performance. Users have come to expect that applications will always run smoothly, no matter the actual load on the system. The benchmark for all modern applications is 60 frames per second, that is, a full render event delivered to the user every 16.6 milliseconds.

Users don't just expect an application to perform well, they expect it to react instantly to external changes. When data is changed on the server side, users expect to see it on their device instantly. This makes the challenges of developing a mobile application, especially one with good performance, become even more difficult. Fortunately, Android comes with a fantastic toolset and an enormous ecosystem for dealing with these problems.

Android attempts to enforce good threading and performance behavior by timing each event that happens on the main thread and ensures that none of them take too long (and producing an Application Not Responding (ANR) error if they do). It further requires that no form of networking is conducted on the main thread, since these will invariably affect the application's performance. However, where this approach gets hard to work with is--any code related to the user interface must happen on the main thread, where all the input events are processed, and where all the graphics rendering code is run. This helps the user interface framework by avoiding any need for thread locks in what is very performance-centric code.

The Android Platform is a complete alternative to the Java Platform. While at a high level, the Android platform APIs are a form of Java framework; there are noticeable differences. The most obvious is that Android does not run Java bytecode, and does not include most of the Java standard APIs. Instead, most of the classes and structures you'll use are specific to Android. From this perspective, the Android platform is a bit like a large opinionated Java Framework. It attempts to reduce the amount of boilerplate code you write by providing you with skeleton structures to develop your applications.

The most common way to build user interfaces for Android is to do it declaratively in the layout XML files. You can also write user interfaces using pure Java code, but while potentially faster, it's not commonly used and carries some critical pitfalls. Most notably, the Java code is much more complex when handling multiple screen sizes. Instead of simply being able to reference a different layout file and have the resource system link in the best fit for the device, you have to handle these differences in your code. While parsing XML may seem a crazy idea on a mobile device, it's not nearly that bad; the XML is parsed and validated at compile time, and turned into a binary format which is what is actually read at runtime by your application.

Another reason it's really nice to write Android layouts in XML is the Android Studio layout editor. This gives you a real-time preview of what your layout will look like on a real device, and the blueprint view helps enormously when debugging issues like spacing and styling. There is also an excellent linting support in Android Studio that helps you avoid common problems before you're even finished writing your layout files.

 Android Studio

Android Studio is a fully-featured IDE built on top of the IntelliJ platform, designed specifically for developing Android applications. It has a huge suite of built-in tools that will make your life better, and help you write better applications more rapidly.

You can download Android Studio for your favorite Operating System (OS) from https://developer.android.com/studio/. The setup instructions for each operating system vary slightly, and are available on the website. This book has been written assuming an Android Studio version of at least 3.0.

Once installed, Android Studio will also need to download and install an Android SDK for you to develop your applications on. There are platform options for virtually every version of Android ever released, including emulated hardware, which allows you to test how your application will run on different hardware and Android releases. It's best to download the latest Android SDK, and one of the older versions as well to check backward compatibility (4.1 or 4.4 are good options).

 Android application structure

An Android application is very different in its internal structure when compared to applications on other platforms, in even the simplest details. Most platforms see their applications as monolithic systems with a fixed entry point. When the entry point returns or exits, the platform assumes that the application has finished running. On Android, an application may have several different entry points for the user, and others for the system. Each entry point has a different type, and different ways for the system to reach it (called intent filters). The most important part of an application from the user perspective is its activities. These (as the name suggests) are supposed to represent an action that the user will take with the application, such as the following:

	List my emails

	Compose an email

	Edit a contact

Each Activity is a non-abstract class extending the Activity class (or any descendant of Activity), and registers itself and its intent filters in the application manifest file. Here's an example of how the manifest entry for an Activity that can view and edit contacts might look:

<activity android:name=".ContactActivity">
 <intent-filter>
 <!-- Appear in the launcher screen as the main entry point of the application -->
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <!-- Handle requests to VIEW Uris with a mime-type of 'data/contact' -->
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="data/contact"/>
 </intent-filter>
 <intent-filter>
 <!-- Handle requests to EDIT Uris with a mime-type of 'data/contact' -->
 <action android:name="android.intent.action.EDIT" />
 <data android:mimeType="data/contact"/>
 </intent-filter>
</activity>

The application manifest file (always named as AndroidManifest.xml) is how the Android system knows what components your application has, and how to reach each of them. It also contains information such as the permissions your application will need from the user, and which versions of the Android system the application will run on.

Each Activity is typically intended to do a single thing from the user's perspective, but this is not always the case. In the preceding case, there are three possible intent filters, each of which telling the system something different about the ContactActivity class:

	The first one tells the system that ContactActivity should have its icon displayed on the launcher screens, effectively making it the main entry point of the application

	The second tells the system that ContactActivity can be used to VIEW content with a mime-type of "data/contact"

	The third tells the system that ContactActivity can also be used to EDIT content with the "data/contact" mime-type

The system resolves Activity classes through Intents. Each Intent specifies how and what the application would like to do on behalf of the user, and the system uses the information to find a matching intent-filter somewhere in the system. However, you won't typically add intent-filters to all of your Activity entries; you'll launch most by specifying the class directly within your application. Intent-filters are normally used to implement abstract inter-application interactions for example, when an application needs to "open a web page for browsing," the system can automatically launch the user's preferred web browser.

An Activity will generally have a primary layout file defined as an XML resource. These layout resource files are generally not standalone, but will make use of other resources and even other layout files.

Keep your activities simple! Avoid loading too much behavior into a single Activity class, and try and keep it bound to a single layout (and its variants, such as "landscape"). At worst, allow multiple behaviors with common layout widgets (for example, a single Activity to view, or edit a single contact). We'll go through some techniques for this in Chapter 4, Composing User Interfaces.

The resource system in Android needs some special attention, as it allows for multiple files to collaborate together to create complex behavior out of simple components. At its heart, the resource system selects the most appropriate of each resource when it is requested (including from inside other resources). This not only allows you to create screen layouts for portrait and landscape mode, but allows you to do the same for dimensions, text, colors, or any other resource. Consider the following example:

<!-- res/values/dimens.xml -->
<dimen name="grid_spacer1">8dp</dimen>

The above dimension resource can now be used in layout resource files by name:

<!-- res/layouts/my_layout.xml -->
<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="@dimen/grid_spacer1">

Using this sort of technique, you can adjust layouts for different screen sizes by simply changing the distance measurements used to space and size the widgets, rather than having to define completely new screen layouts.

It's a good idea to try and be generic with resources such as dimensions and colors. This will help keep your user interface consistent for your users.

Consistent user interfaces are often more important than trying to innovate. The less mental effort your user needs to understand your application, the more they can engage with it.

 Creating SimpleLayout

Now that we've gone over the basics of an Android application structure, let's create a simple screen and see how things all fit together. We'll use Android Studio and one of its wonderful template activities. Just follow these easy steps:

	Start by opening Android Studio on your computer.

	Start a new project using the File menu, or the quickstart dialog (depending on which one shows up for you).

	Name the project as SimpleLayout, and leave any additional support (C++, Kotlin) off:

	On the next screen of the New Project wizard, ensure that you support Android 4.1 or higher, but leave only Phone and Tablet checked for this task:

	Android Studio comes with a fantastic selection of Activity templates available on the next screen. This will be the first Activity generated to get you started with your project. For this example, you'll want to scroll down the list and find Navigation Drawer Activity. Select it and click on Next:

Leave the Activity details as their defaults (MainActivity, and so on) and click on Finish to complete the New Project wizard. Android Studio now creates your project and runs a first build-sync over to get everything working.

	Once your project has finished being generated, you'll be presented with the Android Studio layout editor, looking something like this:

Congratulations, this template provides an excellent starting point to explore how Android applications and their user interfaces are built and fit together.

If you ever want to get back to the Activity templates screen, you can use the Gallery... option in the Android Studio File | New | Activity menu:

 Discovering the layout editor

At first glance, the layout editor in Android Studio is a standard WYSIWYG editor; however, it has several important features that you need to be aware of. Most importantly, it actually runs the code for the widgets in order to render them within the editor. This means that if you write a custom layout or widget, it will look and behave as it will on the emulator or on a device. This is fantastically useful for rapidly prototyping screens, and can drastically cut down on development time when used properly.

To ensure that your layout is being rendered correctly, you'll sometimes need to ensure that the layout editor is configured correctly. From the toolbar at the top of the layout editor, you can select the virtual device configuration you would like it to emulate. This includes whether the layout is being viewed in portrait or landscape mode, and even what language settings to use for the layout rendering and resource selection:

It's important to keep in mind that the list of available Android platform versions that the layout editor can emulate is limited, and it is not connected to the list that you have installed as virtual devices (so you cannot add new versions to the layout editor by installing additional platform versions). If you want to see how your user interfaces of versions that Android Studio doesn't directly support look, the only way to do it is to run the application.

The next really important thing to note is the attributes panel, which is docked to the right of the layout editor by default. When you select a component in the design area, the attributes panel allows tweaking of all the attributes that can be changed in XML, and of course, you get to see the results of any changes live in the layout editor:

The number of attributes is generally kept well under control by Android Studio. The default panel only shows the most commonly used attributes for the selected widget. To toggle between this shortlist and the list of all the available attributes (something you'll do more often than you think), you'll want to use the toggle button () at the top of the attributes panel.

However, when you look at the All Attributes view, you'll note that their sheer number makes the view rather difficult to use. The easiest way to solve this is to use the search button () to find the attribute you're looking for. This will allow you to search for attributes by name, and is the quickest way to filter the list and get to the attribute, or group of attributes, that you're looking for (that is, scroll will give you all the attributes containing the word scroll, including scrollIndicators, scrollbarSize, scrollbarStyle, and so on).

 Organizing project files

Android Studio gives you a fairly standard Java project structure, that is, you have your main source sets, tests, a resources directory, and so on, but that doesn't really cover all of your organizational needs. If you check the project structure we created, you might note some patterns:

	
You'll first note that only a single Activity was created--MainActivity, but this Activity template has generated four layout files.

	
Only activity_main.xml is actually referenced by MainActivity; all the other files are included via the resource system.

	
The next thing to note is that the layout file referenced by MainActivity is named as actvitity_main.xml; this is a standard naming pattern that Android Studio will actually suggest when creating new Activity classes. It's a good idea, because it helps separate layouts used for Activity classes from those used elsewhere.

	
Next, take a look at the names of the other layout files. Each of them is also prefixed with nav, app_bar, and content. These prefixes help group the layout files logically in a file manager and in the IDE.

	
Finally, you'll note that the values directory has several XML files in it. The entire values directory is actually treated as one big XML file by the resource compiler, but it helps keep it organized by the type of resources being declared.

Use filename prefixes in the resources directories (especially layouts) to keep things organized. You cannot break things down into subdirectories, so a prefix is the only way to group files together logically. Common prefixes are "activity", "fragment", "content", and "item", which are commonly used to prefix layouts that are used to render list items and so on.

	If you open the MainActivity class now, you'll see how the layout is loaded and bound. The first thing MainActivity does when it's created is to call onCreate to its parent class (which is a mandatory step, and failure to do so will result in an exception). Then, it loads its layout file using the setContentView method. This method call does two things at once: it loads the layout XML file, and adds its root widget as the root of the Activity (replacing any widgets that were already there). The R class is defined by the resource compiler, and kept in sync for you by Android Studio. Every file and value resource will have its own unique identifier, which allows you to keep things tightly bound together. Rename a resource file, and its corresponding field will change:

setContentView(R.layout.activity_main);

	
You'll then note that MainActivity retrieves various widgets that were included in the layout files by their own IDs (also defined in the R class). The findViewById method searches through the Activity layout for a widget with the corresponding id, and then returns it:

// MainActivity.java
Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);

The findviewById method works by traversing all of the widgets in an Activity in a series of loops. There is no lookup table or optimize this process. As such, you should call the findViewById method in onCreate and keep a class-field reference to each of the View objects you'll need.

	
The preceding code snippet will return the Toolbar object declared in the app_bar_main.xml layout resource file:

<!-- app_bar_main.xml -->
<android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

findViewById can also be found on the View class, but it's a relatively expensive operation, so when you have widgets that will be used again in an Activity, they should be assigned to fields in the class.

 Summary

As you saw, an Android application comprises of more modular components, which assemble in layers, and are often directly accessible from the platform. The resource management system is your greatest ally and should be leveraged to provide your users with a consistent experience, and keep your user interface consistent. When it comes to arranging your application, Android Studio has a variety of tools and features that it will use to help you keep things organized and within commonly understood patterns. However, it's also important to stick to your own patterns and keep things organized. The Android toolkits have their own requirements, and you'll need to obey their rules if you want to benefit from them.

Android Studio also has an excellent collection of template projects and Activities, and they should be used to get your projects kick-started. They can also often serve with explanations for how common user interface design patterns are implemented in Android.

In the next chapter, we'll take a look at starting a layout from scratch and how to approach designing a form screen.

 Designing Form Screens

Form screens are an essential part of user interface design in many ways because their history is a lesson in how not to do things. Most applications need to capture input from their users at some point, and you need input widgets for that, but you should always consider the minimum amount of information you need to ask the user for, rather than try to get all the information you may need in the future. This approach will keep the user focused on the task they are trying to carry out. Presenting them with a wall of input fields is overwhelming to most users and breaks their focus, which in turn can lead to them abandoning what they were trying to do with your application.

This chapter is focused on form screens, and will walk you through a bit of their history before diving into a method for actually designing form screens. This approach can and should be reused whenever you need to design a screen for an app. It's always important to take a step back from your code work and consider how things will look and fit together for the user; it's often the difference between a successful app and failure.

In this chapter, we'll develop a practical form screen using Android Studio and the layout editor. Starting from an empty template in a new project, you'll learn the following:

	How to break up and then arrange a form layout to be most effective for your users

	How to use resources to keep your user interface consistent

	How to style widgets to help the user understand what the widget should be used for

	How to build drawable resources that respond to state changes

 Exploring form screens

While not the most glamorous component of an application's user experience, form screens are a long-time staple of software. A form screen can be defined as any screen where the user is expected to explicitly enter or change data, as opposed to viewing or navigating it. Good examples of form screens are login screens, edit profile screens, or the add contact screen from a phonebook app. Over the years, the idea of what constitutes a good form screen has changed, with some people going as far as to shun them completely. However, you can't capture the user's data out of thin air.

The Android standard toolkit provides an excellent and diverse collection of widgets and layout structures to facilitate building excellent forms, and in Material Design applications, form screens can often double as a view screen (what will usually be a read-only version of the form screen) thanks to the placement of labels. A good way to understand this principle is to consider the evolution of textboxes. As soon as you have a blank space to be filled by your user, you need to tell the user what to put there, and when we started labeling textboxes, we simply copied how we did this on paper forms--by putting a label to the one side of the textbox:

The issue with this is that the label always takes up quite a bit of space, and takes up even more if you need to include some validation rules for the user (such as date inputs--DD/MM/YYYY). This is where we started adding hints to the input boxes. The label will explain what to add in the Date of Birth textbox, and a hint within the textbox will tell the user how to input valid data:

From this pattern, many mobile applications began to drop the label completely and instead used the hint/placeholder to contain the data on the theory that from the context of the form, the user will be able to infer what data was in each of the textboxes. However, this means that the user has to do a bit of extra thinking in order to make sense of the screen when they see it for the first time. This extra delay can quickly turn to frustration, and reduces how usable your application is. For this reason, Material Design text inputs turn their hints into small labels that move above the textbox when the user focuses on the textbox, making it easier for them to keep track of what information they are entering:

This also reduces the amount of work that needs to be done on form screens as a developer, because you typically won't need to separate the view and edit screens of your application, since the form will always have all of its labeling available. However, it's important to avoid overcrowding your screens with input widgets. Nobody likes to have to fill in lots of data, even if most of it is optional. Instead, always consider the minimum amount of data you need from your user at each point in your application. It's also important to consider how you will ask the user for their data.

We'll start our first form screen as an information capturing screen. We'll be building an imaginary app to track someone's travel expenses, allowing them to capture, tag, and store each of their expenses to be filtered and reviewed later. The first thing we need is a screen where the user can capture an expense and any additional information that goes with it.

As best as possible, you should make input fields optional, but you can always encourage people to give more data by telling them how complete something is. This is a common technique when dealing with a user profile--"Your profile is 50% complete", helps encourage the user to provide more data to raise that number. This is a simple form of gamification, but it's also very effective.

 Designing a layout

Good user interface design is rooted in some simple rules, and there are processes you can follow to design a great user interface. For example, imagine that you're building an app to capture travel expenses so that they can be claimed easily at a later time. The foremost thing we'll build over here is the screen that captures the details of a single claim. This is a perfect example of a modern form screen design.

When designing a layout, it's a good idea to use a mockup tool such as Balsamiq (https://balsamiq.com/), or even paper and pencil to think about the layout of the screen. Physical index cards make excellent thinking spaces as they have similar proportions to a phone or tablet. Using paper, especially, helps you think about the arrangement of the screen instead of being distracted by the exact colors, fonts, and spacing that should be dealt with in a common set of theming rules.

To start designing the screen, we need to consider what data we'll need from the user and how we might be able to fill some of it out for them. We also need to try and stick to the platform design language so that the application doesn't feel out of place to the user. It's also important when designing form screens to ensure that the entire input form will fit onto the device's display. Scrolling an input screen requires your user to remember what is not on the screen, and causes frustration and anxiety. Whenever you design a form screen, ensure that all the inputs will fit onto one display. If they don't all immediately fit onto the display together, first consider whether you can remove some of them. After removing any that aren't absolutely required, consider grouping some on a single line, ensuring that you put no more than two inputs per line. More than two input fields on a single line implies that you can probably turn them into a single input.

So, to get started, consider what information a user will want to capture for a travel expense:

	How much the expense was

	Some photos of the invoice, or maybe of the item purchased

	The date that they captured the expense on

	What sort of expense they're capturing such as food, transport, accommodation, and more

	A short description to help them remember what the expense was

Great, that seems like a good starting point, but they're not in a great order and they're not grouped at all. We need to consider what is most important, and what groups logically fit together well on-screen. For starters, let's focus on developing a portrait layout for a phone, since that will be our most common use case. So, the next thing to do is group the input components in a way that will feel logical and familiar to a user. When looking at an overview of claims, the things we'll want to list are as follows:

	The date of the expense:

	The date that they captured the expense on

	The amount the claim is for:

	How much the expense was

	Some photos of the invoice, or maybe of the item purchased

	The description of the claim:

	What sort of expense they're capturing such as food, transport, accommodation, and more

	A short description to help them remember what the expense was

So, we'll group these three fields together, and put them at the top of the screen. This particular grouping will feel common to anyone who has used any budget or expense tracking software:

The Date is a special field, because we can easily populate it with the current date. It's most likely when the user enters this screen that they are capturing an expense for the same day. We still need to capture a category and attachments for the expense. Attachments will need a large amount of space so that the user can preview them without having to open each one to know what it is, so we'll put them at the bottom of the screen and have them take any space left over. That just leaves the category. The expense categories are best represented using icons, but we need some space for text so that the user knows what each icon means. We can do this in one of several ways:

	Place a tiny label above or below each icon:

	Pros: All the labels are always on the screen

	Cons: The labels can be hard to read on smaller screens, and the icons take up more screen space:

	Create a vertical list of icons and put a nice large label to the right of each:

	Pros: The labels are easy to read, and always associated with their icons

	Cons: This will take up lots of the vertical space that is best used to display attachment previews:

	Show only the icons, and display the label when the user holds their finger over the icon (long presses):

	Pros: The text takes up no screen space

	Cons: This sort of behavior is not intuitive to users, and requires that the user selects the category to know what its label is:

	Show the list of icons and the text of the selected category below them:

	Pros: The text label can be large and easy to read, and takes up less screen space because only one label is shown at a time

	Cons: The user must select the category to know what its label is:

In order to keep the label in a nice, easily readable size, while also drawing extra attention to which category is currently selected, this example will show you how to create option four, where the currently selected category name is shown below a horizontal list of the category icons. We'll also highlight the selected icon to help keep a connection between the two user interface elements.

The one remaining thing that the user needs to be able to do is attach files to the expense claim before saving it. There should be a nice, large area at the bottom of this layout that will make a perfect area to preview a single attachment, and if the user has more than one attachment, they can swipe left and right to switch between their previews. However, how can they attach them in the first place? This is where a floating action button is an ideal solution. You'll see floating action buttons everywhere in Android applications. They are usually near the bottom-right of the screen, where a right-handed person will have their thumb if they hold the phone one-handed, and out of the way of most Western content, which will be to the left of the screen (normally):

Floating action buttons are normally the most common creative (as opposed to navigation or destructive) actions on the screen; for example, creating a new email in the Gmail or Inbox app, attaching a file, and so on.

So now, we have the screen broken down into three logical areas, outside of the normal decorations:

	Claim details

	Categorization

	Attachment

Putting them together into a single screen layout concept gives you a wireframe, looking something like this:

This exercise of wireframing your screens before you start developing them is an extremely valuable phase, because it gives you time and space to think about each of the choices you could be making, rather than just grabbing the first available widgets in the toolbox and putting them onto the screen. Now that you have a wireframe, you're ready to get started with building the user interface for the application.

 Creating a form layout

Once you have a good wireframe to work from, you'll want to start developing the user interface screen. For this, we'll use Android Studio and its wonderful layout editor.

Since this is a brand new project, you'll need to open Android Studio and use File | New | New Project to get it started. Then, follow these steps:

	Name the project Claim, and leave any non-Java support turned off.

	Target Android 4.1 on Phone & Tablet only.

	In the Activity Gallery, choose the Basic Activity:

	Name the new Activity CaptureClaimActivity, and then change the title to Capture Claim. Leave the other parameters at their default values:

	Finish the New Project wizard, and wait for the project to be generated.

	When the project has been generated and synchronized, Android Studio will open the content_capture_claim.xml file in its layout editor.

	By default, Android Studio assumes that you will be using a ConstraintLayout as the root of your layout. This is an incredibly powerful and flexible tool, but also not well suited as the root element of this user interface. You'll need to switch over to the Text view at the bottom of the screen in order to change to something more suitable:

	The file will currently have something like the following XML in place:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.packtpub.claim.CaptureClaimActivity"
 tools:showIn="@layout/activity_capture_claim">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

	Change the ConstraintLayout to a simple LinearLayout. LinearLayout is one of the simplest layouts available on Android. It renders each of its children in a straight line, either horizontal or vertical, depending on its orientation attribute. Replace the whole of the content_capture_claim.xml file with the following content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.packtpub.claim.CaptureClaimActivity"
 tools:showIn="@layout/activity_capture_claim">

</LinearLayout>

Choosing the right layout to use is about more than just keeping your code simple; less flexible layouts are much faster at runtime and lead to a much smoother user experience. Try to stick to simpler layouts where possible, but also avoid nesting layouts too deep (one inside the other), as this also leads to performance problems.

	Change back to the Design view in the layout editor, and you'll notice that the Component Tree to the left of the design view now has a LinearLayout (vertical) as its only component.

 Creating the description box

Now that the base layout is set up, it's time to start adding the widgets to the user interface and make it useful. In this next stage, you'll be using several Material Design widgets that help produce great user interfaces, such as CardView and the TextInputLayout widget. Before Material Design, text input boxes were just plain EditText widgets, which while still available, are now generally discouraged in favor of a TextInputLayout. The TextInputLayout is a specialized layout that contains a single EditText widget for the user to enter text data. The TextInputLayout then also provides the floating hint/label effect and animations, transitioning the EditText widgets hint to a label space just above the input area. This means that even when the user has filled in the text, the hint for the EditText is still visible above their input:

You'll be wrapping this first group of widgets in a CardView, which will serve as a visual grouping for the user. Follow these steps to add the description input box:

	Open the AppCompat section of the Widget Palette. This contains widgets that come from special APIs that are parts of the extended Android platform. They're not included on the platform by default, and instead, are included in each application they are used in, a bit like static linking a library.

	Drag and drop a CardView into your user interface design; you can drop it anywhere on the design canvas. This will serve as the grouping for the description, amount, and date input boxes. Ensure that in the Component Tree, the CardView appears as a child of the LinearLayout (vertical):

	A CardView stacks its widgets on top of each other in layers (back to front). This is not what's needed in this case, so you'll need to open the Layouts section of the Palette and drag a ConstraintLayout into the CardView on your design. Ensure that in the Component Tree, the ConstraintLayout appears as a child of the CardView.

	Select the new ConstraintLayout in the Component Tree.

	In the Attributes panel, select the View all attributes button:

	Open the section titled Layout_Margin.

	Click on the resource editor button for the all line, as shown in the screenshot:

	In the resource editor, select the Add new resource button in the top-left, and choose New dimen value (dimen is short for dimension. A dimension resource can be used to specify sizes in non-pixel units, which are then converted according to the actual display system on the user's device).

	Name the resource grid_spacer1, and give it a value of 8dp:

Material Design interfaces on Android use a spacing grid in an increment of 8dp, which is 8 density-independent pixels. This is a special unit of measurement that varies the actual number of pixels used based on the density of the screen. These are also the most common unit of on-screen measurement in Android. A 1dp measurement will be 1 physical pixel on a 160dpi screen, and scaled to 2 pixels on a 320dpi screen. This means that by measuring your layout in terms of density-independent pixels rather than physical pixels, your user interface will translate better over the range of screen densities it might encounter on various devices.

	Click OK to create the dimension resource and go back to the layout editor.

	Now, you'll need to start building up the input boxes for the user to fill in. The first of these will be the description box. Open the Design section of the Palette, and drag a TextInputLayout into the Component Tree as a child of the ConstraintLayout:

	In the Attributes panel, click on the View fewer attributes button (it's the same one as View all attributes).

	At the top of the Attributes panel, set the ID of the TextInputLayout to description_layout.

	Use the Constraint editor (just below the ID attribute) to create connections to the left, and above the TextInputLayout by clicking on the blue circles with the + signs in them. Then, change the constrained margins to zero on both the new constraints, as shown:

	Your TextInputLayout, now named description_layout, should have snapped to the top-left corner of the layout editor:

	Change the layout_width attribute to match_constraint, and the layout_height parameter to wrap_content. The TextInputLayout will shrink to the minimum space it can occupy in the top-left corner.

	Now, using the Component Tree, select the TextInputEditText inside the description_layout TextInputLayout.

	In the Attributes panel, change the ID to description, since this is the field you actually want to capture the contents of.

	Change the inputType to textCapWords; this will instruct software keyboards to place a capital letter at the beginning of each word:

	The hint/label for the description box is currently hint, and it's hardcoded into the layout. We want to change it to Description, and make it localizable (so that it's easy to translate the app into new languages). Use the edit button to open the string resource editor, and choose Add new resource | New string value:

	Fill in the Resource name as label_description. You'll notice that this follows another prefix rule, which helps when dealing with large numbers of string resources in your source code.

	Fill in the Resource value as Description, and leave the remaining fields unchanged:

	Click on OK to create the new string resource and go back to the layout editor.

In this section, you created a grouping component (the CardView) that will serve to visually group the description amount and date fields for the user, and you have populated it with its first component--the description box. You have also created a dimension resource that can be reused throughout your application to represent a single grid spacing unit, allowing you to adjust the size of the grid for the entire application. A consistent grid spacing in the application helps define a consistent look and feel for the application, and keeping this value as a resource provides you with a single place where you can change it if required.

 Adding the amount and date inputs

In this next section, we'll finish building the description box by adding the amount and date fields. This will involve using some more complex constraints on the widgets you will be adding, as they will need to be positioned relative to each other. Follow these steps to finish the description box:

	Drag another TextInputLayout into your design and place it somewhere below the Description field. This new box has no constraints as of yet.

	In the Attributes panel, change the ID to amount_layout.

	In the Attributes panel, open the resource editor for layout_width as you did to create the grid_spacer1 resource earlier.

	Create a new resource named input_size_amount, and set its value as 100sp.

Much like dp, sp (scale-independent pixels) is a relative pixel size, but unlike density-independent pixels, scale-independent pixels are scaled according to the user's font preferences. Normally, these are used to specify font sizes, but they can also be useful when specifying fixed sizes for text input widgets.

	Now, drag the right constraint handle to the right of the layout, and then drag the top constraint handle to the top of the layout, as shown:

	Now, zero the margins using the constraint editor in the Attributes panel:

	Now, use the Component Tree to select the description_layout TextInputLayout widget.

When selecting widgets directly in the design view, the editor will pick the deepest child of the Component Tree that you clicked on. This means that if you click on the Description field directly, you will select the TextInputEditText box, instead of the TextInputLayout. So, when dealing with the ConstraintLayout in particular, it's often better to select widgets in the Component Tree to ensure that you pick the right one.

	In the layout view, drag the right constraint handle of the description TextInputLayout to meet up with the left constraint handle of the new amount_layout and TextInputLayout:

	Click on the new TextInputEditText widget in the Component Tree panel.

	In the Attributes panel, change the ID to amount.

	Use the attribute editor to change the inputType to number.

	For the hint attribute, open the resource editor to create a new string resource.

	Name the resource as label_amount, and give it a value Amount:

	Now, we'll add a label for the Date input field; in the Palette panel, open the Text section and drag a new TextView into the layout editor.

	Using the constraint editor in the Attributes panel, add a constraint to the left and right, and then zero their margins.

	Change the layout_width to match_constraint so that the label takes up all the available width:

The match_contstraint value available to the children of a ConstraintLayout is a special marker attribute that will cause the widget to fill the space made available by its constraints. This is similar to how the match_parent value will cause a widget to take up all the space made available by its parent.

	Now, drag a new constraint from the top of the new TextView to the bottom of the Description TextInputLayout:

	Use the resource editor to create a new string resource for the text attribute.

	Name the new resource label_date, and make its value Date:

	Still in the Attributes panel, change the textAppearance attribute to AppCompat.Caption. This is the same textAppearance style used by TextInputLayout for the hovering label when the cursor is focused on its EditText.

	Now, use the resource selector on the textColor attribute to choose the colorAccent color resource. This is the highlight color that is generated by Android Studio for you, and is also used by TextInputLayout. Your TextView should now look like the focused label for a TextInputLayout, which is exactly what you want, because the next widget should look like an EditText, but isn't.

	From the Palette panel, drag another TextView into the design layout.

	Use the Attributes panel to change its ID to date.

	Create left and right constraints, and set them to zero.

	Change the layout_width to match_constraint so that the date TextView takes up all the horizontal space:

	Drag the constraint handle from the top of the date TextView to the bottom of its TextView label:

	At the top of the Attributes panel, use the View all attributes toggle button to view all the available attributes.

	Using the Attributes search box, find the style attribute:

	Open the resource selector for the style attribute.

	Using the search box, find the AppCompat.EditText style:

	Clear the search box, and toggle back to the View fewer attributes panel.

	Clear the text attribute by deleting its content (this TextView should be empty in the layout file).

	In the Component Tree, select the CardView.

	In the Attributes panel, change its layout_height to wrap_content. The CardView will roll upward, taking up just enough space to contain the widgets that now make up the description, amount, and date inputs.

Unlike the description and amount input boxes, the date is actually made up of two labels that are styled so that together, they look like a focused TextInputLayout widget. This is important because the user will populate the date using a calendar dialog, rather than typing the date using a keyboard. A calendar dialog is more user-friendly, and less error-prone than manual date entry. Also, like this, the component looks familiar to the user, giving them a suggestion of how it should be used. This sort of styling capability is very important and useful in Android, and it's worth learning how standard components are composed together and styled so that you can build these sort of emulations.

Your completed Description, Amount, and Date, so the capture box should look like this in the Android Studio layout editor:

 Creating the category chooser

The category chooser is where the user will select how to file their expense claims. There'll be a fairly small number of these, and they will be represented by icons in the user interface. Fortunately for Android developers, Material specifies a huge range of standard icons, and Android Studio has features to import them as bitmap or vector graphics files. When deciding whether to use bitmap images or SVGs, it's important to consider the trade-off between these two formats, specifically in relation to Android. Especially so since in Android, multiple copies of a bitmap are often provided for different screen sizes and densities, leading to much higher-quality scaling (as most will only ever be scaled down slightly). Here's a quick table to compare them:

	Bitmaps
	Vector Graphics

	
Are supported on all platforms natively

	
May require a support library to work

	
Can be handled by the GPU and rendered with full acceleration

	
Must be rendered into a bitmap before they can be rendered onto the screen, which takes time

	
Take up more space in your app's APK, especially as you may need to provide different copies for different screen sizes and densities

	
Are stored as binary XML files, and take up very little space in the APK

	
Suffer massive loss of quality when scaled up, and loss of detail when scaled down

	
Can be rendered at virtually any size with no perceptible loss of quality or detail

For the category chooser widget, you'll be importing vector graphics icons and using them as radio buttons. Let's get things started:

	In the files view to the extreme left of Android Studio, right-click on the res directory and select New, Vector Asset to open the vector import tool:

	Where it says Icon, click on the button with the Android robot.

	Use the search box at the top-left of the dialog to find the "hotel" icon, and select it.

	Click on OK to return to the import tool.

	The import tool will have changed the proposed name to ic_hotel_black_24dp; change this to ic_accommodation_black:

	In the Size boxes, select the Override checkbox and change the size to 32 dp X 32 dp.

	Click on Next and then on Finish to complete the import.

	Repeat this process, and find the room service icon. Name this one ic_food_black, and don't forget to change its size to 32 dp X 32 dp.

	Repeat this for the airport shuttle icon. This is ic_transport_black, and again, change its size to 32 dp X 32 dp.

	Repeat and find the local movies icon; name this ic_entertainment_black and remember to change its size to 32 dp X 32 dp.

	Find the "business center" icon and name it ic_business_black; again, change its size to 32 dp X 32 dp.

	Finally, find the all inclusive icon, name it ic_other_black, and override its size to 32 dp X 32 dp.

Now you have a collection of black icons that will serve as the basis for your category selector.

 Making icons change with state

In Android, images have state; they can change how they look according to the widget that is using them. In fact, this is how a button works; it has a background image that changes state depending on whether it's pressed, released, enabled, disabled, focused, and so on. For us to show the user which of these categories they have actually selected, we need to provide them with a visual indication on the icon. This involves some editing:

	Start by making a copy of the ic_accommodation_black.xml file that was generated, and name this one ic_accommodation_white.xml. Use copy, and then paste the file into the same directory to have Android Studio bring up a Copy dialog.

Vector graphics in Android are XML files representing the various shapes and colors that make up the graphic. A vector graphic doesn't contain the pixel data like a bitmap image (such as a .png or .jpeg), but contains instructions for how to render the image. This means that by adjusting the coordinates contained within the instructions, the image can be made larger or smaller with little or no loss of quality.

	Beware, because by default, Android Studio might have selected the drawable-xhdpi directory as the target for the paste operation. If it has, you'll need to change this to drawable:

	The editor will open with the new copy of the icon, which will still be black. The code for the file will look something like this:

<vector
 android:height="32dp"
 android:viewportHeight="24.0"
 android:viewportWidth="24.0"
 android:width="32dp"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <path android:fillColor="#FF000000" android:pathData="..."/>
</vector>

	Change the android:fillColor attribute from #FF000000 to #FFFFFFFF to change the icon from black to white.

Colors in Android resources are specified using the standard Hexadecimal color notation. This is the same notation used on the web in CSS and HTML files. Each pair of two characters represents one part of the color component with values from 0 to 255 (inclusive). The components are always Alpha, Red, Green, and Blue, in that order. Alpha represents how transparent or opaque the color is, zero (00) being completely invisible, while 255 (FF) is completely opaque.

	Now, repeat this operation for all the other icons you imported, ensuring that each one is copied to the drawable directory, and change its name from _black to _white.

	You now have a black and white version of each icon; black is perfect to place against the white background of a CardView, while white is perfect to place against the accent color of your application, and shows how the icon has been selected by the user. For this, we need even more drawable resources. Right-click on the drawable directory and choose New| Drawable resource file.

	Name this new file ic_category_accommodation and click on OK.

	Android Studio will now open the new file, which will be an empty selector file:

<?xml version="1.0" encoding="utf-8"?>
<selector
 xmlns:android="http://schemas.android.com/apk/res/android">
</selector>

A selector element corresponds to a StateListDrawable object from the android.graphics.drawable package. This class attempts to match its own state flags against a list of possible visual states (other drawable objects). The first item that matches is displayed, which means that it's important to consider the order you declare the states in.

	First, tell the selector that it will always be the same size by setting its constantSize attribute, and then tell it that it should quickly animate between its state changes. This short animation gives the user an indication of these changes when choosing a category:

<selector
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:constantSize="true"
 android:exitFadeDuration="@android:integer/config_shortAnimTime"
 android:enterFadeDuration="@android:integer/config_shortAnimTime">

	First, you'll need to create a state for when the category is selected; you'll use two layers: one will be a simple circle background filled with the accent color, and over that you'll have the white version of the accommodation icon:

<item android:state_checked="true">
 <layer-list>
 <item>
 <shape android:shape="oval">
 <solid android:color="@color/colorAccent"/>
 </shape>
 </item>
 <item
 android:width="28dp"
 android:height="28dp"
 android:gravity="center"
 android:drawable="@drawable/ic_accommodation_white"/>
 </layer-list>
</item>

	Then, create another item that is the default state--the black-filled accommodation icon:

<item android:drawable="@drawable/ic_accommodation_black"/>

	Repeat this process for each icon you imported so that each one has a stateful, drawable icon that you can use in the layout file.

This process is often repeated, and there may even be more drawable resources involved for more varied state lists. Drawable elements are not always nested, as you did with the preceding state_checked item; they are often written into external drawable resources and then imported. This allows them to be reused without requiring the resource to be state-aware.

 Creating the category picker layout

Now, it's time to go back to the layout editor and start creating the category selector box with these icons:

	Reopen the content_capture_claim.xml layout file from the res/layout directory.

	In the Palette panel, open the AppCompat section and drag another CardView into the layout editor. Drop it below the CardView for the description, amount, and date input fields.

	In the Attributes panel, use the View all attributes toggle button and search box to find the layout margin.

	Open the Layout_Margins attribute group.

	Then, open the resource selector for the top attribute.

	Select the grid_spacer1 dimension resource you created earlier, and click on OK to close the resource selector:

	Then, in the Palette, open the Layouts section and drag a LinearLayout (vertical) into the new CardView.

	In the Attributes panel, use the resource selector to change the all margin attribute to grid_spacer1 to create some padding from the edges of the CardView.

	Clear the Attributes panel search box.

	Open the Containers section of the Palette, and drag a RadioGroup into the new LinearLayout in the layout editor. A RadioGroup is a specialized LinearLayout that handles the toggling of its child RadioButton widgets, which you'll use to allow the user to select a category.

	In the Attributes panel, change the id attribute to categories.

	In the Attributes panel, use the search box to find the orientation attribute and change it to horizontal.

	Clear the Attributes panel search box, and toggle it back to View fewer attributes.

	Open the Widgets section of the Palette and drag a RadioButton into the new RadioGroup.

	In the Attributes panel, change the ID to accommodation.

	Clear the layout_weight attribute.

	Use the resource editor for the button attribute to select the ic_category_accommodation you created earlier:

	Clear the text attribute, since these radio buttons won't have any labels.

	You'll then use the contentDescription attribute to store the human readable name of the category. Open the resource editor, create a new string resource named description_accommodation, and give it a value of Accommodation.

The contentDescription attribute is part of the accessibility system, and it's used by screen readers and similar aids to describe a component that might not have a text label. In this case, it's a perfect place for us to grab the human-readable description of a category. It's not an on-screen space, and it also serves users with accessibility enabled.

	Toggle the Attributes panel to view all the attributes, and then find the layout margins.

	Use the resource selector to change the end margin attribute to grid_spacer1.

	Repeat the process of adding and populating radio buttons for the categories, giving each of them a suitable name in their ID and contentDescription attributes. Leave the “other” category until last so that it appears to the right of all the others.

	In the Component Tree panel, select the RadioGroup.

	In the Attributes panel, change its layout_height to wrap_content.

	From the Palette, open the Text section and drag a TextView into place below the RadioGroup.

	In the Attributes panel, change the ID to selected_category.

	Clear the text attribute.

	Use the drop-down on the textAppearance attribute to select AppCompat.Medium.

	In the Component Tree, select the CardView containing the category selection components.

	Now in the Attributes panel, change the layout_height to wrap_content.

The CardView will wrap upward, packing in the radio buttons and the label that you will use to display the currently selected category name. The CardView, again, serves to visually group the categories, and helps the user understand how they use this area of the screen:

The use of standard styles and theming, again, helps the user to quickly grasp how things work; even though the categories are just a row of icons, they are underscored by the selected category name.

 Adding the attachment preview

After completing the category selector box, roughly half the available layout space should be left empty underneath. This is where the user will be able to preview the attachments they have added to the claim. We want the user to be able to swipe through these attachments left and right, and the easiest way to allow this is a ViewPager. A ViewPager is a special type of Android widget that links to an Adapter (other examples are ListView, Spinner, and RecylerView). An Adapter object turns data (such as rows from a database cursor, or objects from a java.util.List) into widgets that can be displayed on the screen.

Follow these steps to add it to the layout:

	The ViewPager class is not available from the Palette panel, so at the bottom of the layout editor, change from Design mode to Text mode, so that you can edit the layout XML directly.

	Go to the bottom of the file and find the space between where the last CardView element is closed and where the LinearLayout is closed.

	Insert a ViewPager element into that space:

 </android.support.v7.widget.CardView>

 <android.support.v4.view.ViewPager
 android:id="@+id/attachments"
 android:clipChildren="false"
 android:clipToPadding="false"
 android:paddingBottom="@dimen/grid_spacer1"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:layout_marginTop="@dimen/grid_spacer1"/>
</LinearLayout>

	Change back to the Design view, and you'll note that a new box has been added to the layout and blueprints where the empty space was.

The clipChildren and clipToPadding attributes in the preceding code change how the ViewPager and its children treat the space around them when rendering. The CardView class draws its shadows outside of its boundaries, and by default, these are clipped by the graphics system. Turning the clipping off allows the shadows and borders to be rendered completely.

A ViewPager doesn't look like anything on its own; its children are the only things that make it appear visually. So, until the user has added an attachment to a claim, nothing will appear in this space. This is not a problem, since the empty area provides a space for the software keyboard to appear when they enter the description and amount.

 Try it yourself

Using the knowledge you have gained in this chapter, import the attachment icon as a vector graphic, change its fill color to white, and set it as the icon of the floating action button that appears at the bottom-right of your layout. Once you have the icon right, try increasing the size of the floating action button to make it more thumb-friendly for your users.

 Test your knowledge

	When designing a form screen, what is the first thing you should consider?

	The colors and icons you want to use

	The data you need from your user

	The standard guidelines for Android

	What is the standard spacing increment in Material design?

	8 Pixels

	8 Density Independent Pixels

	8 Device Pixels

	The ConstraintLayout, ViewPager, and CardView are part of the support APIs. What does this mean?

	Their bytecode must be included with your application if you use them

	They are also used as part of the Android Studio code base

	They can only contain other widgets from the support APIs

	When building a new layout, your root widget should always be which of these?

	A ConstraintLayout

	A LinearLayout

	The simplest widget that makes sense for your layout

 Summary

In this chapter, we looked at how to design and then build a form screen in detail. These screens are an important part of applications, because they are where you users give you their details and as such they need to be especially intuitive and quick to use. Nobody likes to spend a lot of time filling in forms, and even less if they are using a mobile device. It's always good to remember that people normally use apps for relatively short periods of time; "what was that email?", is a more common action than "let me draft a letter to someone." This viewpoint helps when it comes to designing the user interfaces and overall experience you will build for your users.

It's always a good idea to sketch out your screen somewhere visually, and if you do, use software for it: ensure that it's something that lets you focus on layout and content rather than having to worry about colors, templates, or layout systems; always design first and then figure out how you'll build it. Pay attention to apps you enjoy using and that you find useful, look at how they do things--imitation is the sincerest form of flattery. Don't copy people too closely, but draw inspiration from good ideas; your users will thank you for it as well, because you'll be presenting them with something familiar, and hopefully more innovative at the same time.

Try to keep all text, colors, and dimensions as resources, and use generic names for these resources wherever possible. It's not uncommon to have an ok and cancel resource defined right under the application's name, because they are commonly used throughout applications. Keeping these values in the resource system allows for changes to be made far more easily, and keeps the application look and experience consistent for your users.

In the next chapter, we'll look at events, the Android event model, and how to best deal with events from your user interfaces in a way that provides the best user experience, while also being the more flexible to program with.

 Taking Actions

Handling events is an essential part of any application; they are the raw input data for a user interface and how we interact with our users (rather than just presenting them with data). Android has an event model that will be instantly familiar to anyone who has programmed Java on their desktop--you attach listener objects to the widgets, and they deliver events to you.

Event listeners in Android take the form of interfaces that you need to implement in order to receive the events. Each possible event type is declared as a method on the relevant interface. To receive a notification that the user has clicked or tapped on a widget, you use the OnClickListener interface, which declares a method--onClick(View)--which will be invoked when the relevant widget receives what it considers a click gesture from the user.

In this chapter, we'll take a look at events on Android, and how best to implement them. Specifically, we'll be taking a closer look at the following:

	How Android dispatches events, and how it affects your program and user experience

	Different ways to implement event listeners and their pros and cons

	How to wrap groups of events into logical classes

	How to make events always happen quickly

 Understanding Android event requirements

Android has a number of requirements around events delivered from the user interface that are important to be aware of, because they directly affect the user's experience and the perceived performance of your application. Android runs the main thread of an application as an event loop, rather than having a separate event loop or event dispatcher thread. This is an extremely important concept to understand, because this thread and event queue are shared between the following:

	All the events from the user interface

	The drawing requests from the widgets, where they paint themselves

	The layout system and all the calculations for positioning and sizing widget

	A variety of system-level events (such as network state changes)

This makes the main thread of the application a precious resource--every frame of an animation has to run through this event loop as a separate event, as does every layout pass, and every event from the user interface widget. On the other side of this contract, there are three other important factors to know and understand:

	All method calls to user interface elements must be done on the main thread

	No networking is allowed on the main thread

	Every event slice on the main thread is externally timed, and long-running events may cause your application to be terminated through an Application Not Responding dialog displayed to the user (which is as bad as crashing in most cases)

So, it's vital that we have models in place to avoid using the main thread more than is absolutely required. Every time you run something on the main thread, you're taking time away from vital systems such as graphics rendering and input events. This will cause your application to appear to stutter and become unresponsive. Fortunately, Android has many utilities to help, and there are a few extra steps that can be taken as a developer, which will reduce the complexity and help ensure the best possible user experience.

 Listening for some events

When listening for user-interface events in Android, you'll typically hook up a listener object of some sort to the widgets you want to receive events on. However, how the listener object is defined may follow a number of different patterns, and listeners can take a number of different forms. You'll often see a simple anonymous class being defined as the listener, which is something like this:

closeButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 finish();
 }
});

However, while this pattern is common (especially because the much shorter lambda syntax was only introduced in Java 8, and Android didn't properly support it until 2017), it's not always your best choice for several reasons:

	This anonymous class is not reusable at all. It serves one purpose, for a single object in the entire application.

	You just allocated a new object that will also need to be garbage collected. This is not a big deal, but can sometimes be avoided or minimized by grouping listeners into classes that handle multiple related events.

	Any local variables from onCreate that are captured by the anonymous inner class must have references copied over into the new class as fields. You don't see this happen, but the compiler does it automatically (it's why the fields must be final).

If Java 8 is available on your project, you can, of course, use lambdas, and shorten the syntax. However, this still results in an anonymous inner class being created. Another pattern for listening for events is to have the class that contains the layout (typically an Activity or Fragment) implement the listener interfaces, and use a switch statement to handle events from different widgets:

public class MyListenerActivity extends Activity implements View.OnClickListener {
 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.eventful_layout);

 findViewById(R.id.open).setOnClickListener(this);
 findViewById(R.id.find).setOnClickListener(this);
 findViewById(R.id.close).setOnClickListener(this);
 }

 // ...

 @Override
 public void onClick(View v) {
 switch (v.getId()){
 case R.id.open:
 onOpen();
 break;
 case R.id.find:
 onFind();
 break;
 case R.id.close:
 onClose();
 break;
 }
 }
}

This has two advantages: there are no new listener objects, and all the layout and event logic is now encapsulated within the Activity class. The switch statement carries a tiny overhead, but as the layout increases in size, it becomes a lot of boilerplate to maintain and somewhat encourages you to place simple event code directly into the onClick method, instead of always just dispatching to another method. This simple event code almost always leads to more complex event code, and eventually to a horrible mess in your code base.

So, what is the right way to handle events? The answer is that there isn't one, but when deciding how to handle events, you should always consider how you will reuse the event handler code--don't repeat yourself. For the date selection widget from the last chapter, the expectation is that when the user taps on the date, they will see a calendar dialog open, allowing them to choose a new date. This will need an event handler, and such a handler should be reusable since you may want it elsewhere, so follow these steps to build the date-picker event listener:

	Right-click on your default package (that is, com.packtpub.claim) and select New| Java Class:

	Name the new class ui.DatePickerWrapper; Android Studio will create a new package named ui automatically and place DatePickerWrapper inside it.

	In the Interfaces list, add the following listener interfaces (use commas "," to separate the interfaces):

	android.view.View.OnClickListener: To receive an event when the user taps on the date picker

	android.view.View.OnFocusChangeListener: To receive an event if the date picker receives keyboard focus; this is important to handle if the user chooses to navigate the form using the "next" button on the keyboard, or has a physical keyboard attached to their device

	android.app.DatePickerDialog.OnDateSetListener: To receive an event when the user selects a new date from DatePickerDialog:

	Click OK to create the new package and class.

	If Android Studio has not created the skeleton methods for the listeners, select class name as DatePickerWrapper in the source, and use the code assistant to implement the methods:

	Now you'll need a way to format the date string for the user, and it should be localized, so declare a java.text.DateFormat for this purpose:

private final DateFormat dateFormat = DateFormat.getDateInstance(DateFormat.LONG);

	This class is a wrapper, and will also need some fields to keep track of what it is wrapping, namely, the TextView, where it will display the date to the user (and where the user can tap to open the date picker dialog), an instance of DatePickerDialog to display to the user, and the currently selected/displayed Date:

private final TextView display;

private DatePickerDialog dialog = null;
private Date currentDate = null;

	Then, we need a simple constructor that will capture TextView for display, and set it up as a date display and configure the events:

public DatePickerWrapper(final TextView display) {
 this.display = display;
 this.display.setFocusable(true);
 this.display.setClickable(true);
 this.display.setOnClickListener(this);
 this.display.setOnFocusChangeListener(this);

 this.setDate(new Date());
}

	Now, we'll need getter and setter-like methods to change and retrieve the state of the date picker:

public void setDate(final Date date) {
 if(date == null) {
 throw new IllegalArgumentException("date may not be null");
 }

 this.currentDate = (Date) date.clone();
 this.display.setText(dateFormat.format(currentDate));

 if(this.dialog != null) {
 final GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(currentDate);
 this.dialog.updateDate(
 calendar.get(Calendar.YEAR),
 calendar.get(Calendar.MONTH),
 calendar.get(Calendar.DAY_OF_MONTH)
);
 }
}

public Date getDate() {
 return currentDate;
}

	Before we can actually handle the event, we need a method to display DatePickerDialog that will allow the user to change the date:

void openDatePickerDialog() {
 if (dialog == null) {
 final GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(getDate());
 dialog = new DatePickerDialog(
 display.getContext(),
 this,
 calendar.get(Calendar.YEAR),
 calendar.get(Calendar.MONTH),
 calendar.get(Calendar.DAY_OF_MONTH)
);
 }
 dialog.show();
}

	Then, we need to complete the event listener methods so that when the user selects the displayed date, we open the DatePickerDialog, allowing them to change the selected date:

@Override
public void onClick(final View v) {
 openDatePickerDialog();
}

@Override
public void onFocusChange(final View v, final boolean hasFocus) {
 if (hasFocus) {
 openDatePickerDialog();
 }
}

	Finally, we need to handle the event that comes back from the DatePickerDialog, indicating that the user has chosen a date:

@Override
public void onDateSet(
 final DatePicker view,
 final int year,
 final int month,
 final int dayOfMonth) {

 final Calendar calendar = new GregorianCalendar(
 year, month, dayOfMonth
);

 setDate(calendar.getTime());
}

Now you have a class that can turn any TextView object into a space where the user can select a date via the standard DatePickerDialog. This is an ideal example of a good place to encapsulate events; you actually have three different event handlers that perform a related group of actions, and maintain user interface state in a single class that can be reused throughout your application.

 Wiring the CaptureClaimActivity events

Now that we have a way for the user to pick a date for their travel expense claims, we need to actually wire it into the CaptureClaimActivity, which is where all the logic and wiring for the screen will live. To start wiring the events for the CaptureClaimActivity, follow these steps:

	Open the CaptureClaimActivity.java file in Android Studio.

	Now, declare a new field in the class (before the onCreate method) for the DatePickerWrapper that you wrote (Android Studio can help by writing the import for you):

private DatePickerWrapper selectedDate;

	You'll note that (by default) the FloatingActionButton object is wired up with a simple anonymous event handler that will look something like this:

fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(
 view,
 "Replace with your own action",
 Snackbar.LENGTH_LONG
).setAction("Action", null).show();
 }
});

	This is how many once off events get wired up (as discussed earlier in this chapter), but it's not what we want to do here, so remove that entire block of code.

	At the end of the onCreate method instantiate the DatePickerWrapper object by searching for the date TextView you added to the layout:

selectedDate = new DatePickerWrapper((TextView) findViewById(R.id.date));

	You don't need to hold any other references to the date TextView, since you'll only ever need to access it through the DatePickerWrapper class. Try running your application now, and see how the date picker works.

In the application, you'll note that you can select the category icons, and they will work exactly as expected. However, the label following them isn't wired up at all, and no labels will be displayed, leaving the user confused as to what they are actually selecting. To fix this, you'll need another event listener that sets the content of the label when the state of the RadioButton widgets is changed. This is another case where a specialized listener class will make sense; since it'll be usable anytime, you have a group of icon RadioButton widgets and a single label for all of them:

	Right-click on the ui package and select New | Java Class.

	Name the new class as IconPickerWrapper.

	Add android.widget.RadioGroup.OnCheckedChangeListener to the interfaces box.

	Create a field for the TextView label, and a constructor to capture it:

private final TextView label;

public IconPickerWrapper(final TextView label) {
 this.label = label;
}

	Add a method to set the label text content:

public void setLabelText(final CharSequence text) {
 label.setText(text);
}

	Complete the onCheckedChange method to set the label text from the contentDescription field of the selected RadioButton:

@Override
public void onCheckedChanged(
 final RadioGroup group,
 final int checkedId) {

 final View selected = group.findViewById(checkedId);
 setLabelText(view.getContentDescription());
}

This is a very straightforward class, but it also potentially serves other purposes in your application, and it only makes two assumptions about the RadioGroup it will be connected to:

	Every RadioButton has a valid ID

	Every RadioButton has a contentDescription that will serve as a text label

Going back to CaptureClaimActivity, you'll want to wire this new listener into the layout through the following steps:

	Before the onCreate method, create a new field to keep track of the RadioGroup, where the user can select the category icon:

private RadioGroup categories;

	Then, at the end of the onCreate method, you'll need to find this RadioGroup in the layout, and instantiate its event handler:

categories = (RadioGroup) findViewById(R.id.categories);
categories.setOnCheckedChangeListener(
 new IconPickerWrapper(
 (TextView) findViewById(R.id.selected_category)
)
);

	Finally, set the default selection to other; this action will also trigger the event handler before the screen is presented to the user. This means the label will also be populated when the user first sees the Capture Claim screen:

categories.check(R.id.other);

Now if you run the application again, you'll see the labels defined to appear beneath the selected icons as you toggle through the category icons.

 Handling events from other activities

On Android, you'll often find that you want to send your user to another Activity to do something, and then return them to your current Activity with the result of that action. Good examples are having the user pick a contact, or take a photo with the camera app. In these cases, Android uses a system of special events that are built into the Activity class. For capturing travel expense claims, your user needs to be able to go select a file to attach things such as photos or email attachments to their claim.

In order to present them with a familiar file chooser (and avoid writing a file chooser ourselves), you'll need to use this mechanism. However, to read files from outside of your application's private space, you'll need it to ask the user for permissions. Anytime an application needs access to potentially sensitive data (public directories, the device's camera or microphones, contact list, and so on), you need permission from the user. In versions of Android prior to 6.0, this was done during installation; the application declared what permissions it needed, and the user could choose to not install it. However, this mechanism isn't very flexible to users, and was changed in 6.0 so that applications must now ask for permission at runtime.

In order to access the user's files, the application will both declare that it requires the permission, and will also include the code to ask for permission while it's running (covering both cases):

	Open the CaptureClaimActivity class, and make the class implement the View.OnClickListener interface:

public class CaptureClaimActivity extends AppCompatActivity
 implements View.OnClickListener {

	Create two new constants to hold the request codes. Anytime your user leaves your current Activity, and you are expecting a result, you need a request code:

private static final int REQUEST_ATTACH_FILE = 1;
private static final int REQUEST_ATTACH_PERMISSION = 1001;

	In the onCreate method, find the line where the Android Studio template captures the FloatingActionButton:

FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);

	Rename the button to attach, as follows (use the Android Studio refactoring to change the ID, and the ID in the layout file will be changed as well):

FloatingActionButton attach = (FloatingActionButton) findViewById(R.id.attach);

	Now, set OnClickListener for the FloatingActionButton to Activity:

attach.setOnClickListener(this);

	Now, at the end of the CaptureClaimActivity, implement the onClick method, and delegate the click from the FloatingActionButton:

@Override
public void onClick(View v) {
 switch (v.getId()){
 case R.id.attach:
 onAttachClick();
 break;
 }
}

	Your application will need permission to read the content from outside its own private space. Open the manifests folder in the file browser, and open the AndroidManifest.xml file:

	At the top of the file within the manifest element, but before the application element, add the following permission declaration:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.packtpub.claim">

 <uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE"
 android:maxSdkVersion="23" />

 <application
 android:name=".ClaimApplication"

	The preceding permission only works for versions of Android where permissions were requested during installation; on Android 6.0 and newer, you need to check and request permissions at runtime. Doing this when the user taps on the FloatingActionButton to attach a file is the best time, as this is just before they actually choose a file that you will need permission to read. Implement the onAttachClick method, starting with a check for the permission, and request the permission if it's not already granted:

public void onAttachClick() {
 final int permissionStatus = ContextCompat.checkSelfPermission(
 this,
 Manifest.permission.READ_EXTERNAL_STORAGE);

 if (permissionStatus != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(
 this,
 new String[]{Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_ATTACH_PERMISSION);
 return;
 }

	Now the app can request that the system start an Activity, allowing the user to choose any openable file. This is where the REQUEST_ATTACH_FILE constant you defined earlier starts getting used:

 final Intent attach = new Intent(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE)
 .setType("*/*");

 startActivityForResult(attach, REQUEST_ATTACH_FILE);
}

	If we failed the preceding permission check, the system will have launched a dialog asking whether the user would grant permission to access external files. When the user returns from this dialog, a method named onRequestPermissionsResult will be invoked. Here, you need to check whether they granted your request, and if so, you can simply trigger the onAttachClick() method to continue the process smoothly:

@Override
public void onRequestPermissionsResult(
 final int requestCode,
 final String[] permissions,
 final int[] grantResults) {

 switch (requestCode) {
 case REQUEST_ATTACH_PERMISSION:
 if (grantResults[0] == PackageManager.PERMISSION_GRANTED) {
 onAttachClick();
 }
 break;
 }
}

	Now when the system returns from the file chooser Activity, it will invoke a method called onActivityResult, which is very similar in structure to the onRequestPermissionResult method:

@Override
protected void onActivityResult(
 final int requestCode,
 final int resultCode,
 final Intent data) {

 switch (requestCode) {
 case REQUEST_ATTACH_FILE:
 onAttachFileResult(resultCode, data);
 break;
 }
}

	In the preceding onActivityResult, you simply check whether it's responding to your request to attach a file, and then delegate the rest to a method that will need to handle the resulting data:

public void onAttachFileResult(
 final int resultCode, final Intent data) {

	Verify that the resultCode was okay and that the data is valid:

if (resultCode != RESULT_OK
 || data == null
 || data.getData() == null) {
 return;
}

	For now, you'll just want a Toast to pop up showing that this code has run; later, you can build the complete logic to attach the selected file. A Toast is a small message that appears and then disappears with no user interaction, perfect for temporary messages or debugging:

Toast.makeText(this, data.getDataString(), Toast.LENGTH_SHORT).show();

Now, if you run the application and tap on the floating action attach button, you'll be rewarded with a permission request (if you're running Android 6 or higher, on earlier versions the permission is granted as part of the installation), and then the option to select a file with whatever file selection systems you might have available on your emulator or device. Once you have chosen a file, you'll be returned to the CaptureClaimActivity and the selected Uri will be displayed in a Toast message on the screen:

This might not look like much, but it's all you need to access the file later on and attach it to the claim that the user is capturing. When you need to send your user to another Activity, you're hooking into Android's Activity to Activity messaging systems through methods such as onActivityResult and onRequestPermissionsResult.

 Making events quick

Android places very strict limits on the use of threads in applications: every application has a main thread, where all user-interface related code must run, but any long-running code will cause an error. Any attempt at networking on the main thread will result in a NetworkOnMainThreadException immediately, as networking by its very nature will block the main thread for too long, making the application unresponsive.

This means most tasks that you will want to perform should take place on a background worker thread. This will also provide you with a form of isolation from the user interface, as typically you will capture the user interface state on the main thread, pass the state to the background thread, process the event and then, send the result back to the main thread where you will update the user interface. How do we know that the state we capture will be consistent? The answer is that because user interface code can only run on the main thread, while you read the state of the widgets, any events that would change their state are blocked until you are finished (because they must also occur on the main thread). The message queue and threading rules avoid the need for locks and other thread protection mechanisms by ensuring that only one unit of code (in the form of a message) is processed at a time.

Android tasks that require larger amounts of background processing time are usually written using the AsyncTask class provided by the Android platform (or one of its child classes). AsyncTask has methods for running code on a background worker, and publishing status updates to the main thread (and receiving these update messages), along with several other utility structures. This makes it ideally suited to tasks such as downloading large files, where the user needs to be kept informed of the download's progress. However, most event handlers you will implement won't need anywhere near to this level of complexity.

Most event handlers are relatively lightweight, but that doesn't mean that it will perform quickly on all devices in all situations. You can't control what else the user is busy doing with their device, and a simple database query can end up taking much longer than expected. As such, it's better to push event processing to background threads wherever the event is not purely a user-interface update (that is, showing a dialog or similar). Even fairly small tasks should be moved to a background thread so that the main thread can continue consuming the user's input; this will keep your application responsive. Here's the pattern you should try and follow when implementing event handlers:

	On the Main Thread: First, capture any required parameters

	On a Background Worker: Process the user's event and data

	On the Main Thread: End by updating the user interface with the new state

If you keep to this pattern, the application will always appear responsive to your users, since processing their data isn't stopping their events from being processed (events which may be them scrolling through a large list, for example). However, AsyncTask is not a great fit for these smaller events (such as attaching a file to a claim), so here's how to write a simple class (in a similar style to the command pattern) that will run first some code on the background and then pass the result of that code to another method on the main thread, perfect for carrying out smaller events:

	Right-click on your root package (that is, com.packtpub.claim) and choose New| Java Class.

	Name the class util.ActionCommand.

	Change the Modifiers to make the new class Abstract.

	Click OK to create the new package (util) and class.

	Change the class definition to include generic parameters for a "parameter" and a "returned" type:

public abstract class ActionCommand<P, R> {

	At the top of the new class, create a static constant that refers to the application main thread via an android.os.Handler object:

private static final Handler MAIN_HANDLER = new Handler(Looper.getMainLooper());

A Handler object is how you gain access to another thread's message-queue in Android. In this case, any message or Runnable object posted to this Handler will be run on the main thread as soon as possible. You can also post tasks to be run at specific times or after a specified delay. This is the preferred method of creating timers on Android.

	Create three method declarations for running code on the background worker, the main thread, and one for handling errors (with a default implementation):

public abstract R onBackground(final P value) throws Exception;
public abstract void onForeground(final R value);

public void onError(final Exception error) {
 Log.e(
 getClass().getSimpleName(),
 "Error while processing data",
 error
);
}

	Then, create two variations of an exec method that will be used to start the ActionCommand objects. The first one uses the standard Executor provided by AsyncTask that uses a single background thread to process tasks (this is the most common behavior you will want in an application):

public void exec(final P parameter) {
 exec(parameter, AsyncTask.SERIAL_EXECUTOR);
}

public void exec(final P parameter, final Executor background) {
 background.execute(new ActionCommandRunner(parameter, this));
}

	In the preceding method, we submit an ActionCommandRunner object to the background Executor object; this is a private inner class that will carry the state between the background and main thread, which keeps the ActionCommand classes reusable and stateless:

private static class ActionCommandRunner implements Runnable {

	ActionCommandRunner will be in one of the three possible states: background, foreground, or error. Declare three constants as names, and a field to keep track of which state the object is in:

private static final int STATE_BACKGROUND = 1;
private static final int STATE_FOREGROUND = 2;
private static final int STATE_ERROR = 3;
private int state = STATE_BACKGROUND;

	Then, you'll need fields for the ActionCommand being run, and the current value. The value field is a catch-all in this class holding either the input parameter, the output from the background code, or the Exception thrown from the background code:

private final ActionCommand command;
private Object value;

ActionCommandRunner(
 final Object value,
 final ActionCommand command) {

 this.value = value;
 this.command = command;
}

	Now, create methods to handle each of the ActionCommandRunner states:

void onBackground() {
 try {
 // our current "value" is the commands parameter
 this.value = command.onBackground(value);
 this.state = STATE_FOREGROUND;
 } catch (final Exception error) {
 this.value = error;
 this.state = STATE_ERROR;
 } finally {
 MAIN_HANDLER.post(this);
 }
}

void onForeground() {
 try {
 command.onForeground(value);
 } catch (final Exception error) {
 this.value = error;
 this.state = STATE_ERROR;

 // we go into an error state, and foreground to deliver it
 MAIN_HANDLER.post(this);
 }
}

void onError() {
 command.onError((Exception) value);
}

	Finally, create the run method that will call the preceding onBackground, onForeground or onError method depending on the current execution state of ActionCommandRunner:

@Override
public void run() {
 switch (state) {
 case STATE_BACKGROUND:
 onBackground();
 break;
 case STATE_FOREGROUND:
 onForeground();
 break;
 case STATE_ERROR:
 onError();
 break;
 }
}

This class makes it very easy to create and reuse small tasks, which can be extended, composed, mocked, and tested in isolation. It's a good idea whenever creating a new event handler to consider a command pattern or something similar so that the event isn't coupled to the widget or even the screen that you are busy with. This allows for better code reuse, and keeps code easier to test since you can test the event handler without the screen that it will be part of later. You can also make these classes even more modular by writing them as abstract classes with only their onBackground methods implemented, allowing the result to be processed in different ways by subclasses.

 Multiple event listeners

Unlike many other event systems, however, many Android components only allow a single event listener of certain types; this diverges from platforms such as Java desktop, or JavaScript in the browser, where any number of click listeners can be attached to a single element. In Android, click listeners are almost always set rather than added.

This is actually a clever tradeoff--having multiple listeners for each event means that you need at least an array of them; the array needs to be sized and copied when it runs out of space, while it's actually very seldom that multiple listeners are needed. Multiple listeners also means that the widgets must traverse the list every time they want to dispatch events, so sticking to a single listener simplifies the code, and reduces the amount of required memory.

If you ever find yourself needing more than one listener for an event and widget that only provides a single listener slot, simply write a simple delegate class, like this:

public class MultiOnClickListener implements View.OnClickListener {
 private final List<View.OnClickListener> listeners =
 new CopyOnWriteArrayList<>();

 public MultiOnClickListener(
 final View.OnClickListener... listeners) {
 this.listeners.addAll(Arrays.asList(listeners));
 }

 @Override
 public void onClick(View v) {
 for (final View.OnClickListener listener : listeners)
 listener.onClick(v);
 }

 public void addOnClickListener(
 final View.OnClickListener listener) {
 if (listener == null) return;
 listeners.add(listener);
 }

 public void removeOnClickListener(
 final View.OnClickListener listener) {
 if (listener == null) return;
 listeners.remove(listener);
 }
}

The preceding pattern allows compact and flexible multilistener delegation in the cases where you might need it. The CopyOnWriteArrayList class is an ideal listener container, as its internal array is only ever as large as the number of elements, so it remains compact (rather than having a buffer space like ArrayList and similar implementations).

 Test your knowledge

	What's the best way to implement event handlers?

	As an anonymous inner class

	By making the Activity a listener

	As a class per listener

	There isn't one

	What are the conditions for any methods that change the state of a user-interface widget?

	They must be called from a background thread

	They must be thread-safe

	They must be called from the main thread

	They must be called from the graphics thread

	Code running as part of an event handler should fulfill which of the following conditions?

	Be surrounded by a synchronized block

	Run as quickly as possible

	Only interact with the user interface

	When requesting data from another Activity, the data is returned through which of these?

	An event listener you add to the Activity object

	A callback on your Activity object

	A message placed on your application's message queue

 Summary

Android uses several different mechanisms when delivering events within its applications, each one tailored to the type of event being delivered and the intended recipient of the event. Most user-interface events are delivered to a single listener registered to each widget, but that doesn't stop the same listener from handling multiple event types from different widgets. This sort of design will reduce the load on the system and the amount of memory used, and will often help in producing more reusable code.

Event handlers are often written badly and become anonymous inner classes that, while starting life as a simple delegate to another method, eventually become bloated and unmaintainable blocks of code. It's often better to isolate the event handlers from their environment from the beginning as this encourages them to be reused, and makes them easier to test and maintain. Some event handler classes (such as DatePickerWrapper) handle different types of events in a way that is related, allowing for a single class to encapsulate a small, reusable bit of logic.

In the next chapter, we'll explore more of how to build reusable and more easily testable user interfaces, by breaking down user interfaces into smaller components.

 Composing User Interfaces

Mobile apps seem like simple systems, but they are often actually quite deep and complex systems, with many different parts that help them keep the appearance of being simple. The user interfaces of applications are the same; they may appear simple, but they are often complex arrangements of screens and dialogs designed to hide the complexities of the application from the user and provide a smoother experience. The easiest way to think about this is that traditional desktop applications and websites tend to be wide, while mobile applications tend to be deep.

This comment applies (on the surface at least) to the navigation of applications. Desktop applications tend to have a central control area where most of the work is done. Think of a document editor--the application centers around the document being written, and you never really leave that area. Instead of navigating away, dialogs pop up to fulfill a single task, which alters the document before they disappear. There are many variations on this theme, but desktop applications tend to follow the same pattern.

Mobile applications, on the other hand, tend to start at an overview screen of some sort, or launch directly into an action screen. The user then navigates downward into a task or item before either returning to the overview screen, or completing their task and being presented with a result of some sort (for example, booking a flight). Achieving a goal by navigating away from the overview screen, rather than simply opening a dialog on top of the content, requires a different approach to your application's design. As there is no central screen always available to the user, you often need to remind them of where they are, and what they are doing. This sort of repetition will be unthinkable on a desktop application where the information is always available in another window or panel of the application; however, on the limited space offered by a mobile phone, this becomes an essential tool to keep the user on track, and help them complete the task they are trying to fulfill.

This change in how the user navigates, requires that screens often present the same data, or have elements that are repeated all over the application. These elements are best encapsulated so that they can be easily reused throughout the application. Android offers the perfect way to encapsulate these groups of widgets in a way that can be more aware than a simple layout component--fragments. A Fragment is like a miniature Activity; each Fragment has a full life cycle, just like Activity, except that they are always contained within an Activity (refer to Appendix A for details of the Activity life cycle). Using fragments allows your application to more easily adapt to various screen sizes. We'll be taking a closer look at fragments later in this chapter.

In this chapter, we'll look at various ways to break up a user interface, building modules that can be layered and reused to form complex behaviors without requiring complex code and wiring. We'll be looking at the following:

	How to build custom groups of widgets that can be directly included in layouts

	How to build Fragments that expose common functionality with a complete life cycle of their own

	How to use ViewPager to display pages or tabs of widgets

 Designing a modular layout

So far, you've built a single Activity class with a layout composed out of two layout files containing widgets. This is a pretty normal state of affairs, but it's not the best situation. Like in most user interfaces, the claim capturing screen can be divided into a range of very logical areas:

In an Android user interface, you always have the individual widgets (such as Button, TextView, ImageView, and friends) at the bottom level, and Activity at the top level, but when you look at that screen mockup, you can instantly see that the screen can be divided into other layers in between Activity and widget. You can, of course, take each of the CardView layouts from this screen and place them in their own layout XML files, and then import them:

<?xml version="1.0" encoding="utf-8"?>
<!-- card_claim_capture_info.xml -->
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="@dimen/grid_spacer1">
 <android.support.design.widget.TextInputLayout
 android:id="@+id/description_layout"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 app:layout_constraintEnd_toStartOf="@+id/amount_layout"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

You can use the <include> element to include one layout file into another, like this:

<!-- content_capture_claim.xml -->
<include layout="@layout/card_claim_capture_info"/>

This nicely separates out the layout for this part of the screen, allowing you to reuse it in layouts for larger physical screens or even in other Activity classes in the application. The problem is that every screen that wants to use this layout will need to also duplicate all the logic associated with it. While the logical decoupling of the logic and the layout is mostly a good thing (especially when you can overlay the logic on multiple different layouts), their coupling is normally quite tight.

 Creating the DatePickerLayout

Each of these areas can easily be encapsulated in a Java class and reused elsewhere in your application. In Chapter 3, Taking Actions, you wrote the DatePickerWrapper class, which can turn any TextView widget into a date selection widget. However, DatePickerWrapper doesn't create the TextView label or change the styling of the widgets to look like TextInputLayout. This means that you need to copy that styling into each layout where you want a date-picker, which can quickly lead to inconsistencies in your user interface. While it's good to have the events and state decoupled from the display logic, it would also be nice to have them grouped together in a single structure that can be reused without every layout having to specify the date picker widgets by hand, and then bind them to the DatePickerWrapper in its code.

While it's not obvious at first, the Android layout XML files can reference any View class and not just those defined in the core and support packages, and it can do so without any special tricks. All you need to do is reference the View class by its fully-qualified name, much like you've already done for several widgets:

	android.support.constraint.ConstraintLayout

	android.support.v7.widget.CardView

	android.support.design.widget.TextInputLayout

All the preceding are classes that you can look up in Android Studio, and even read their code if you like. Let's get started by writing a DatePickerLayout to couple the layout XML with the DatePickerWrapper, and make the date picker reusable from any layout XML file in your application:

	In the Android panel of Android Studio, right-click on the layout directory under res:

	Select New | Layout resource file.

	Name the new layout file as widget_date_picker.

	Change the Root element field to merge:

merge is a special root element for layout files. Normally, the root element of a layout file is a View class that results in the file having a root widget when it's inflated. The merge element doesn't create a root widget; instead, it's effectively skipped when the file is loaded, and its children are inflated directly. This makes it ideal for creating layout widgets, or reusable bits of layout, while also keeping the layout hierarchy flat and helping improve your application's performance.

	Change the editor mode to Text instead of Design.

	Remove the layout_width and layout_height attributes from the merge element.

	Write the following two TextView widgets into the merge element:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/label_date"
 android:textAppearance="@style/TextAppearance.AppCompat.Caption"
 android:textColor="@color/colorAccent" />
 <TextView
 style="@style/Widget.AppCompat.EditText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/grid_spacer1" />
</merge>

In the preceding file, there are no id attributes set; this is because any layout the new widget is used in will be polluted with those id attributes, and findViewById can easily start returning unexpected results. When encapsulating parts of your layout, always consider what id values will appear in the layout, and where they might be used in code. findViewById simply finds the first matching View object in the layout and returns it, and doesn't consider where that View might have come from (that is: an <include>, or special View class).

	In the Android panel of Android Studio, right-click on your base package (that is, com.packtpub.claim):

	Select New and Java Class.

	Name the new class widget.DatePickerLayout.

	Change the Superclass to android.widget.LinearLayout.

	Click OK to create the new package and class.

	Declare fields in the DatePickerLayout for to reference a TextView label, and the DatePickerWrapper :

private TextView label;
private DatePickerWrapper wrapper;

	Any class accessible from a layout XML requires several constructor overloads, so it's best to create a single initialize method that can be reused for all of them:

void initialize(final Context context) {
 setOrientation(VERTICAL);
}

	Still within the initialize method, use LayoutInflator to load the layout XML file you wrote, adding its contents as elements to the DatePickerLayout object:

LayoutInflater.from(context).inflate(
 R.layout.widget_date_picker, this, true);

The parameters for the inflate method are the layout resource, the ViewGroup (in this case, DatePickerLayout) that will contain the layout, and whether or not to actually attach the elements of the layout resource to the ViewGroup. As you are using a merge element in the layout resource, the third parameter must be true, because otherwise the contents of the layout will be lost.

	Use getChildAt to retrieve the new TextView elements that have been loaded by the LayoutInflator, and assign the fields of the DatePickerLayout:

label = (TextView) getChildAt(0);
wrapper = new DatePickerWrapper((TextView) getChildAt(1));

	Overload the constructors and invoke the initialize method in each of them:

public DatePickerLayout(Context context) {
 super(context);
 initialize(context);
}

public DatePickerLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 initialize(context);
}

public DatePickerLayout(
 Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 initialize(context);
}

	Create getters and setters to make the DatePickerLayout usable from the Activity classes:

public void setDate(final Date date) {
 wrapper.setDate(date);
}

public Date getDate() {
 return wrapper.getDate();
}

public void setLabel(final CharSequence text) {
 label.setText(text);
}

public void setLabel(final int resid) {
 label.setText(resid);
}

public CharSequence getLabel() {
 return label.getText();
}

	As the DatePickerLayout contains some of the user-interface state (the currently selected date), it's expected to keep track of this through possible Activity restarts, if required (an Activity is recreated every time the user changes between portrait and landscape, as these are considered configuration changes). This will involve saving its state to a Parcel, and restoring it from a Parcel when requested to (a Parcel is a bit like a byte[] of Serialized objects, except that all the marshaling work needs to be implemented). You'll need an inner class that can hold the state of the DatePickerLayout (and it's parent class--LinearLayout). For convenience, the View class provides a BaseSavedState abstract class to take care of some of the implementation for you, so extend BaseSavedState in a static inner class named SavedState:

private static class SavedState extends BaseSavedState {
 final long timestamp;
 final CharSequence label;

 public SavedState(
 final Parcelable superState,
 final long timestamp,
 final CharSequence label) {

 super(superState);
 this.timestamp = timestamp;
 this.label = label;
 }
}

Objects crossing between Activity instances need to be Parcelable, because Android may need to store the objects temporarily through the Activity life cycle. Being able to store just the important bits of data and state, instead of the entire widget tree, is very useful for conserving memory when the user has a lot of applications running. BaseSavedState implements Parcelable and will allow the DatePickerLayout to remember its state when the Activity is destroyed and recreated by the system.

	SavedState will also need a constructor to load its fields from a Parcel object; a CharSequence cannot be read directly from a Parcel, but fortunately, TextUtils has a nice helper for reading CharSequence objects from Parcel objects for you:

SavedState(final Parcel in) {
 super(in);
 this.timestamp = in.readLong();
 this.label = TextUtils.CHAR_SEQUENCE_CREATOR
 .createFromParcel(in);
}

	Then, SavedState needs the writeToParcel method implemented in order to actually write those fields to a Parcel; part of this is delegated to the BaseSavedState class:

@Override
public void writeToParcel(final Parcel out, final int flags) {
 super.writeToParcel(out, flags);
 out.writeLong(timestamp);
 TextUtils.writeToParcel(label, out, flags);
}

	Every Parcelable implementation requires a special public static final field called CREATOR, which will be used by the Parcel system to create instances and arrays of the Parcelable objects. This also applies for every subclass, so write the following static final into the SavedState class:

public static final Parcelable.Creator<SavedState> CREATOR =
 new Parcelable.Creator<SavedState>() {
 @Override
 public SavedState createFromParcel(final Parcel source) {
 return new SavedState(source);
 }

 @Override
 public SavedState[] newArray(int size) {
 return new SavedState[size];
 }
};

When implementing a vanilla Parcelable class, Android Studio has a nice generator that can be triggered from the class declaration hints (look for "Add Parcelable Implementation") that will write a simple writeToParcel method, Parcel handling constructor, and the CREATOR field. Check whether it's working though; it skips any field it doesn't know how to handle.

	In the DatePickerLayout class, you need to override the onSaveInstanceState method and create the SavedState object that will be recorded:

@Override
protected Parcelable onSaveInstanceState() {
 return new SavedState(
 super.onSaveInstanceState(),
 getDate().getTime(), getLabel());
}

	You'll also need to restore the state from a SavedState object, which requires overriding onRestoreInstanceState:

@Override
protected void onRestoreInstanceState(final Parcelable state) {
 final SavedState savedState = (SavedState) state;
 super.onRestoreInstanceState(savedState.getSuperState());
 setDate(new Date(savedState.timestamp));
 setLabel(savedState.label);
}

	Open the content_capture_claim.xml layout file in Android Studio.

	Change to the Text editor, if required.

	Find the two TextView elements that describe the date-picker, and replace them with the following snippet:

<com.packtpub.claim.widget.DatePickerLayout
 android:id="@+id/date"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/description_layout" />

	Open the CaptureClaimActivity class in Android Studio.

	Replace the references to DatePickerWrapper with DatePickerLayout:

private DatePickerLayout selectedDate;

@Override
protected void onCreate(Bundle savedInstanceState) {
 // …
 selectedDate = new DatePickerWrapper(// remove this line
 (TextView) findViewById(R.id.date)); // remove this line
 selectedDate = (DatePickerLayout) findViewById(R.id.date);
 // …
}

This new DatePickerLayout class allows you to reuse the same label and editor in any layout XML file in your application, while also coupling the required events in a single class. Any time you have a layout with TextViewLayout widgets, the new DatePickerLayout will fit right into the style and allow for safe date selection. It's also very important to implement the onSaveInstanceState/onRestoreInstanceState method on View subclasses if you intend to carry any state. These classes are marshaled, and new instances of the View are created every time a configuration state changes, which includes actions such as the user rotating the device (refer to Appendix A for more information on Activity life cycle).

 Creating the data model

At this point in the application, it's time to build a simple data model that the user interface will back onto. Each claim will be represented by a ClaimItem object, and will contain any number of Attachment objects, each of which will reference the File that was attached, and have a marker to help decide how the attachment should be previewed. All these classes will need to be Parcelable, because they need to be saved in the CaptureClaimActivity. The CaptureClaimActivity will also use them as input and output parameters, and any time an object needs to be passed as a parameter to or from an Activity, it needs to be Parcelable.

You'll also be creating a Category enum that links the Android IDs to an internal model that can be stored without having to worry about the Android IDs changing their values as the application evolves.

 Creating the Attachment class

The Attachment class represents files that have been attached to a ClaimItem by the user. These should always be files accessible by the application, and later on, we'll take steps to ensure this by copying all the attachments into a private space before attaching them to a claim item. For now, follow these steps to create the Attachment class:

	In the Android panel, right-click on your default package (that is, com.packtpub.claim) and select New| Java Class.

	Name the new class as model.Attachment, and in the Interface(s) box, add Parcelable:

	Click OK to create the new package and class.

	Attachments have different types, which can affect how they are previewed; for now, you'll just have images and unknown types. Inside the new Attachment class, create an enum to represent these types:

public enum Type {
 IMAGE,
 UNKNOWN;

 public static Type safe(final Type type) {
 // Use a ternary to replace null with UNKNOWN
 return type != null ? type : UNKNOWN;
 }
}

	In the Attachment class, declare its fields, a constructor, and getters and setters:

File file;
Type type;

public Attachment(final File file, final Type type) {
 this.file = file;
 this.type = Type.safe(type);
}

public File getFile() { return file; }
public void setFile(final File file) {
 this.file = file;
}

public Type getType() { return type; }
public void setType(final Type type) {
 this.type = Type.safe(type);
}

	Now, create the Parcelable implementation for the Attachment class. This is best done by hand in this case, as neither File nor the Type enum will be understood by Android Studio's Parcelable generator:

protected Attachment(final Parcel in) {
 file = new File(in.readString());
 type = Type.values()[in.readInt()];
}

@Override
public void writeToParcel(final Parcel dest, final int flags) {
 dest.writeString(file.getAbsolutePath());
 dest.writeInt(type.ordinal());
}

@Override
public int describeContents() { return 0; }

	Finally, at the top of the Attachment class, add its Parcelable.Creator instance:

public static final Creator<Attachment> CREATOR = new Creator<Attachment>() {
 @Override
 public Attachment createFromParcel(final Parcel in) {
 return new Attachment(in);
 }

 @Override
 public Attachment[] newArray(final int size) {
 return new Attachment[size];
 }
};

 Creating the Category enum

The next part of the model is the Category enumeration. This will serve a double purpose--when you change the list of available resources in your application, their IDs can all change. This makes these IDs unsuited to long-term identification of items; however, they are very useful as identifiers while the application is running:

	They are unique within the application

	They are integer types, which are very fast for comparisons

	They can be used to directly identify user-interface components

The Category enum will serve as a way to bind between a long-term stable identifier (the enum name), and the potentially unstable (but often much faster) Android resource ID. Follow these quick steps to create the Category enum:

	Right-click on the model package, and select New | Java Class.

	Name the class Category.

	Change the Kind field to Enum.

	Click OK to create the new enum file.

	Declare the enum constants, and map them to their appropriate Android resource IDs:

ACCOMMODATION(R.id.accommodation),
FOOD(R.id.food),
TRANSPORT(R.id.transport),
ENTERTAINMENT(R.id.entertainment),
BUSINESS(R.id.business),
OTHER(R.id.other);

	Declare the ID integer, private constructor, and getter method for the ID. Note the use of the @IdRes annotation, which indicates what should be used for these specific integers; attempting to pass anything other than an ID resource in here will result in a lint error in Android Studio:

@IdRes
private final int idResource;

Category(@IdRes final int idResource) {
 this.idResource = idResource;
}

@IdRes
public int getIdResource() {
 return idResource;
}

There are annotations similar to @IdRes for all of the different resource types available on Android. They are located in the android.support.annotation package. Use them wherever you expect an integer value to reference an Android resource of some type.

	Finally, create a method to look up a Category enum constant from its Android ID resource:

public static Category forIdResource(@IdRes final int id) {
 for (final Category c : values()) {
 if (c.idResource == id) {
 return c;
 }
 }

 throw new IllegalArgumentException("No category for ID: " + id);
}

 Creating the ClaimItem class

The ClaimItem is the heart of this application's object model. Each claim the user collects is represented in memory as a single ClaimItem instance. Here are the steps required to build the ClaimItem class:

	Right-click on the model package, and select New | Java Class.

	Name the class ClaimItem, and in the Interface(s) box, add Parcelable.

	Click OK to create the new class file.

	Declare the fields of the ClaimItem type, and a public default constructor:

String description;
double amount;
Date timestamp;
Category category;
List<Attachment> attachments = new ArrayList<>();

public ClaimItem() {}

	Use Android Studio to generate getter and setter methods for all the fields, except the attachments field:

public String getDescription() { return description; }
public void setDescription(final String description) {
 this.description = description;
}
public double getAmount() { return amount; }
public void setAmount(final double amount) {
 this.amount = amount;
}
public Date getTimestamp() { return timestamp; }
public void setTimestamp(final Date timestamp) {
 this.timestamp = timestamp;
}
public Category getCategory() { return category; }
public void setCategory(final Category category) {
 this.category = category;
}

	Create methods to add, remove, and list the Attachment objects for the ClaimItem:

public void addAttachment(final Attachment attachment) {
 if ((attachment != null) && !attachments.contains(attachment)) {
 attachments.add(attachment);
 }
}

public void removeAttachment(final Attachment attachment) {
 attachments.remove(attachment);
}

public List<Attachment> getAttachments() {
 return Collections.unmodifiableList(attachments);
}

	Implement the Parcelable methods for the ClaimItem class; again, this is more complex than the Android Studio generator can typically handle:

protected ClaimItem(final Parcel in) {
 description = in.readString();
 amount = in.readDouble();

 final long time = in.readLong();
 timestamp = time != -1 ? new Date(time) : null;

 final int categoryOrd = in.readInt();
 category = categoryOrd != -1
 ? Category.values()[categoryOrd]
 : null;

 in.readTypedList(attachments, Attachment.CREATOR);
}

@Override
public void writeToParcel(final Parcel dest, final int flags) {
 dest.writeString(description);
 dest.writeDouble(amount);
 dest.writeLong(timestamp != null ? timestamp.getTime() : -1);
 dest.writeInt(category != null ? category.ordinal() : -1);
 dest.writeTypedList(attachments);
}

@Override
public int describeContents() { return 0; }

public static final Creator<ClaimItem> CREATOR = new Creator<ClaimItem>() {
 @Override
 public ClaimItem createFromParcel(Parcel in) {
 return new ClaimItem(in);
 }

 @Override
 public ClaimItem[] newArray(int size) {
 return new ClaimItem[size];
 }
};

Excellent! With the formality of an object model out of the way, you can continue building the user interface. The next stage will involve building Fragment classes that will help modularize the capturing of the ClaimItem data.

 Wrapping up the category picker

The category picker you created for the CaptureClaimActivity is just a group of widgets in a card right now, and while it's one of the simplest cards to use on the screen, it's also one of the largest by the amount of code written for it. The best way to encapsulate this part of the screen is to move the layout that appears inside the CardView into a Fragment class.

However, why a Fragment class, and why not write another Layout class? Fragment classes are self-contained systems, and have their own life cycle within the context of their parent Activity. This means they can contain significantly more application logic, and can be reused more easily in other parts of the application. It's also because in this case, we rely on the IDs of the radio buttons to know what has been checked by the user, which means that we can very easily start polluting layouts with IDs specific to this specific widget. Fragment classes don't stop this from happening, but it's expected behavior. You don't expect ID pollution from View classes, but from a Fragment, it's okay. Follow these simple steps to encapsulate the category picker in a new Fragment class:

	Right-click on the ui package in your project and select New| Fragment | Fragment (Blank).

	Name the new Fragment class CategoryPickerFragment.

	Turn off Include fragment factory methods? and Include interface callbacks:

	Click on Finish to create your new Fragment and its layout file.

	Open the new fragment_category_picker.xml file, and change the editor view to Text mode.

	Change the root node of the layout from FrameLayout to LinearLayout, and make it a vertical orientation:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.packtpub.claim.ui.CategoryPickerFragment">

	Remove any contents of the LinearLayout placed there by the Android Studio template.

	Open the content_capture_claim.xml layout file, and change the editor view to Text mode.

	Cut the contents of the LinearLayout containing the existing category picker, the entire RadioGroup and TextView used as their label.

	Paste this as the content of the LinearLayout in the fragment_category_picker.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <RadioGroup
 android:id="@+id/categories"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <RadioButton
 android:id="@+id/accommodation"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="@dimen/grid_spacer1"
 android:layout_marginRight="@dimen/grid_spacer1"
 android:button="@drawable/ic_category_hotel"
 android:contentDescription="@string/description_accommodation" />

 <!-- ... -->
 </RadioGroup>

 <TextView
 android:id="@+id/selected_category"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="@style/TextAppearance.AppCompat.Medium" />
</LinearLayout>

	In the content_capture_claim.xml layout file, you can now remove the LinearLayout for the category picker and replace it with a reference to the Fragment class:

<android.support.v7.widget.CardView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/grid_spacer1">

 <fragment
 class="com.packtpub.claim.ui.CategoryPickerFragment"
 android:id="@+id/categories"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="@dimen/grid_spacer1"/>

</android.support.v7.widget.CardView>

	Now, open the CategoryPickerFragment class in Android Studio, and at the top of the class, declare the fields for the RadioGroup and TextView that you'll use to track and update the user's selection:

private RadioGroup categories;
private TextView categoryLabel;

	Now in the onCreateView, you'll need to change how the View is inflated, because you need to capture the fields and set up the event listeners. Note the use of the IconPickerWrapper as the event listener:

public View onCreateView(
 final LayoutInflater inflater,
 final @Nullable ViewGroup container,
 final @Nullable Bundle savedInstanceState) {

 final View picker = inflater.inflate(
 R.layout.fragment_category_picker,
 container,
 false
);

 categories = (RadioGroup) picker.findViewById(R.id.categories);
 categoryLabel = (TextView) picker.findViewById(
 R.id.selected_category);
 categories.setOnCheckedChangeListener(
 new IconPickerWrapper(categoryLabel));
 categories.check(R.id.other);
 return picker;
}

	Now, create a simple getter and setter method to retrieve and alter state using the Category enum:

public Category getSelectedCategory() {
 return Category.forIdResource(
 categories.getCheckedRadioButtonId());
}

public void setSelectedCategory(final Category category){
 categories.check(category.getIdResource());
}

	Open the CaptureClaimActivity in Android Studio.

	Change the categories field to use CategoryPickerFragment, instead of a RadioGroup:

private CategoryPickerFragment categories;

	In the onCreate method, remove the code that initialized the category picker:

categories = (RadioGroup) findViewById(R.id.categories);
categories.setOnCheckedChangeListener(
 new IconPickerWrapper(
 (TextView) findViewById(R.id.selected_category)
)
);
categories.check(R.id.other);

	Use FragmentManager to retrieve the new CategoryPickerFragment from the layout:

final FragmentManager fragmentManager = getSupportFragmentManager();
categories = (CategoryPickerFragment)
 fragmentManager.findFragmentById(R.id.categories);

Note that you're using the getSupportFragmentManager method, and not getFragmentManager. This is because CategoryPickerFragment is built on top of the support APIs and is backwards compatible all the way to API level 4 (Android 1.6). Android Studio typically prefers the support APIs when generating code as it offers a very simple and stable target, since your application links against a static target, and you are in control of which version to link against and when to upgrade. You can reuse CategoryPickerFragment anywhere in the application, just as you would a custom View implementation.

Linking against the platform APIs (instead of the equivalent support) reduces backward compatibility and requires more testing since your application may behave slightly differently on different versions of the platform. However, platform versions may be slightly faster, and will result in smaller applications.

 Creating the Attachment Pager

Having modularized the category picker, it's time to turn your attention to the attachments. When you implemented the file selection, you left a Toast in place to show where the code would normally attach the selected file to the ClaimItem being captured. This next stage will be to create a Fragment that will encapsulate the previewing of the Attachment objects. You'll also move much of the attachment logic into this Fragment. Although the code to connect to other applications and request permissions is commonly placed in an Activity class, Fragment classes are also capable of performing the same actions, and the attachment pager is a perfect opportunity to show this off.

This Fragment will show a pattern where the Fragment interacts with the Activity that it belongs to without directly sending events upward. The instinct of most developers when encountering a Fragment for the first time is to use the pattern in the template where the Fragment can send events upward to its Activity, as shown:

However, this is often not desirable. It's generally a much better idea to push changes through the data model, and have it deliver the events to areas that are interested in the changes. This is part of a unidirectional event flow, and serves to keep the application much easier to maintain and debug, because the data model always represents the authority for all information and state within the application, as illustrated here:

>

 Creating the Attachment preview widget

The first part of the attachments will be a View implementation, to allow attachments to be previewed within the pager. This class will need an area where the attachment can be previewed if it's an image, or a placeholder icon can be displayed if it's a file the application cannot read. Follow these steps to create the new widget and it's layout XML file:

	Right-click on the layout directory under res, and select New | Layout resource file.

	Name the new file widget_attachment_preview.

	Change the Root element field to merge.

	Click OK to create the new layout file.

	Within the merge element, create an ImageView that can carry the preview of the attachment file. The ImageView will need a margin to automatically scale the image to its size on the screen (while maintaining the image's proportions):

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView
 android:scaleType="fitCenter"
 android:layout_margin="@dimen/grid_spacer1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</merge>

	Right-click on the drawable resource directory, and select New, Vector Asset.

	Using the Icon button, search for the insert drive file icon and select it.

	Name the new resource ic_unknown_file_type.

	Click on Next and then on Finish to create the new resource.

	Open the ic_unknown_file_type.xml file in Android Studio.

	Change the fillColor attribute of the path to #FFBAB5AB, and save and close the file.

	Right-click on the widget package in your project, and select New | Java Class.

	Name the new class AttachmentPreview.

	Change the Superclass field to android.support.v7.widget.CardView.

	Click OK to create the new class.

	Create fields to reference the Attachment object and the ImageView that will render its preview onto the screen:

private Attachment attachment;
private ImageView preview;

	Create the standard View subclass constructors and an initialize method that inflates the layout XML and captures the ImageView:

public AttachmentPreview(Context context) {
 super(context);
 initialize(context);
}

public AttachmentPreview(Context context, AttributeSet attrs) {
 super(context, attrs);
 initialize(context);
}

public AttachmentPreview(
 Context context,
 AttributeSet attrs,
 int defStyleAttr) {
 super(context, attrs, defStyleAttr);
 initialize(context);
}

void initialize(final Context context) {
 LayoutInflater.from(context).inflate(
 R.layout.widget_attachment_preview, this, true);
 preview = (ImageView) getChildAt(0);
}

	Create a simple getter for the Attachment field:

public Attachment getAttachment() { return attachment; }

	Create a setter to update the Attachment field, and also start the update of the preview on-screen. You'll also create an inner class using the ActionCommand class you wrote in Chapter 3, Taking Actions, which will attempt to load the actual images on a background thread before updating the widget on the screen:

public void setAttachment(final Attachment attachment) {
 this.attachment = attachment;
 preview.setImageDrawable(null);

 if (attachment != null) {
 new UpdatePreviewCommand().exec(attachment);
 }
}

private class UpdatePreviewCommand
 extends ActionCommand<Attachment, Drawable> {

 @Override
 public Drawable onBackground(
 final Attachment attachment)
 throws Exception {

 switch (attachment.getType()) {
 case IMAGE:
 return new BitmapDrawable(
 getResources(),
 attachment.getFile().getAbsolutePath()
);
 }

 return getResources().getDrawable(
 R.drawable.ic_unknown_file_type);
 }

 @Override
 public void onForeground(final Drawable value) {
 preview.setImageDrawable(value);
 }
}

The preceding code is a great example of using an ActionCommand object to improve the user experience. When the Attachment is actually specified on the AttachmentPreview widget, the onscreen preview is instantly queued, and the loading of the actual preview (which may take a second or two on a slower device) takes place in the background. This frees the main thread to continue processing events from the user, or start the loading of other previews that may be required.

 Creating the Attachment Pager Adapter

The ViewPager class is a special type of Android widget called an adapter view (although some, such as ViewPager, don't actually inherit from AdapterView, it shares much of the concepts). An AdapterView is used when it potentially needs to display more data than will fit on the screen at once, but maintain excellent performance. They do this by maintaining a small selection of widgets that will be displayed on the screen, and an Adapter that will populate the widgets with the data to display. Examples of Adapter widgets are as follows:

	ListView: A simple vertical scrolling list of similar items, such as phone contacts

	GridView: A vertical scrolling grid of similar items, such as photos

	StackView: A three-dimensional stack of items great for presenting media

	RecyclerView: A powerful all-purpose pooling view, originally added to replace ListView

If you wanted to display a scrolling list of images, for example, you would use a RecyclerView and provide it with an Adapter that could load previews of image files into ImageView widgets (much the same way as the AttachmentPreview class does):

ViewPager is a little different from the AdapterView classes described here; all of them only maintain as many widgets as what can fit on the screen at once. The normal AdapterView classes and RecyclerView all recycle their pool of widgets. When one widget is scrolled off the screen, it's resized, populated with new data, and scrolled into view looking like a new widget. ViewPager doesn't stop you from doing this, but it doesn't do it for you. This is because ViewPager often contains large and complex tab layouts, which would be too expensive to try and recycle (or simply don't repeat at all, in which case, recycling is useless).

For this application, the user is unlikely to have many attachments, so you can get away with simply creating an AttachmentPreview instance for each of the attachments when they are displayed, which keeps the steps for implementing the Adapter much simpler and to the point:

	Right-click on your default package (that is, com.packtpub.claim) and select New | Java Class.

	Name the new class ui.attachments.AttachmentPreviewAdapter.

	Make its Superclass android.support.v4.view.PagerAdapter.

	Click OK to create the new class.

	This class will need a List of the Attachment objects it's expected to translate into widgets for previewing, and it'll need a setter to change what will be displayed:

private List<Attachment> attachments = Collections.emptyList();

public int getCount() {
 return attachments.size();
}

public void setAttachments(final List<Attachment> attachments) {
 this.attachments = attachments != null
 ? attachments
 : Collections.<Attachment>emptyList();
 notifyDataSetChanged();
}

After changing the List of attachments, AttachmentPreviewAdapter is wrapping; it invokes notifyDataSetChanged(), which informs the ViewPager it's attached to things that have changed, and some rerendering may be required. This sort of functionality can be found in all the Adapter classes, and allows for the reactive behavior that users expect from their apps. When a new email arrives, it can just appear on the list they're looking at. As a developer, this system is nice because the events can bubble up from the data model rather than being tied to the user interface.

	The ViewPager maintains separate lists of the widgets used to display data on the screen and the object model being displayed. The ViewPager creates the widgets by invoking instantiateItem on the PagerAdapter object, which is expected to add the widget to the ViewPager and return the data model object that it's displaying:

public Object instantiateItem(final ViewGroup container, final int position) {
 final AttachmentPreview preview =
 new AttachmentPreview(container.getContext());
 preview.setAttachment(attachments.get(position));
 container.addView(preview);
 return attachments.get(position);
}

	The ViewPager may also ask PagerAdapter to remove the widgets that are not visible to the user. This is typically when a view is not visible, and cannot be directly scrolled into view by the user (that is, it's not directly to the left or right of the current view). The position argument passed to destroyItem is the position in the data model, not the index of the widget within the ViewPager, so you need a way to figure out which widget in the ViewPager actually needs to be removed. Here, we do it by simply iterating over all the child widgets in the ViewPager since there will never be many of them:

public void destroyItem(
 final ViewGroup container,
 final int position,
 final Object object) {
 for (int i = 0; i < container.getChildCount(); i++) {
 final AttachmentPreview preview =
 ((AttachmentPreview) container.getChildAt(i));
 if (preview.getAttachment() == object) {
 container.removeViewAt(i);
 break;
 }
 }
}

	Finally, the ViewPager needs a way to know which widget child of its is associated with which part of the data model; this is really easy for you in this class, because the AttachmentPreview class directly references the Attachment objects:

public boolean isViewFromObject(final View view, final Object o) {
 return (view instanceof AttachmentPreview)
 && (((AttachmentPreview) view).getAttachment() == o);
}

This implementation of PagerAdapter is very naive and simple, but shows more of how the Adapter views work. They track their onscreen views completely independently of the dataset, and the order in which the child widgets appear on the screen doesn't have any direct relationship to the order in which the data model is presented.

The next step is to create another ActionCommand class that will create the Attachment objects when the user selects an external file to attach to the claims.

 Creating the Create Attachment Command

When the user selects a file to attach to the claim, you'll need to ensure that your application can always access the file. This means copying the file into your application's private space, which can take a second or two. You also need to know what type of file it is, otherwise your application won't know if it can render a preview of the attachment. For both of these, you'll need an ActionCommand implementation that does the work:

	Right-click on the model package, and select New | Java Class.

	Name the new class commands.CreateAttachmentCommand.

	Make the class Abstract.

	Click OK to create the new package and class.

	Change the class declaration to extend ActionCommand<Uri, Attachment>:

public abstract class CreateAttachmentCommand
 extends ActionCommand<Uri, Attachment> {

	Declare a directory to write the local files to, and a ContentResolver that can be used to read the files that the user selects:

private final File dir;
private final ContentResolver resolver;

public CreateAttachmentCommand(
 final File dir,
 final ContentResolver resolver) {

 this.dir = dir;
 this.resolver = resolver;
}

A ContentResolver allows applications to read each other's data, if they choose to expose it. In this case, you'll be using content:// URIs that are commonly used in Android when data needs to be exposed safely between applications. A ContentResolver counterpart is a ContentProvider that exposes the data for other applications to access.

	Create a simple utility method to copy the file from a Uri into a new, randomly named file. The file is randomly named so that no two files are likely to collide in name:

File makeFile(final Uri value) throws IOException {
 final File outputFile =
 new File(dir, UUID.randomUUID().toString());
 final InputStream input = resolver.openInputStream(value);
 final FileOutputStream output = new FileOutputStream(outputFile);
 try {
 final byte[] buffer = new byte[10 * 1024];
 int bytesRead = 0;
 while ((bytesRead = input.read(buffer)) != -1) {
 output.write(buffer, 0, bytesRead);
 }
 output.flush();
 } finally {
 output.close();
 input.close();
 }
 return outputFile;
}

	Override the onBackground method to copy the file using the preceding utility method:

public Attachment onBackground(final Uri value) throws Exception {
 final File file = makeFile(value);

	Finally, check the type of the file your command just created, and if it looks like an image, ensure that you can read it before returning. This avoids the application having to do the same check every time it wants to preview the attachment. We check whether the image is readable by attempting to read it using the BitmapFactory class:

 final String type = resolver.getType(value);
 if (type != null
 && type.startsWith("image/")
 && BitmapFactory.decodeFile(file.getAbsolutePath()) != null)
 {
 return new Attachment(file, Attachment.Type.IMAGE);
 } else {
 return new Attachment(file, Attachment.Type.UNKNOWN);
 }
}

This simple command class doesn't have any foreground work, and has been left abstract. Instead, it assumes that the work of handling the Attachment will be done elsewhere. The next part is the AttachmentPagerFragment class that will handle the Attachment objects created here by attaching them to the ClaimItem, and notifying the AttachmentPreviewAdapter that there is a new attachment to render.

 Creating the Attachment Pager Fragment

Now that you've assembled all of the parts required for the attachments to be created and previewed, you need to actually populate the area where they will be previewed. The AttachmentPagerFragment class will not only serve to encapsulate the ViewPager used to preview the attachments, but will also encapsulate the logic required to add new attachments to the user's claim. This will be done by moving the onRequestPermissionsResult and onActivityResult from the CaptureClaimActivity to the new AttachmentPagerFragment class. This process will require moving some of the code out of CaptureClaimActivity and into the Fragment class, so you'll be in for some cutting and pasting. Let's get started:

	Create a new layout resource named fragment_attachment_pager.

	Open the content_capture_claim.xml layout file.

	Cut and paste the ViewPager from the bottom of content_capture_claim.xml into the fragment_attachment_pager layout file, overwriting all the content of the file. You'll need to define the XML namespaces (the xmlns attributes) on the ViewPager element, so that the fragment_attachment_pager.xml file reads like this:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/attachments"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:clipChildren="false"
 android:clipToPadding="false"
 tools:context=".ui.attachments.AttachmentPagerFragment"/>

	Create a New, Java Class in the ui.attachments package.

	Name the class AttachmentPagerFragment.

	Make its Superclass android.support.v4.app.Fragment.

	Open the CaptureClaimActivity class.

	Cut the REQUEST_ATTACH_FILE and REQUEST_ATTACH_PERMISSION constants from the CaptureClaimActivity and paste them in AttachmentPagerFragment:

private static final int REQUEST_ATTACH_FILE = 1;
private static final int REQUEST_ATTACH_PERMISSION = 1001;

	Create an instance of AttachmentPagerAdapter to help with rendering the attachment previews. As the AttachmentPagerAdapter can handle its list of Attachment object changing completely, you'll only ever need one in each AttachmentPagerFragment:

private final AttachmentPreviewAdapter adapter = new AttachmentPreviewAdapter();

	Create fields for the ActionCommand you'll use to attach the files, and another to hold a reference to the ViewPager object:

private ActionCommand<Uri, Attachment> attachFileCommand;
private ViewPager pager;

	Your AttachmentPagerFragment needs a reference to the ClaimItem it is previewing Attachment for. This will also allow it to add new Attachment objects to the claim without invoking its Activity to do so. The Fragment will also expose a method that can be called to notify it that the list of attachments on the ClaimItem has changed. This can be invoked by the ClaimItem itself later on, or through an event-bus:

private ClaimItem claimItem;

public void setClaimItem(final ClaimItem claimItem) {
 this.claimItem = claimItem;
 onAttachmentsChanged();
}

public void onAttachmentsChanged() {
 adapter.setAttachments(
 claimItem != null
 ? claimItem.getAttachments()
 : null
);
 pager.setCurrentItem(adapter.getCount() - 1);
}

	Override the Fragment onCreate method. This looks just like the onCreate method of an Activity, and is called after your Fragment has been attached to its context (in this case, to its Activity object). AttachmentPagerFragment will use onCreate to instantiate the attachFileCommand for later use, and it'll do so using an anonymous inner class, inheriting from the CreateAttachmentCommand class that you just wrote:

public void onCreate(final @Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final File attachmentsDir =
 getContext().getDir("attachments", Context.MODE_PRIVATE);
 attachFileCommand = new CreateAttachmentCommand(
 attachmentsDir,
 getContext().getContentResolver()) {
 @Override
 public void onForeground(final Attachment value) {
 if (claimItem != null) {
 claimItem.addAttachment(value);
 onAttachmentsChanged();
 }
 }
 };
}

In any task that takes place in the background and then jumps back to the foreground, it's a good idea to check your context before running any code. In the preceding snippet, this takes the form of the claimItem != null check. If the command was started, and the user left the Activity (or similar), the foreground code could trigger errors by trying to alter variables that are invalid or null.

	When the Fragment is released completely (with no chance of a later restart), its onDestroy method is called. Use this method to release the claimItem, stopping any background tasks from modifying it when they get back to the foreground:

public void onDestroy() {
 super.onDestroy();
 claimItem = null;
}

	Just like the CategoryPickerFragment you wrote earlier, AttachmentPagerFragment needs a View that will display when it's inflated into a layout XML. In this case, you also need to adjust the ViewPager slightly, as the page margin is not exposed as an XML attribute:

public View onCreateView(
 final LayoutInflater inflater,
 final @Nullable ViewGroup container,
 final @Nullable Bundle savedInstanceState) {

 pager = (ViewPager) inflater.inflate(
 R.layout.fragment_attachment_pager, container, false);
 pager.setPageMargin(
 getResources().getDimensionPixelSize(R.dimen.grid_spacer1));
 pager.setAdapter(adapter);

 return pager;
}

	Now, cut and paste the onAttachClick method from CaptureClaimActivity into AttachmentPagerFragment. This will immediately cause errors, because onAttachClick uses the fact that an Activity is also a Context; so, ContextCompat.checkSelfPermission can use the CaptureClaimAcitvity as the Context to check. Fragment doesn't inherit from Context, but it does expose the getContext() and getActivity() methods to retrieve the environment that it's attached to:

public void onAttachClick() {
 final int permissionStatus = ContextCompat.checkSelfPermission(
 getContext(),
 Manifest.permission.READ_EXTERNAL_STORAGE);

 if (permissionStatus != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(
 getActivity(),
 new String[]{Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_ATTACH_PERMISSION);
 return;
 }

 final Intent attach = new Intent(Intent.ACTION_GET_CONTENT)
 .addCategory(Intent.CATEGORY_OPENABLE)
 .setType("*/*");

 startActivityForResult(attach, REQUEST_ATTACH_FILE);
}

	Now cut and paste the onRequestPermissionsResult, onAttachFileResult, and onActivityResult methods over as well. These should copy over without any errors.

	In the onAttachFileResult method, you can now remove the Toast you put in as a placeholder. Instead, invoke the attachFileCommand with the selected file; this will automatically result in the previews also being updated:

Toast.makeText(this, data.getDataString(), Toast.LENGTH_SHORT).show();
attachFileCommand.exec(data.getData());

	In the content_capture_claim.xml layout file, include the new AttachmentPagerFragment where the ViewPager used to be:

<fragment
 android:id="@+id/attachments"
 class="com.packtpub.claim.ui.attachments.AttachmentPagerFragment"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:layout_weight="1" />

	In the CaptureClaimActivity, create a new field for the AttachmentPagerFragment, and in onCreate, capture the field from the FragmentManager:

private AttachmentPagerFragment attachments;
// ...
protected void onCreate(Bundle savedInstanceState) {
 // ...
 final FragmentManager fragmentManager =
 getSupportFragmentManager();
 categories = (CategoryPickerFragment)
 fragmentManager.findFragmentById(R.id.categories);
 attachments = (AttachmentPagerFragment)
 fragmentManager.findFragmentById(R.id.attachments);

	Finally, change the onClick method in CaptureClaimActivity to invoke onAttachClick on the AttachmentPagerFragment:

@Override
public void onClick(View v) {
 switch (v.getId()) {
 case R.id.attach:
 attachments.onAttachClick();
 break;
 }
}

The AttachmentPagerFragment is a multipurpose Fragment. Although it has all the logic required to attach files to a ClaimItem, it doesn't attempt to hook them up to any event listeners itself. As a result, you can easily use it as a read-only preview of attachments if (for example) the current user was reviewing someone else's travel expenses (in which case, they shouldn't be editing the data).

It's always a good idea to consider how a Fragment might be reused in different situations, and to rather push data and events down into them rather than having them making call upward to their Activity to know what should be done (which forces every Activity wanting to use the Fragment to provide that information).

 Capturing the ClaimItem data

While you've linked the new Fragment classes to the CaptureClaimAcitvity, things aren't quite finished yet. The CaptureClaimActivity doesn't actually have a ClaimItem to capture and modify. For this, you'll not only need to hold a reference to a ClaimItem in the CaptureClaimActivity, you'll need to ensure that it is saved and restored through life cycle changes for the Activity as well. Fortunately, your model is all Parcelable, which keeps this easy. It's time to capture a ClaimItem:

	Open the CaptureClaimActivity class.

	First, you'll need a way that a ClaimItem can be passed into the CaptureClaimActivity for editing. To keep this simple and flexible, you'll allow them to be passed as an "extra" field on the Intent. When you use extras in an Intent, it's a good idea to expose the name as a public constant so that they can be accessed by outside classes when creating the Intent objects:

public static final String EXTRA_CLAIM_ITEM = "com.packtpub.claim.extras.CLAIM_ITEM";

	You'll also need to save and restore the ClaimItem while it's being edited, and for this, you'll also need a key for the Bundle:

private static final String KEY_CLAIM_ITEM = "com.packtpub.claim.ClaimItem";

	Then, create a private field to reference the ClaimItem being edited, and you'll also need to reference all the inputs and Fragment objects on the screen; CaptureClaimActivity should have private fields looking like this:

private EditText description;
private EditText amount;

private DatePickerLayout selectedDate;
private CategoryPickerFragment categories;
private AttachmentPagerFragment attachments;

private ClaimItem claimItem;

	In the onCreate method, ensure that you capture all the preceding fields after the call to setContentView:

description = (EditText) findViewById(R.id.description);
amount = (EditText) findViewById(R.id.amount);
selectedDate = (DatePickerLayout) findViewById(R.id.date);

final FragmentManager fragmentManager = getSupportFragmentManager();
attachments = (AttachmentPagerFragment) fragmentManager.findFragmentById(R.id.attachments);
categories = (CategoryPickerFragment) fragmentManager.findFragmentById(R.id.categories);

	Then, you'll need to check whether a ClaimItem has been passed in, either in the savedInstanceState Bundle (which will be populated if the Activity is being restarted due to a configuration change), or is being passed as an extra parameter on the Intent (a bit like a constructor argument):

if (savedInstanceState != null) {
 claimItem = savedInstanceState.getParcelable(KEY_CLAIM_ITEM);
} else if (getIntent().hasExtra(EXTRA_CLAIM_ITEM)) {
 claimItem = getIntent().getParcelableExtra(EXTRA_CLAIM_ITEM);
}

	If a ClaimItem wasn't passed in through either of these mechanisms, you'll want to create a new, empty ClaimItem to be edited by the user. On the other hand, if one was passed in, you'll need to populate the user interface with its data:

if (claimItem == null) {
 claimItem = new ClaimItem();
} else {
 description.setText(claimItem.getDescription());
 amount.setText(String.format("%f", claimItem.getAmount()));
 selectedDate.setDate(claimItem.getTimestamp());
}

attachments.setClaimItem(claimItem);

	Now, write a utility method to copy the data from the user interface widgets back into the ClaimItem object:

void captureClaimItem() {
 claimItem.setDescription(description.getText().toString());
 if (!TextUtils.isEmpty(amount.getText())) {
 claimItem.setAmount(
 Double.parseDouble(amount.getText().toString()));
 }
 claimItem.setTimestamp(selectedDate.getDate());
 claimItem.setCategory(categories.getSelectedCategory());
}

	When the Activity is shutdown in ways that can result in it being restarted at a later time (and as a new instance), the onSaveInstanceState method is invoked with a Bundle where your Activity can save any state it needs to restore later (in this case, it'll be the ClaimItem being edited). This will happen if your Activity is in the background and the OS needs to reclaim memory, or if the Activity restarts due to a configuration change (such as the user changing between the portrait and landscape modes). This is where you set up the contents of the Bundle that gets passed into onCreate:

protected void onSaveInstanceState(final Bundle outState) {
 super.onSaveInstanceState(outState);
 captureClaimItem(); // make sure the ClaimItem is up-to-date
 outState.putParcelable(KEY_CLAIM_ITEM, claimItem);
}

	We also want to ensure that when the CaptureClaimActivity is closed, it returns the edited ClaimItem to the Activity that started it. This can be done by overloading the finish() method, which is invoked to close an Activity:

public void finish() {
 captureClaimItem();
 setResult(
 RESULT_OK,
 new Intent().putExtra(EXTRA_CLAIM_ITEM, claimItem)
);
 super.finish();
}

CaptureClaimActivity will always return a ClaimItem object; there is no notion of saving the ClaimItem or canceling its creation (although a calling Activity may choose to ignore the ClaimItem if it's empty). The idea is to assume that the user knows what they are doing, and rather offer them a way to undo their changes once they've been made. This is much less disruptive to the user than always asking them "are you sure" questions.

	Finally, it's important that we give the user a visual method to exit the screen without using the Android back button. We'll do this by putting a back navigation arrow on the Toolbar. First, write a handler that listens for the home button being selected:

@Override
public boolean onOptionsItemSelected(final MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 finish();
 break;
 default:
 return false;
 }

 return true;
}

	Now, right-click on the drawable resource directory and choose New| Vector Asset.

	Using the Icon selector, search for arrow back.

	Name the new Icon ic_arrow_back_white_24dp.

	Click on Next and then on Finish to complete the wizard and create the new asset.

	Open the ic_arrow_back_white_24dp.xml resource file.

	Change the path android:fillColor attribute to white:

<path
 android:fillColor="#FFFFFFFF"

	Open the activity_capture_claim.xml layout resource in Design mode.

	Select the toolbar in the Component Tree panel:

	In the Attributes panel, toggle to the View all attributes view.

	Search for navigationIcon, and use the resource selector to pick the ic_arrow_back_white_24dp icon resource.

If you run the application now, you'll see that you can capture attachments for a claim, and when the device is rotated, or you navigate away using the home button, any data you've changed will remain the same when you return to the application. It's always important to consider what state you will need to maintain when navigating away from an Activity, as the Activity itself may need to be reclaimed.

It's also a good idea to separate the state of an Activity from the state of the application. While an Activity is busy editing a record, that record's data should remain encapsulated within the Activity.

 Try it yourself

You've isolated the category picker and the attachment logic into Fragment classes in this chapter; now try writing a Fragment to encapsulate the contents of the first CardView on the screen. Remember to rather push the ClaimItem down into the Fragment instead of having the Fragment push the change events up to the Activity. Name the new Fragment class CaptureClaimDetailsFragment and name its layout resource fragment_capture_claim_details.xml.

You can also try pushing the logic to change the Category of the ClaimItem down into the CategoryPickerFragment in a way similar to how the AttachmentPagerFragment automatically adds new Attachments to the ClaimItem.

 Test your knowledge

	When developing a layout subclass, which of the following options is the best?

	Programmatically instantiating its child widgets

	Only having ID attributes in nested child widgets

	Avoiding assigning ID attributes to child widgets

	Which of these applies to the Bundle passed at an Activity in onCreate?

	It is populated in the onSaveInstanceState method

	It is populated automatically by the platform

	It is never null

	When the data for an Adapter changes, which of the mentioned happens?

	It will be detected by the View automatically

	It should be replaced by a new Adapter to reflect the changes

	It should notify any attached listeners

	Fragments and View classes should meet which of the following condition?

	They should have their data and state pushed into them from the Activity

	They should expose listener interfaces that their Activity implements to receive events

	They should directly call event methods on their Activity by casting it to the correct class

 Summary

In this chapter, you learned some of the practical techniques for breaking your user interface and application into modular components that can be reused. It's always a good idea to start with the finished user interface and break it up, preferably from the mockup stage. It's also good to identify where some parts of the system can serve multiple roles, for example, being both a read-only display and an editor. It's also a good idea to wrap components within other components, even if it's just conceptually. Keeping certain types of event handlers as their own modules makes them reusable over screens that don't share exactly the same widgets, but need to reuse the same logic.

When building user interfaces, it's a good idea to use an Activity to just wrap a collection of Fragment rather than nesting the screen logic in the Activity. This will allow the Fragment to take on specific responsibilities (such as attachments), making them more reusable elsewhere in your application. It also allows you far more flexibility when providing different layouts for different screen sizes. Devices with large screens might actually have more Fragment on the screen than smaller devices.

As a general best practice, always try and contain data and state by pushing it downward (as you do when you pass parameters to a method). This avoids View classes and Fragment from needing to be placed within specific parts of your application, just like a method doesn't need to know where it is being invoked from to do its job. This approach makes it much easier to move parts of the application around later on.

In the next chapter, we'll look at an Android system that makes this sort of modularization easier, and even more flexible. The data binding system is an incredibly powerful system that takes care of keeping user interfaces populated with data, and allows much of the presentation work to be bound directly to the layout XML files.

 Binding Data to Widgets

So far, you've been copying the data from your data model into your presentation layer by hand, and then copying it back as well. This shifting data back and forth between stateful widgets is something that you always need to do at some level. Where and how the data is copied can change, but it has to be done to make applications work. In this chapter, we'll look at a system provided by Android called data binding. Data binding provides an alternative to the copying back and forth of data, but also opens several other design opportunities to allow more reuse of code.

Data binding offers you a way to dramatically reduce the amount of boiler-plate code in your application, while remaining type-safe and providing excellent performance. The data binding engine allows you to provide user interface logic that is clearly separated from the layout resources, and can be easily reused by many screens in the application, while reducing the complexity of both the application code and the layout resource files.

In this chapter, we'll look at the following topics:

	Why data binding exists

	How to write data-bound layouts

	How to use data binding in an MVP design

	Reactive programming and your data model

	How to use data binding in Activities, Fragments, and widgets

 Exploring data models and widgets

In theory, the widgets can directly reference the memory that they are manipulating by holding points to the data, rather than copying the data back and forth, but more often than not, it doesn't make sense to use the same data format for storage and for editing.

Take strings of text for example; the best way to store a string is as a character array; whenever you need to send the text anywhere, over the network or to a display, you can simply read from the first character until the last one, and each one can be transmitted as-is. For example, "Hello World" can be stored as the string length followed by each of the characters:

This is not a good way to store a string that is being edited; however, for editing, it's best to have some buffer space around the cursor to avoid having to copy large amounts of data back and forth as the user types and corrects themselves. For example, if the user places their cursor right after the word "Hello", the same array might look like this:

This tension between how data should be stored when it'll only be read, and how it should be edited, is an important part of why modern user-interface widgets tend to be complex pieces of machinery in their own right. They don't just need to look pretty; they need to be fast, and for that, they need to internally represent the data in a way that suits their implementation best. As a result, instead of being able to have an EditText widget just manipulate an array of characters, we're forced to copy the strings in and out of its internal structures, as you've been doing so by hand thus far.

The data binding system in Android allows you to reference your object model directly from your layout files, and then generate all the Java code required to wire the object model to the widgets. This system is called data-binding, and its core classes can be found in the android.databinding package. The data binding system also allows for reactive programming; when the data model is changed, it can directly reflect in the user interface widgets, allowing the application to keep what is on the screen up to date without having to explicitly update the widgets. The data binding system is also completely type-safe, because it generates all the code when your application is compiled, so any type errors are produced then and there, rather than possibly at runtime, where your users might see them.

 The Observer pattern

The data binding framework in Android makes use of the Observer pattern to allow for reactive programming. Any object that is referenced by a layout file that implements the Observable interface is watched, and when it signals that it has changed, the user interface updates accordingly. As the data binding system can be used on any attribute or setter of any widget, this means that you can control far more than just the content or state of the user interface. You can control whether widgets are visible or invisible, and you can control which image is used for the background of a widget. At its core, the Observer pattern looks like this:

In the Android Observer pattern, the data model classes expose themselves as Observable by implementing the android.databinding.Observable interface and notifying a list of event-listeners (observers) of any changes to their state. Android provides several convenience classes that make implementing this pattern much easier. There are three ways in which you can implement this pattern for Android:

	Implement Observable in your object model

	Implement an Observable model on top of your object model

	Implement Observable in a presentation layer

Let's take a look at these three ways in detail:

	Implementing Observable directly in your object model is common, but has the side effect of polluting your object model with the Observable pattern and Android classes that will effectively stop you from using the same code base in other parts of the system (for example, on the server side). This is a good approach when your object model code will only ever be used by your Android application.

	Implementing an Observable layer on top of the object model is sometimes a better option, but can also lead to complications; every object referenced through the observable layer also needs to be wrapped in an Observable object. This leads to much greater complexity in the model implementation, and doesn't cover changes made outside of the Observable layer. This approach is useful when you are generating the code for your object model with a tool, or need an additional application-specific layer for your Android application code.

	Implementing the Observer pattern at the presentation layer means that the root references held by the data binding layer are themselves Observable, but the object model is not. This will technically allow you to have an immutable data model if you wanted to. The data binding engine will never see the changes to the individual fields in the data model, but instead is notified that the whole model has changed. This can also be a very expensive model, as the data binding layer will reevaluate every part of the data model for every change made to it. However, this is a good approach when your application tends to update several fields in a model simultaneously, or is heavily multithreaded.

None of these options are always better than the others; rather, it's worth considering each of them when it comes to ensuring that your user interface will stay in-sync with the application's overall state. In some screens, this reactive behavior may even be undesirable, since it can easily disrupt the user. In these cases, it's worth using data binding just to populate the screen.

The data binding system is not bidirectional; changes in the model reflect in the user interface, but input in the user interface widgets are not pushed into the model automatically. This means that your application must still handle events and capture the changes in the user interface, as shown earlier.

 Enabling data binding

By default in an Android project, the data binding capabilities are turned off. You'll need to enable them in your project's build.gradle file by hand. Follow these quick steps to enable the data binding system:

	Start by locating the build.gradle file for your application module in the Android panel in Android Studio:

	Open this file and locate the android block:

android {
 compileSdkVersion 26
 // ...
}

	At the end of the android block, add the following snippet to enable data binding:

android {
 compileSdkVersion 26
 // ...
 dataBinding {
 enabled = true
 }
}

	Once you save this file, Android Studio will open a banner at the top of the file, telling you that it needs to sync the project. Click on the Sync Now link on the right-hand side of the banner and wait for the sync to complete.

Congratulations! You've just enabled the data binding framework on your project. Now you can get started, making use of the data binding system in your layout files, which will simplify the application and open doors to new ways to reuse your code base.

 Data binding a layout file

Data binding works primarily through code generation, and there is very little in the way of runtime overhead. It permits you to use a special expression language in your layout XML files, which gets converted into Java code before your application is compiled. These expressions can call methods, access properties, and are even useful for triggering events. They do have a few restrictions, however: they cannot directly reference the widgets in your user interface, and they cannot create any new objects (they have no new operator). As a result, you'll need to provide your layout files with some utility methods in order to keep things simple, and there are a few guidelines to follow when working with expressions:

	Keep the expressions simple: Don't write application logic into the expressions; rather, create a utility method that can be reused

	Avoid manipulating data directly: As tempting as it might be, ensure that your data is always ready for presentation before it's given to the layout binding. Keep default values in your model, Activity, or Fragment classes, and not in the layout XML files

	Use presenter objects: When you have simple transformations that need to be done on the data (such as formatting a date or number), put these into objects. The expression language can reference static methods, but presenter objects are much more powerful and flexible

	Pass events in: Avoid using the expressions language for more than a method call when you're writing events, and try to pass the events into the layout as objects, either as a presenter, or as command objects. This keeps the events flexible and reusable

By sticking to these guidelines, you'll find that working with the data binding system not only frees you from some of the most common user interface boilerplate code, but also improves the quality of your layouts and overall application. By using objects in your layout files rather than static methods, you'll end up with modular classes that can be easily reused throughout your application.

Now that your app can capture people's expenses as claims, it's time to start thinking about how the information will be displayed. There are two major components to this: the list of claim items the user has created, and their overall travel allowance that they're supposed to keep to. So far, you have the capture screen, and while in many ways it's the most important screen in the app, it's not the first one that the user will see--that will be the overview screen.

The overview screen's main job is to display the claim items in order, from most recent to the oldest. However, to keep the user's life simple, we'll also display a summary card at the top of the screen, which will help them stay on track with their spending. For this example, we'll assume that the allowance is specified as an amount per day that they are traveling.

 Creating an Observable model

To get things started on this part of the project, you'll need a new model class to encapsulate the allowance and spending of the user. We'll call the new class Allowance, and build in some utility methods to fetch useful information (such as how much the user spent between two dates). Most importantly, this new model needs to tell us when it changes. This can technically be done in several ways: through an event-bus, or specialized listeners, but for this example, we'll go with an Observer pattern. To make this work, the Allowance class will extend from BaseObservable, a convenience class that is part of the data binding API. Whenever the Allowance class changes, it'll emit events notifying its observers of the change. Let's get started building the Allowance class:

	Right-click on the model package and select New| Java Class.

	Name the new class Allowance.

	Change the Superclass to android.databinding.BaseObservable.

	Add android.os.Parcelable to the Interfaces field.

	Click OK to create the new class.

	At the top of the class, declare the following fields and constructors, and a getter method for the amountPerDay, which represents the allowance the user is aiming for:

private int amountPerDay;
private final List<ClaimItem> items = new ArrayList<>();

public Allowance(final int amountPerDay) {
 this.amountPerDay = amountPerDay;
}

protected Allowance(final Parcel in) {
 amountPerDay = in.readInt();
 in.readTypedList(items, ClaimItem.CREATOR);
}

public int getAmountPerDay() { return amountPerDay; }

	Now comes the first bit of the Observable implementation; when we change the amountPerDay field, we need to notify any Observers that the Allowance object has changed:

public void setAmountPerDay(final int amountPerDay) {
 this.amountPerDay = amountPerDay;
 notifyChange();
}

	The Allowance class will always ensure that all the ClaimItem objects are sorted from the newest to the oldest; knowing this, we can add some convenience methods to find the start and end dates for the Allowance object:

public Date getStartDate() {
 return items.get(items.size() - 1).getTimestamp();
}
public Date getEndDate() {
 return items.get(0).getTimestamp();
}

	Now, create a simple calculation method to determine how much has been spent in total for this Allowance. This method simply adds up all the amounts in all the ClaimItem objects:

public double getTotalSpent() {
 double total = 0;

 for (final ClaimItem item : items)
 total += item.getAmount();

 return total;
}

	Then, add another calculation method to calculate the amount spent between two dates. This can be used to find out how much was spent on a specific day, week, month, and so on:

public double getAmountSpent(final Date from, final Date to) {
 double spent = 0;
 for (int i = 0; i < items.size(); i++) {
 final ClaimItem item = items.get(i);
 if (item.getTimestamp().compareTo(from) >= 0
 && item.getTimestamp().compareTo(to) <= 0) {
 spent += item.getAmount();
 }
 }

 return spent;
}

	Now, you'll need a method to add a ClaimItem to the Allowance. The Allowance always maintains the list of ClaimItem objects sorted from newest to oldest, so this method simply sorts the list each time an item is added, and then notifies observers that the Allowance has changed:

public void addClaimItem(final ClaimItem item) {
 items.add(item);
 Collections.sort(
 items,
 Collections.reverseOrder(new Comparator<ClaimItem>() {
 @Override
 public int compare(final ClaimItem o1, final ClaimItem o2) {
 return o1.getTimestamp().compareTo(o2.getTimestamp());
 }
 })
);

 notifyChange();
}

Sorting a list like this is a very poor implementation, but very simple to write. In practice, you should binary-search for the correct position to add the ClaimItem. Android provides classes to help with this, which we'll explore later in the book.

	We also need to be able to remove ClaimItem objects from the Allowance. This is also a mutative operation, so we notify any observers when it's done:

public void removeClaimItem(final ClaimItem item) {
 items.remove(item);
 notifyChange()
}

	Add the accessor methods for the ClaimItem objects:

public int getClaimItemCount() {
 return items.size();
}
public ClaimItem getClaimItem(final int index) {
 return items.get(index);
}
public boolean isEmpty() {
 return items.isEmpty();
}

	Finish the Allowance class by writing its Parcelable implementation:

@Override
public void writeToParcel(Parcel dest, int flags) {
 dest.writeInt(amountPerDay);
 dest.writeTypedList(items);
}

@Override
public int describeContents() { return 0; }

public static final Creator<Allowance> CREATOR = new Creator<Allowance>() {
 @Override
 public Allowance createFromParcel(Parcel in) {
 return new Allowance(in);
 }

 @Override
 public Allowance[] newArray(int size) {
 return new Allowance[size];
 }
};

The Allowance class is the first (and currently, the only) part of your object model that needs to be observed, as you can see; building an Observable model is not difficult, and being able to watch your model state for changes opens some fantastic opportunities, such as automatic network synchronization or statistics aggregation.

If you have an event bus in your application, pushing object model changes through there rather than direct observation is often a better option as it will offer better decoupling. There are a large number of event-bus APIs compatible with Android, and it's worth checking them out. A well-known API with an Event Bus implementation is Google's Guava API (https://github.com/google/guava).

 Establishing the AllowanceOverviewFragment

The allowance overview will be presented as a card at the top of an overview screen. The overview card will be populated by a new Fragment class that will encapsulate the first part of the data binding. The AllowanceOverviewFragment will depend on the data binding system to do most of the heavy lifting, and will provide the layout binding with a special AllowanceOverviewPresenter object that can be queried for statistics and data. The AllowanceOverviewPresenter will, in turn, reference the Allowance object, and listen for any changes on it in order to update and cache the statistics data. The relationship between these entities can be best explained with the following diagram:

Encapsulating the statistics in a Fragment means that it's easier to include in other layouts that might include different information to the overview screen. Follow these quick steps to create the AllowanceOverviewFragment and AllowanceOverviewPresenter skeleton:

	Right-click on the ui package and select New | Fragment |Fragment (Blank).

	Name the Fragment AllowanceOverviewFragment.

	Turn off the Include fragment factory methods? and Include interface callbacks? options:

	Click on Finish to create the new Fragment and its default layout file.

	Right-click on the ui package again and select New| Java Class.

	Name the new class presenters.AllowanceOverviewPresenter.

	Click OK to create the new package and class.

	The first thing the AllowanceOverviewPresenter needs is an inner class to hold the cached spending statistics that will be displayed to the user. This will be an immutable structure; when the statistics change, we refresh all of them at the same time:

public static class SpendingStats {
 public final int total;
 public final int today;
 public final int thisWeek;
 SpendingStats(
 final int total,
 final int today,
 final int thisWeek) {
 this.total = total;
 this.today = today;
 this.thisWeek = thisWeek;
 }
}

You'll note that the fields in the SpendingStats class are public final, and have no getters. When dealing with data binding, the coupling is typically very tight, so introducing getter methods can actually create more complexity. It's better to avoid getter methods until they're needed.

	We need to expose the SpendingStats outside of the class in such a way that the data binding will watch for changes. Android data binding, again, has a helper class; when you have a field that needs to be observed, you can use the ObservableField class. When an expression in the data binding layout file references one of these, it will automatically listen for changes and reevaluate when the field is changed:

public final ObservableField<SpendingStats> spendingStats = new ObservableField<>();

When using ObservableField (and its cousins: OvservableString, ObservableInt, and such), it's best to declare them as final and initialized. The data binding system can't watch for changes on the field itself, but instead, will attach a listener to the ObservableField object.

	The AllowanceOverviewPresenter also requires an Allowance object that it will encapsulate, and a constructor:

public final Allowance allowance;
public AllowanceOverviewPresenter(final Allowance allowance) {
 this.allowance = allowance;
}

	Finally, the AllowanceOverviewPresenter needs a method to allow the user to update the amount they're permitted to spend each day. In this case, the presenter acts as a helper to keep some of the logic out of the layout files; the EditText widget will provide a number as a CharSequence, so AllowanceOverviewPresenter needs to parse it and handle any errors if it's invalid in some way:

public void updateAllowance(final CharSequence newAllowance) {
 try {
 allowance.setAmountPerDay(
 Integer.parseInt(newAllowance.toString()));
 } catch (final RuntimeException ex) {
 //ignore
 allowance.setAmountPerDay(0);
 }
}

The AllowanceOverviewPresenter class will serve as an intermediary system between the raw data-bound layout file, and the raw object model. This allows you to keep any rendering logic out of the object model, while also keeping the data model requirements out of the layout XML file.

 Creating the AllowanceOverview layout

Now, it's time to create the layout file and bind it to the AllowanceOverviewPresenter class. A data-bound layout file is a little different from a normal Android layout. As each layout XML file results in its own binding class, they have a root element of layout, followed by a data section that declares the variables that they will bind to. Each variable is named and typed with its Java class, because during compilation, these are all turned into Java variables in a generated binding class. Ultimately, you want to create a layout that will look like this at the top of the overview screen:

The Daily Allowance field will allow the user to directly edit how much they are allocated per day, while the labels to the right will display their spending today, this week, and in total. Follow these steps to construct the preceding layout; unlike previous examples, these steps don't use the Design view for editing, and the layout is built from right to left:

	Open the fragment_allowance_overview.xml layout file.

	Change the editor to Text mode.

	Change the root element from FrameLayout to layout, and remove the contents:

<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.claim.ui.AllowanceOverviewFragment">
</layout>

	Now, declare a data section within the layout and declare a presenter variable for the AllowanceOverviewPresenter class:

<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.claim.ui.AllowanceOverviewFragment">

 <data>
 <variable
 name="presenter"
 type="com.packtpub.claim.ui.
 presenters.AllowanceOverviewPresenter" />
 </data>
</layout>

	Unlike the data section, the widget elements have no special root, so directly after the data section (and still nested within the layout element), declare the root element of this layout, which will be a ConstraintLayout:

<android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">
</android.support.constraint.ConstraintLayout>

	Within the ConstraintLayout, create a TextView that will serve as the label with the word Total in it:

<TextView
 android:id="@+id/totalLabel"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:text="@string/label_total"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:textAppearance="@style/TextAppearance.AppCompat.Caption"
 app:layout_constraintEnd_toEndOf="@+id/total"
 app:layout_constraintStart_toStartOf="@+id/total"
 app:layout_constraintTop_toTopOf="parent" />

	On the line specifying the android:text attribute, Android Studio will complain that the @string/label_total resource doesn't exist. Use the code assistance (usually Alt + Enter), and select Create string value resource 'label_total'.

	A dialog will open, prompting you for the resource value; enter Total and click on the OK button.

	Use the same code assistance to create a dimension resource on the following line, specifying the minimum width. Give the new allowance_overview_label_min_width resource a value of 50dp and click OK.

	Below the Total label widget, create a TextView that will contain the actual amount of money the user has spent in their Allowance:

<TextView
 android:id="@+id/total"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="@dimen/grid_spacer1"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:textAppearance="@style/TextAppearance.AppCompat.Display1"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/totalLabel" />

	Note that here, you haven't specified an android:text attribute. This will be the first data-bound attribute in the layout file, and we want to display the total field of the SpendingStats object from the presenter. Write this android:text attribute into the TextView above the app:layout_constraintEnd_toEndOf attribute:

android:text='@{Integer.toString(presenter.spendingStats.total) ?? "0"}'

Data-bound expressions are all wrapped in @{..} to signal their difference from normal attributes. The code looks like Java, but it's not. Note the ?? operator; it's a very useful "null-safe" operator. If any part of the left-hand side is null, the right-hand side (in this case, the "0" string) will be used instead (like a very specific ternary operator). Also, make note of the single quotes around the android:text attribute; data-bound layouts must still be a valid XML file, and the preceding code needs to specify a Java string that uses double quotes. Rather than escaping the Java string as "0", it's cleaner to use single quotes for the XML attribute.

Another important factor is how you need to use Integer.toString to ensure that the correct method is invoked on the TextView. Leaving it as an int will cause TextView.setText(int) to be invoked, and this expects a string-resource identifier.

	Next, you'll need to declare very similar TextView elements for the weekly label and amount display. These are virtually identical to the total TextView elements, except for their labels, IDs, and constraints. You'll also need to create a label_week string resource with a value of Week:

<TextView
 android:id="@+id/weekLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="0dp"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:text="@string/label_week"
 android:textAppearance="@style/TextAppearance.AppCompat.Caption"
 app:layout_constraintEnd_toEndOf="@+id/week"
 app:layout_constraintStart_toStartOf="@+id/week"
 app:layout_constraintTop_toTopOf="parent" />

<TextView
 android:id="@+id/week"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="@dimen/grid_spacer1"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:text='@{Integer.toString(presenter.spendingStats.thisWeek) ?? "0"}'
 android:textAppearance="@style/TextAppearance.AppCompat.Display1"
 app:layout_constraintEnd_toStartOf="@+id/total"
 app:layout_constraintTop_toBottomOf="@+id/weekLabel" />

	You'll need to repeat the same for the Today numbers. Again, you'll want to change the labels, IDs, and constraints, and create a label_today string resource with a value of Today:

<TextView
 android:id="@+id/todayLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="0dp"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:text="@string/label_today"
 android:textAppearance="@style/TextAppearance.AppCompat.Caption"
 app:layout_constraintEnd_toEndOf="@+id/today"
 app:layout_constraintStart_toStartOf="@+id/today"
 app:layout_constraintTop_toTopOf="parent" />

<TextView
 android:id="@+id/today"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="@dimen/grid_spacer1"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:gravity="center"
 android:minWidth="@dimen/allowance_overview_label_min_width"
 android:text='@{Integer.toString(presenter.spendingStats.today) ?? "0"}'
 android:textAppearance="@style/TextAppearance.AppCompat.Display1"
 app:layout_constraintEnd_toStartOf="@+id/week"
 app:layout_constraintTop_toBottomOf="@+id/todayLabel" />

	The last element of this card is the daily allowance input area, where the user can enter how much they are allowed to spend each day. It consists of a TextInputLayout and a TextInputEditText widget bound to the amount per day. In this element, you'll also be binding the TextInputEditText widget to an event handler, which looks a lot like a Java lambda, but like all the binding expressions, it's not. However, it is translated into Java:

<android.support.design.widget.TextInputLayout
 android:id="@+id/textInputLayout"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginEnd="@dimen/grid_spacer1"
 android:layout_marginStart="@dimen/grid_spacer1"
 android:layout_marginTop="@dimen/grid_spacer1"
 app:layout_constraintBottom_toBottomOf="@+id/today"
 app:layout_constraintEnd_toStartOf="@+id/today"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

 <android.support.design.widget.TextInputEditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/label_daily_allowance"
 android:inputType="number"
 android:onTextChanged=
 "@{(text, start, before, end)
 -> presenter.updateAllowance(text)}"
 android:text='@{presenter.allowance.amountPerDay > 0 ?
 Integer.toString(presenter.allowance.amountPerDay) : ""}' />

 </android.support.design.widget.TextInputLayout>
</android.support.constraint.ConstraintLayout>

	Use the Android Studio code assistant to create the label_daily_allowance string resource with a value of Daily Allowance.

Now, if you go back to the Design mode, you'll be able to see what your new fragment will look like on the screen of the user's device. The event-handler is hooked up and will be triggered every time the user changes any text in the Daily Allowance input box. The event trigger will invoke the presenter.updateAllowance method, which in turn will attempt to parse the value and set it on the Allowance object (assuming that it can be parsed as an integer).

 Updating the SpendingStats class

You've already created the SpendingStats class and bound it to your layout, but it won't ever have any data in it because it's never actually created, and the ObservableField<SpendingStats> field in the AllowanceOverviewPresenter is never populated. There's a good reason for that--the stats take time to calculate. Even if we had a database to do the heavy lifting, there is potentially a substantial overhead to calculate these three numbers before you can put them on the screen, while you can directly invoke the Allowance.getTotalSpent() method as part of your layout XML that will block the main thread for the entire time it took to calculate that number. That's not a good idea, as that time delay can quickly add up and lead to degraded user experience or even Application Not Responding errors.

The answer is to listen for changes to the Allowance object, and recalculate the values on a worker thread before updating the SpendingStats field in the AllowanceOverviewPresenter. The data binding system will take care of the rest and populate the values on the screen. There are two structures that are needed for this part of the example: an observer to watch for any changes on the Allowance object, and an ActionCommand to calculate and update the SpendingStats in the AllowanceOverviewPresenter. Let's create them:

	Open the AllowanceOverviewPresenter source file in Android Studio.

	At the bottom of the AllowanceOverviewPresenter class, start a new ActionCommand inner class to update the SpendingStats, named UpdateSpendingStatsCommand:

private class UpdateSpendingStatsCommand
 extends ActionCommand<Allowance, SpendingStats> {

	The UpdateSpendingStatsCommand will need two utility methods to calculate the date ranges for this week, and today. Unfortunately, Android doesn't support the new Java 8 time APIs; you'll need to use the Calendar class. On the other hand, Android provides a very useful utility class named Pair, that is perfect for defining a date range:

Pair<Date, Date> getThisWeek() {
 final GregorianCalendar today = new GregorianCalendar();
 today.set(
 Calendar.HOUR_OF_DAY,
 today.getActualMaximum(Calendar.HOUR_OF_DAY));
 today.set(
 Calendar.MINUTE,
 today.getActualMaximum(Calendar.MINUTE));
 today.set(
 Calendar.SECOND,
 today.getActualMaximum(Calendar.SECOND));
 today.set(
 Calendar.MILLISECOND,
 today.getActualMaximum(Calendar.MILLISECOND));

 final Date end = today.getTime();

 today.add(
 Calendar.DATE,
 -(today.get(Calendar.DAY_OF_WEEK) - Calendar.SUNDAY));

 today.set(Calendar.HOUR_OF_DAY, 0);
 today.set(Calendar.MINUTE, 0);
 today.set(Calendar.SECOND, 0);
 today.set(Calendar.MILLISECOND, 0);

 return new Pair<>(today.getTime(), end);
}

Pair<Date, Date> getToday() {
 final GregorianCalendar today = new GregorianCalendar();
 today.set(
 Calendar.HOUR_OF_DAY,
 today.getActualMaximum(Calendar.HOUR_OF_DAY));
 today.set(
 Calendar.MINUTE,
 today.getActualMaximum(Calendar.MINUTE));
 today.set(
 Calendar.SECOND,
 today.getActualMaximum(Calendar.SECOND));
 today.set(
 Calendar.MILLISECOND,
 today.getActualMaximum(Calendar.MILLISECOND));

 final Date end = today.getTime();

 today.add(Calendar.DATE, -1);
 today.set(Calendar.HOUR_OF_DAY, 0);
 today.set(Calendar.MINUTE, 0);
 today.set(Calendar.SECOND, 0);
 today.set(Calendar.MILLISECOND, 0);

 return new Pair<>(today.getTime(), end);
}

You'll find that there are two different Pair implementations available to your application. One is part of the core Android platform (android.util.Pair), and the other is provided by the support packages (android.support.v4.util.Pair). The support implementation is intended for applications targeting API version 4 and lower, and your application is targeting API version 16 and higher; so, you should use the platform (android.util.Pair) implementation.

	Then, you need to implement the onBackground method to process the data in the Allowance object into the SpendingStats:

public SpendingStats onBackground(final Allowance allowance)
 throws Exception {
 final Pair<Date, Date> today = getToday();
 final Pair<Date, Date> thisWeek = getThisWeek();
 // for stats we round everything to integers
 return new SpendingStats(
 (int) allowance.getTotalSpent(),
 (int) allowance.getAmountSpent(today.first, today.second),
 (int) allowance.getAmountSpent(thisWeek.first, thisWeek.second)
);
}

	Then, the UpdateSpendingStatsCommand needs its onForeground to set the SpendingStats field on the AllowanceOverviewPresenter, which will cause the user interface to update with the new data:

public void onForeground(final SpendingStats newStats) {
 spendingStats.set(newStats);
}

	That completes the UpdateSpendingStatsCommand; now, in the AllowanceOverviewPresenter class, you'll need an instance of the UpdateSpendingStatsCommand that you can invoke when the Allowance object changes:

private final UpdateSpendingStatsCommand updateSpendStatsCommand
 = new UpdateSpendingStatsCommand();

	Then, you need AllowanceOverviewPresenter to be able to watch for changes to the Allowance object. This will involve an observer that Android's data binding API calls an OnPropertyChangedCallback. The problem is that OnPropertyChangedCallback is a class and not an interface, so for the AllowanceOverviewPresenter, use an anonymous-inner class for the OnPropertyChangedCallback:

private final Observable.OnPropertyChangedCallback
 allowanceObserver = new Observable.OnPropertyChangedCallback() {

 public void onPropertyChanged(
 final Observable observable,
 final int propertyId) {
 updateSpendStatsCommand.exec(allowance);
 }
};

	The AllowanceOverviewPresenter needs to connect the observer to the Allowance object in its constructor:

public AllowanceOverviewPresenter(final Allowance allowance) {
 this.allowance = allowance;
 this.allowance.addOnPropertyChangedCallback(allowanceObserver);
}

	References held by Observable objects to their observers are strong references, so if care isn't taken, you can find yourself with memory leaks. To avoid that, it's a good idea to detach the listener when the AllowanceOverviewPresenter will no longer be needed; however, this will need to be done from outside:

public void detach() {
 allowance.removeOnPropertyChangedCallback(allowanceObserver);
}

Most of the code for the UpdateSpendingStatsCommand is taken up by the date-range calculations; it's otherwise a very simple class. The important aspects are that it both encapsulates the calculations, and runs them on a background worker thread that keeps the user interface running smoothly while it adds up the numbers.

 Data binding and fragments

When working with the data binding framework, it's important to put some additional thought into where to encapsulate the various parts of your user interface. As you can hook the logic directly into the layout files, it will often be a better idea to use classes similar to the DatePickerWrapper you wrote in Chapter 3, Taking Actions, with an <include> and <merge> tag, rather that wrapping groups of components in classes. Data-bound layouts that are included in other layouts still have variables, and it's the responsibility of the outer layout to pass those variables downward, into the included layout file. For example, a layout including a date picker might look something like this:

<include layout="@layout/merge_date_picker"
 app:date="@{user.dateOfBirth}"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

As long as either user or its dateOfBirth is Observable, the layout will automatically reflect any changes to it. This pattern allows you to not only modularize your layouts, but also ensure that they only receive the data that they actually require in order to work. The other advantage is that using it with <merge> elements plays very nicely with the ConstraintLayout, allowing you to build complex and reusable layout elements that nest in your code, but are flat (not nested) in the component hierarchy. Flat layouts using ConstraintLayout are often easier to build, are typically faster to render, and allow for more flexible animations than deeply nested layouts. They can be harder to modularize for reuse; data-binding makes this much easier.

If you're wondering whether it's a good idea to still introduce fragments and widget classes, look at logical boundaries, where you will be forced to nest your components. An excellent example of a good boundary is a CardView. A CardView requires a nested layout, so its contents are perfect candidates for a widget or fragment, which can further help with encapsulation of your layout and logic.

It's also important to consider your "presenter" classes and objects when you build them. A single layout can have any number of variables, and the presenter classes don't have to be shallow structures. It's common to build presenter classes in levels by inheritance, where you might build an application level presenter with global rules (how to format dates and numbers), with children for things like displaying dialogs; remember that some of the logic might not be used directly by the layout, but rather by an event handler method. Breaking the presenter classes up in this way allows you to further confine logic to where it's needed, and improve your code reusability.

 Test your knowledge

	Android's data binding framework follows what sort of binding?

	Model-View View-Model (bidirectional) binding

	Model-View-Presenter pattern

	Model-View (unidirectional) binding

	Data Bound Layouts have variables that must be which of the following?

	Any Java Object

	Observable by the data binding framework

	Presenter objects

	Model objects

	Which of the following features belongs to data binding expressions?

	They must be written in single quotes

	They are Java expressions

	They are a special expression language

	They're only evaluated at runtime

	To trigger an update of a data-bound user interface, you must do which of these?

	Listen for object model changes with an event bus

	Extend the PropertyChangeCallback class

	Call refresh on the generated Binding object

	Make a change that the Binding object can observe

 Summary

Data binding can not only massively reduce the amount of boilerplate code required to write a user interface, but can actively improve your code base and increase how much code you can reuse. By avoiding complex binding expressions and encapsulating the display logic in your presenter classes, you can build highly modular layouts that are fast, type-safe, and reusable.

It's sometimes useful to think of the data-bound layout files as Java classes in their own right; after all, they will each result in a generated Binding class. It's useful to keep in mind that the Binding classes themselves are also observable, so any changes to them through their generated setter methods will automatically trigger an update in the user interface as well. Also, remember that when you include a data-bound layout in another, you need to pass all of its variables downward, which is just like specifying arguments on a constructor, and those variables don't need to be directly contained within the parent layout.

So far, you've been building an in-memory data model, but this means that when your application is terminated, all the data is lost. In the next chapter, we'll take a look at long-term data storage on Android, and find out how to integrate it with your user interface without degrading the user experience and perceived performance.

 Storing and Retrieving Data

Data storage might not, at first glance, seem to be at all related to a user interface, but in the majority of applications, the user interface exists to manipulate long-lived data both on the device and on the network. This means that while it does not directly influence the look of the application, it does influence the user experience. Users expect the application to always reflect the latest data available to them, as we explored in Chapter 5, Binding Data to Widgets. Applications written using a reactive pattern ensure that the user interface is always up to date with the latest data available to the application, and the Android data binding system helps to make writing reactive applications easy. Even without the data binding framework, Android itself has always been built for reactive applications from the very bottom layers upward, but until recently, this behavior required huge amounts of boilerplate code.

When you develop any sort of application, it's important to establish a data container or authority within the application. In most web systems, this will be a database. The system may have many other layers to its data storage, such as caches and in-memory object models, but the authority in this case will be the database. Android applications may appear more complex at first; you typically have a server with some data, you often have a local database, and then there is also whatever is on screen and in-memory. Keeping all of these states in-sync might appear to be a nightmare, but it's actually well taken care of.

The Android team have built a collection of APIs known collectively as the Architecture Components. These collectively simplify the job of writing reactive applications by taking care of the most common problems when writing an application. They include APIs for storing and retrieving data, and for reacting to changes in state of the application.

In this chapter, we'll look at the following topics:

	How data and storage can influence the user experience

	The tools Android provides to store and retrieve structured data

	The best ways to keep the user interface up to date with the data store

	Building an SQLite database store using the Room persistence API

 Data storage in Android

Almost every application needs to store data persistently at some point. Any data that needs to remain intact when your application is stopped must be placed in some kind of data storage system where you can retrieve it again later. You can store all the data on the server, but then your application will only function when the user has an active internet connection and will only ever be as fast as their available connection. You can also store data as files on the device's local filesystem, but this means you need to either load all the data into memory and save the whole application state every time it changes, or you need to write complicated logic to maintain integrity between the various files your application will write.

The Android ecosystem has a large number of database systems available, the most popular of which is probably SQLite. Data can be saved in SQLite tables and retrieved through structured queries. This provides an ideal way to store all of your application data on the device, while only ever retrieving what the application needs. An SQLite database can be instructed to exactly which fields on which records you need to retrieve, and you can use indices to make this process very fast.

Persistent data storage and object mapping does come at a significant cost--as fast as a database lookup might be, it takes significantly longer than is acceptable on the main thread, where it creates delays in graphics rendering and event dispatching. So once again, you want data to be loaded from a background thread. This can create some additional challenges: how do you ensure that the data is always up to date, and doesn't get stagnated when it's involved in Activity life cycles and is being persisted and loaded from multiple storage systems? This can quickly get out of hand, but again, Android has a whole ecosystem of structures that are designed to keep things under control.

When creating an Android application, it's best to design it so that anything being edited by the user on the current Activity remains in a mutable in-memory model, as in the following diagram:

This design pattern will provide your application with good performance, while also allowing you to easily cancel changes by simply discarding the in-memory model that the user has been changing. When the user is viewing rather than editing data, a different approach is needed. When a user is looking at a screen such as their email inbox, or a chat conversation, they expect it to update without their interaction. When this is the case, it's better to follow a unidirectional data flow design, such as the one in this diagram:

The Incoming Change in this diagram can be from absolutely anywhere. It can be from another part of the application, or it can be from the network, or it can even be from another part of the screen the user is looking at. The important thing is that the database (DB) is always updated first, which then triggers the Model to be reloaded or updated, and that in turn triggers the User Interface to update. This is in opposition to a Model where the User Interface receives the incoming event and fetches the new data. Here, the User Interface will always receive the latest data directly.

 Using the SQLite database

SQLite is an excellent little SQL compatible database that is embedded into the core Android system. This allows you to leverage a complete SQL database without having to ship one with your application (which will raise your code size dramatically). This makes it the most common tool for storing structured data on Android, but it's by no means the only option.

For many applications that require real-time synchronization with a server, people use Firebase Database. Firebase is a Google cloud product that includes a powerful document database that synchronizes its data in real time, all the way to the client. This means that an event is triggered on a client when any of its data is modified from outside, making it suitable for chat and messaging applications. However, tools such as Firebase require a large additional client-side API, tie your application to a service, and are very difficult to port your application away for later. Applications built with them may also violate privacy laws in some countries if the application were to store private information without first encrypting it on the client side. In these cases, you'll either need to set up your own synchronization system, or use a database with filtered real-time synchronization, such as the CouchDB project from Apache.

Most typically though, SQLite serves as an excellent choice for storing structured data on the client. It's flexible, very powerful, and very fast, and because it's baked into the Android platform, it doesn't add any direct size overhead to your application. Most Java developers will be used to JDBC when accessing an SQL database, and while Android does have JDBC support, the android.database and android.database.sqlite packages are the preferred methods of accessing the database and are much faster. Android also offers an additional layer of abstraction above the direct use of SQLite, which we'll explore next.

For more information about SQLite and how to get the most out of it, it's worth browsing the project's excellent documentation at https://sqlite.org/.

 Introducing Room

Direct use of SQLite requires a huge amount of code dedicated to converting the SQLite structured data into Java objects, and then preparing SQL statements to store those objects back into the database. Mapping an SQL record to a Java object normally takes the following form:

public Attachment selectById(final long id) {
 final Cursor cursor = db.query(
 "attachments",
 new String[]{"file", "type"},
 "_id=?",
 new String[]{Long.toString(id)},
 null, null, null);

 try {
 if (cursor.moveToFirst()) {
 return new Attachment(
 new File(cursor.getString(0)),
 Attachment.Type.valueOf(cursor.getString(1))
);
 }
 } finally {
 cursor.close();
 }
 return null;
}

As you can immediately see, there's a lot of code there that you will need to repeat again and again for every one of your data-model objects.

Fortunately, Google has produced a solution to this boilerplate as part of their Architecture Components, and it's called Room. Room is an API and code generator that allows you to define your object model and the SQL queries you want to execute while it writes the boilerplate Data Access Objects (DAO) classes for you. Room is an excellent choice because all the heavy lifting is done at compile time by generating source code for your application. This also means that it requires much less additional code to be included in your application, which helps keep your application smaller on the end user's device.

Room isn't a traditional Object/Relational (O/R) mapping layer, but rather allows you to define the SELECT statements, and copies whatever data they return to an object model that you specify. As a result, it doesn't directly handle inter-object relationships (such as ClaimItem containing an array of Attachment objects). While this may seem like a problem, it's a very important feature! Relationships like these are common in object models, but are expensive to implement in an Object/Relational layer, since every call to ClaimItem.getAttachments would require another database query, and on Android, those calls are likely to leak onto the main thread.

Instead, Room is designed so that you can create object models that are suitable for data-binding, and build SQL queries that can return them directly. This pushes the complexity back into the database, and helps encourage a single query to display programming behavior.

 Adding Room to the project

Room is part of the Architecture Components, and is not imported into projects by default. Instead, you need to add them as a dependency to your project by following these simple steps:

	In the Android panel, open the Gradle Scripts subsection and then open the build.gradle for the app module:

	At the bottom of the file, you'll find a dependencies block; at the bottom of the block, add the following two lines of code:

implementation 'android.arch.persistence.room:runtime:+'
annotationProcessor 'android.arch.persistence.room:compiler:+'

	Use the Sync Now link at the top of the editor to synchronize your project with its Gradle file. Android Studio will automatically download the new Room dependencies for your project.

	Your project now has the Room API and its code generators integrated, and you can start creating a persistent object model and database schema.

 Creating an Entity model

Room, much like an SQL database, is optionally asymmetric; what you write to it might not be in the exact same format as what you read from it. When you write to a Room database, you save Entity objects, but when you read, you can read virtually any Java object. This allows you to define object models that best suit your user interface, and load them with JOIN queries rather than resorting to one or more additional queries for each object you wish to present to the user. While JOIN queries might be overly expensive on a server, on a mobile device they are often significantly faster than a multiquery alternative. As such, when defining an entity model, it's worth considering what you will need to save in your database as well as what specific fields you will need on your user interface. The data you need to write to storage becomes your entity, while the fields on your user interface become fields in Java objects that can be queried through Room.

An Entity class in Room is annotated with @Entity, and is expected to follow certain rules:

	Fields must either be public or have Java Beans style getters and setters

	At least one field must be marked as a primary key using the @PrimaryKey annotation

	Room expects a single public constructor, so you may need to mark the other constructors with an @Ignore annotation in order for your code to compile. It's often best to leave only a default (no arguments) constructor for Room to use

In order to start storing claim data using Room, we will need to modify the existing ClaimItem and Attachment classes so that they are valid entities. This will involve making them usable as relational structures; ClaimItem and Attachment will both need an ID primary key, and attachment will need a foreign key identifier for the ClaimItem that it belongs to. Perform the following steps to modify these two data model classes so that they can be stored as entities using Room:

	Start by opening the ClaimItem source file in Android Studio.

	Annotate the class declaration with @Entity:

@Entity
public class ClaimItem implements Parcelable {

	Add an ID field, annotate it with @PrimaryKey, and tell Room that you want it generated by the database rather than having to create IDs manually (you can also add getters and setters for this field if you like):

@PrimaryKey(autoGenerate = true)
public long id;

Leaving the fields public means that Room will directly access the fields in preference to using getters and setters. Field access can be much faster than method calls to the getters and setters.

	Tell Room to ignore the List of Attachment. Room is unable to directly persist these sorts of relationships, and your application will fail to compile when it tries to generate mapping code for this field:

@Ignore List<Attachment> attachments = new ArrayList<>();

	Modify the Parcelable implementation of ClaimItem to save and restore the ID field:

protected ClaimItem(final Parcel in) {
 id = in.readLong();
 description = in.readString();
 amount = in.readDouble();
 // …
}

public void writeToParcel(final Parcel dest, final int flags) {
 dest.writeLong(id);
 dest.writeString(description);
 dest.writeDouble(amount);
 dest.writeLong(timestamp != null ? timestamp.getTime() : -1);
 dest.writeInt(category != null ? category.ordinal() : -1);
 dest.writeTypedList(attachments);
}

	Open the Attachment source file.

	Add the Entity annotation to the Attachment class; this time you'll need to include an @Index annotation as well to tell Room to generate a database index on a new field you'll be adding--claimItemId. The index will ensure that queries to fetch the attachments for a specific ClaimItem record are nice and fast:

@Entity(indices = @Index("claimItemId"))
public class Attachment implements Parcelable {

	Add the database primary key field for the Attachment, and the new claimItemId field that will be used to indicate which ClaimItem the Attachment belongs to when it's stored in the database:

@PrimaryKey(autoGenerate = true)
public long id;
public long claimItemId;

	Ensure that there is a public default constructor, and that any other public constructors are marked with @Ignore:

public Attachment() {}
@Ignore public Attachment(final File file, final Type type) {
 this.file = file;
 this.type = type;
}

	Update the Attachment classes Parcelable implementation to include the new fields:

protected Attachment(final Parcel in) {
 id = in.readLong();
 claimItemId = in.readLong();
 file = new File(in.readString());
 type = Type.values()[in.readInt()];
}

public void writeToParcel(final Parcel dest, final int flags) {
 dest.writeLong(id);
 dest.writeLong(claimItemId);
 dest.writeString(file.getAbsolutePath());
 dest.writeInt(type.ordinal());
}

As you can see, modifying an existing object model to be stored in a Room database is very simple. Room will now be able to generate code to load and save these objects from tables in its database; it'll also be able to generate the database schema from these classes.

 Creating the Data Access Layer

Now that you have something to write into the database, you need some way to actually write it, and a way to retrieve it again. The most common pattern is to have a dedicated class to deal with this for each class--a Data Access Object class, also known as a DAO. In Room, however, all you have to do is declare what they should look like using an interface; Room will write the implementation code for you. You define your queries using the @Query annotation on a method, like this:

@Query(“SELECT * FROM users WHERE _id = :id”)
public User selectById(long id);

This has a huge advantage over traditional O/R mapping layers in that you can still write any form of SQL query, and let Room figure out how to convert it into the object model you ask for. If it can't write the code, you get an error at compile time, rather than potentially having your app crash for your users. This also has an additional advantage: Room can bind your SQL queries to non-entity classes, allowing you to leverage the full power of your SQLite database without having to do all the column/field/object mapping by hand. For example, you can define a special DisplayContact class for displaying the summary data for a contact in a list, and then query them directly using a join:

@Query(“SELECT contacts.firstname, contacts.lastname, emails.address FROM contacts, emails WHERE emails._id = contacts.primaryEmailId ORDER BY contacts.lastname”)
public List<DisplayContact> selectDisplayContacts()

The preceding query doesn't return an object that can be directly saved in the database; it's the result of looking at two different tables and collecting fields from both of them. Room copes with this just fine though, and doesn't need any sort of annotations on the classes to be returned.

 The LiveData class

Room does much more than binding your database structures to objects and back again; it offers you the ability to write reactive programs much more simply. As already mentioned, Room is one of the Android Architecture Components libraries. Architecture Components collectively provide generic infrastructure that can be used to more rapidly build reactive applications, while also maintaining excellent performance and safety. One of the most important classes in the architecture components is LiveData. LiveData is a generic encapsulation of data that is subject to external changes. LiveData can be observed, much like the classes used for data-bound layouts. The primary difference is that LiveData will always trigger a first event on any new observer, providing it with the current data state.

Room has built-in support for LiveData, meaning that you can return any object wrapped in a LiveData in order to receive any changes that occur to that object. At the time of writing, Room implements this by watching each of the tables for changes. This means you may receive updates to objects, even though they haven't actually changed. This should not be a problem for most applications, because the queries still run on a worker thread and only the notification happens on the main thread. This makes LiveData the preferred method for querying the database in most situations, because it takes care of running and processing the query on a worker, freeing your main thread to handle events and keep your application running smoothly.

LiveData is not part of Room directly, so you'll need to follow these steps to add LiveData and the other Architecture Components to your project:

	In the Android panel, open the Gradle Scripts subsection and then open the build.gradle for the app module:

	At the bottom of the file, you'll find a dependencies block; at the bottom of the block, add the following two lines of code:

implementation 'android.arch.lifecycle:runtime:+'
implementation 'android.arch.lifecycle:extensions:+'
annotationProcessor 'android.arch.lifecycle:compiler:+'

	Use the Sync Now link at the top of the editor to synchronize your project with it's Gradle file, and download the new dependencies.

 Implementing Data Access Objects in Room

You'll need to implement two different Data Access Object classes for the Claim application, one for each Entity object. Technically speaking, Room doesn't enforce one DAO per entity, and you can have a single DAO interface for your entire application or have one per screen. However, the most common pattern is to have one DAO class per entity type, even when some of its query methods return statistics or other views on the data. When working with more complex datasets, it's worth considering introducing additional DAO interfaces to cover queries that are either screen-specific or where the data overlaps several entities.

Here's how to implement the Data Access Object interfaces for the Claim example application, step by step:

	Right-click on the model package in Android Studio and select New | Java Class.

	Name the new class db.ClaimItemDao.

	Change the Kind field to Interface. Room DAO types are normally interfaces, although this isn't a strict requirement, and they can also be abstract classes.

	Click OK to create the new package and class.

	Annotate the interface with @Dao to mark it as a data-access-object:

@Dao
public interface ClaimItemDao {

	Declare a query method to fetch all the ClaimItem objects in order of the most recent first; ensure that it returns a LiveData so that the changes are reflected:

@Query("SELECT * FROM claimitem ORDER BY timestamp DESC")
LiveData<List<ClaimItem>> selectAll();

	Next, you need methods to insert, update, and delete the ClaimItem objects in the database; these methods always take only the Entity object and instead of a query, are annotated with their operation. In the case of the insert method, it's useful to have it return the generated ID of the new record:

@Insert long insert(ClaimItem item);
@Update void update(ClaimItem item);
@Delete void delete(ClaimItem item);

	Now, right-click on the db package again, and select New | Java Class.

	Name the new class AttachmentDao, and make Kind to Interface.

	Click OK to create the AttachmentDao class.

	Declare the new interface as a Dao:

@Dao
public interface AttachmentDao {

	Write a query method to fetch the Attachment objects for a single ClaimItem. This is where the index you declared on Attachment becomes important:

@Query("SELECT * FROM attachment WHERE claimItemId = :claimItemId")
LiveData<List<Attachment>> selectForClaimItemId(final long claimItemId);

	Declare the insert, update, and delete methods for the Attachment classes, just as you did with the ClaimItem methods:

@Insert long insert(Attachment attachment);
@Update void update(Attachment attachment);
@Delete void delete(Attachment attachment);

 Creating a database

When writing an application using Room, you'll need to define at least one Database class. Each of these corresponds to a specific database schema--a collection of Entity classes and the various ways in which they can be saved, and loaded from storage. It may also serve as a convenient place to write other database-related logic for your application. For example, the ClaimItem and Attachment classes need to save and load various types that Room will not understand; for example, Date, File, the Category enum, and Attachment Type enum. Each of these classes will need a TypeConverter method that can be used to convert it to and from primitives that are understood by Room.

Room Database classes are abstract. This is because they are extended by the Room annotation processor to produce the implementation you'll use at runtime. This allows you to define any number of concrete method implementations in a database class that might be useful for your application. Follow these steps to declare your new Room enabled database class:

	Right-click on the db package in Android Studio, and select New | Java Class.

	Name the new class ClaimDatabase, and change its Superclass to RoomDatabase.

	Select the Abstract modifier.

	Click OK to create the new class.

	Annotate the class to indicate it as a database, and declare that it will store the ClaimItem and Attachment entities. You'll also need to specify the schema version, which will be 1 for the first version:

@Database(
 entities = {ClaimItem.class, Attachment.class},
 version = 1,
 exportSchema = false)
public abstract class ClaimDatabase extends RoomDatabase {

	As mentioned earlier, you'll need to declare TypeConverter methods for all the non-primitive fields that ClaimItem and Attachment use. You need to tell the database where these methods can be found, and in this case, it'll be the ClaimDatabase class itself:

@Database(
 entities = {ClaimItem.class, Attachment.class},
 version = 1,
 exportSchema = false)
@TypeConverters(ClaimDatabase.class)
public abstract class ClaimDatabase extends RoomDatabase {

	Now, define abstract methods to retrieve the Data Access Object implementations you created earlier; these methods will be implemented by the subclass generated by Room:

public abstract ClaimItemDao claimItemDao();
public abstract AttachmentDao attachmentDao();

	Now, you'll need to tell Room how to convert the various fields to and from the primitives supported by the database. Start by implementing methods to convert Date objects into a timestamp long that can be stored in the database (SQLite has no DATE or DATETIME types):

@TypeConverter
public static Long fromDate(final Date date) {
 return date == null ? null : date.getTime();
}

@TypeConverter
public static Date toDate(final Long value) {
 return value == null ? null : new Date(value);
}

	Now continue with this pattern for the other types that the ClaimItem and Attachment need:

@TypeConverter
public static String fromFile(final File value) {
 return value == null ? null : value.getAbsolutePath();
}

@TypeConverter
public static File toFile(final String path) {
 return path == null ? null : new File(path);
}

@TypeConverter
public static String fromCategory(final Category value) {
 return value == null ? null : value.name();
}

@TypeConverter
public static Category toCategory(final String name) {
 return name == null ? null : Category.valueOf(name);
}

@TypeConverter
public static String fromAttachmentType(final Attachment.Type value) {
 return value == null ? null : value.name();
}

@TypeConverter
public static Attachment.Type toAttachmentType(final String name) {
 return name == null ? null : Attachment.Type.valueOf(name);
}

The TypeConverter methods will be found and used by the Room annotation processor. They are invoked directly from the generated code, based on the types used in the Java classes being stored or retrieved. This means that they have almost no additional runtime overhead.

 Accessing your Room database

So far, you've built all the components for a Room managed SQLite database, but you still don't actually have access to it. You can't instantiate the ClaimDatabase class directly because it's abstract, and you have the same problem with the DAO interfaces, so what's the best way to access the database? Room provides you with an entry class that will correctly instantiate the generated ClaimDatabase implementation, but that isn't the whole story; your entire application relies on this database, and it should be set up when the application starts and should be accessible by the entire application.

You can use a singleton ClaimDatabase object, but then where will the SQLite database file be placed? In order for it to be stored in your application's private space, you need a Context object. Enter the Application class, which when used, holds the first onCreate method that will be invoked in your application. Follow these quick steps to build a simple Application class that will instantiate and hold a reference to your ClaimDatabase:

	Right-click on your root package (that is, com.packtpub.claim) and select New | Java Class.

	Name the new class ClaimApplication.

	Make its Superclass android.app.Application.

	Click OK to create the application class.

	Declare a static ClaimDatabase to be used by the application:

private static ClaimDatabase DATABASE;

	Override the onCreate method and use it to instantiate the ClaimDatabase object using Room; this will happen before anything else in your application:

@Override
public void onCreate() {
 super.onCreate();
 DATABASE = Room.databaseBuilder(
 this, /* Context */
 ClaimDatabase.class, /* Abstract Database Class */
 "Claims" /* Filename */
).build();
}

	Provide a public static method for other parts of the application to use, to access the singleton database instance:

public static ClaimDatabase getClaimDatabase() {
 return DATABASE;
}

	You need to register the ClaimApplication with the Android platform so that it knows to initialize it when the application is started. You do this by opening the manifests directory and opening the AndroidManifest.xml file.

	In the <application> element, you'll need to add an android:name attribute to tell the Android platform the name of the class that represents the root of your application:

<application
 android:name=".ClaimApplication"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">

Now, whenever any part of your application needs the database, it can simply invoke ClaimApplication.getClaimDatabase() to retrieve a global instance, and because it's no longer tied to a specific context instance, it can be invoked from anywhere (even a presenter).

 Test your knowledge

	The Room API for Android provides which of the following?

	A complete database solution

	A lightweight API on top of SQLite

	An object storage engine

	Returning LiveData from a Room DAO requires that you do which of these?

	You observe it for changes in order to retrieve data

	You run the query on the main thread

	You call the query method again when notified by the LiveData object

	Database queries that don't return LiveData should do what?

	Be avoided

	Be run on a worker thread

	Return Cursor objects

	Writing an update method for Room requires which of the listed?

	An @Query(“UPDATE method on a DAO interface

	An @Update method taking an Entity object on an interface

	Will be added to your Entity implementations

 Summary

The way you store and retrieve structured data in an Android application has a direct knock-on-effect on how your user will experience your application. When you choose to use a system like Room, CouchDB, or Firebase, where data changes are pushed through the application as updates, the user will naturally have a reactive application. What's more, the application will generally be responsive because these patterns naturally keep slow running queries and updates off the application main thread.

Room provides an excellent addition to the standard Android data storage ecosystem, not only dramatically reducing the need to write boilerplate data access code, but also providing a well-defined and excellently-written interface to run reactive queries for data. Of course, not all of your application needs to be reactive; once an object is delivered via a LiveData object, it's just an object and can be used as an in-memory snapshot or even edited if it's mutable.

When using Room, it's important to remember that you should avoid complex relationships between objects, because Room won't be able to save and resolve these for you. They're normally a sign that you might need to rethink how you are structuring your data; complex relationships will dramatically slow down the queries and therefore any user interface that depends on them. Typically, these relationships should be handled by creating presentation-specific object models, and then using a join in your query to fetch all the required data. For more information about SQL and how to use it in SQLite, take a look at the SQLite documentation and tutorials on the SQLite project's website, at https://sqlite.org/.

In the next chapter, we'll look at building overview screens. These are extremely common start screens in applications; they often form the central screen of an application, somewhere that the user is brought back to again and again during navigation. Android has a massively versatile widget for these screens--the RecyclerView. Also, we'll explore how to use the RecyclerView, by coupling it to LiveData and using Data Binding to keep it up to date with the rest of the application.

 Creating Overview Screens

Overview screens, or dashboard screens, are layouts that allow the user to get a quick look at their data within an application. As such, they are also screens that the user will return to again and again. Most often, they are positioned as the first screen the user will normally see when they open the application, like the Inbox in an email application, or the list of files in your Google Drive. In apps, navigation is usually goal-oriented; the user starts with an overview, and then navigates to perform a specific action. Once they are finished with their action (for example, writing and sending an email), they are redirected to the overview screen.

Overview screens can be complex systems to build as they should be reactive, and they will often depend on large amounts of application data. As it's the screen your users will see the most often in your app, an overview screen needs special attention in the design process. It's important to present the user with the most important data, without overwhelming them. Placing too much information on the screen makes it harder for your user to find the information that they want.

In this chapter, we'll look at how to design Overview screens. We'll take a detailed look at the following:

	The RecyclerView class, which is the most commonly used component in overview lists

	How data-binding can make RecyclerView much easier to use

	Techniques that can be used when designing an Overview screen

	How to get data from a Room database into a RecyclerView

 Designing an Overview screen

Overview screens and dashboard screens are not only the first thing your users will typically see, but they're also the most common point of contact with your user. They need to be functional, beautiful, and also very fast. An application that takes too long to load its first screen will only frustrate its users. If your application is frustrating to users, they will avoid using it. As such, it's very important to consider what information your user will need, and what are the most important actions they will take from the overview screen.

The Material Design guidelines have excellent recommendations to help you decide on these aspects of your application, which in turn will help you produce better applications. Remember that while it's fun (and important) to get creative with your designs, it's also very important to stick to the rules. Common patterns in design help your users understand what you're asking them to do, and how to use your application. This understanding between you and your users is why Material Design is a Design Language, and not just a look and feel. It's a language that you can speak to your users, and they can easily understand. For example, when you have a floating action button in the bottom-right of a screen, the user knows that it will generally start or create something new, such as create an empty document, or take a new photograph (depending on the application).

Overview screens need to allow a user to reach every part of your application, but unlike a website or desktop application, this might have some intermediary steps (although as few as possible). This means that while you might present them with data, it should never be for viewing only. Every element placed on an overview screen must earn its right to be there. They should all fulfill two roles: give the user information, and allow them to take some action with that information (even if only to find out more). One role is fulfilled by simply being on the screen, the other is fulfilled by allowing the user to tap on the widget. You can, of course, add more: swipe to dismiss, scroll, and so on. In these cases, the interactions must be consistent with interactions in Material Design (that is, swipe to dismiss should always be on list items, not on a button).

An example flow through an application should look like the following diagram. You'll note that all the processes eventually return the user to the overview screen. This is what is meant to be deep navigation; it's a goal-oriented structure designed to guide the user toward completing what they are trying to accomplish:

 Elements of an Overview screen

Overview screens have certain common elements that let the user know what it is they're looking at, and how they're expected to use the screen. It's helpful to know how people look at a screen when they see it for the first time. Studies by groups such as Neilson show that most western people follow a sort of F shaped pattern when looking at the screen for the first time. Starting in the top-left corner, their eyes track right and downwards, as shown in this diagram:

This means that when designing an overview screen, the most important information should be at the top of the screen, with the second most important information to its right, and as you work down the screen, the information becomes less important. The preceding diagram uses a graph at the top of its screen; this is also an important element: favor using graphics and indicators over raw numbers where it's applicable. A user can get a much quicker overview from a graph than they can from a table of numbers, even though the latter is more powerful. An overview screen should be something the user can use in a few seconds; it's not a place where they will want to spend time understanding the details. As such, an overview screen should not need to be scrolled in order to be useful. It's not as important to avoid scrolling an overview screen as it is on a form/input screen, but any scrolling should only be applicable to access detailed information.

It's common for an overview screen to start with a graph, or some summary of the user's data, and then have a list of the most applicable details. Using the travel claim's app as an example, the overview should have the overview fragment you developed at the top of the screen, and this should be followed by a list of their travel claims with the most recent at the top:

The overview fragment allows them to see how much they have spent, while the list shows them instantly what they've been spending the money on. Another possibility would be a graph showing them the breakdown of how much they have spent in each category. However, this will typically be less useful on a day-to-day basis and more useful at the end of a business trip in the form of a report.

One of the most common elements on an overview screen is a list of some sort. Even when the overview doesn't include graphs and info-graphics, a list of the user's most current / most useful items is a very common structure, and Android provides the RecylcerView as the perfect system to build these sorts of lists. Unlike ViewPager or ListView, a RecyclerView is a generic system for displaying large amounts of scrolling data. Its child widgets don't need to be laid out in a strict way; they can be lists, they can be a grid, staggered unevenly, or anything you care to think of with a custom layout manager. However, they all share a common collection of structures--every RecyclerView needs the following components:

	An Adapter to provide the child View objects, and bind them to the data model

	ViewHolder classes that wrap the child View objects

	A LayoutManager to determine how to place the child View objects relative to each other

Let's explore how to build and use the components of a RecyclerView in some more detail, and how to build the overview screen for the travel claim app.

 Creating layouts for ViewHolders

A RecyclerView does just what its name suggests--it recycles or reuses its children to present different data to the user. This means that while it appears to have a long list of child-widgets (such as cards or images), it actually has the ones that the user can actually see. When a widget is scrolled off the screen, the RecyclerView changes its data, and then scrolls it back into view. The RecyclerView doesn't directly bind the data to the child views; however, it instead goes through a ViewHolder. The job of the ViewHolder is to help speed up the data binding process. Think of the travel claim app again; if we want to display each claim item in a RecyclerView, each one will look something like the following:

Each of the preceding items will require a different Android widget, and every time you want to populate them, they need to be looked up and bound to their new data. A ViewHolder implementation is a convenient place to look up, hold, and bind data for a specific data model type and display component. Let's go ahead and build a layout resource for the preceding diagram, and then we can create a ViewHolder to use it with a RecyclerView:

	In Android Studio, under the application resources (res) directory, right-click on the layout directory and select New| Layout resource file.

	Name the new layout resource card_claim_item.

	Change the Root element to CardView:

	Click OK to create the new layout file.

	In the Palette, open the Layouts section and drag a ConstraintLayout into the Design canvas.

	In the Palette, open the Images section and drag an ImageView into the Design canvas.

	Select the ic_other_black icon from the drawable resource selector that automatically opens.

	Use the constraint editor on the right to add constraints to the top, left, and bottom of the new ImageView, and set all of them to 8, as shown:

	Change the ID of the ImageView to item_category.

	In the Palette, open the Text section and drag a new TextView into the Design canvas to the right of the category icon ImageView.

	Use the constraint editor to add constraints of 8dp to the top, right, and bottom of the new TextView so that it centers and places itself to the right of the Design canvas (directly opposite the category icon ImageView).

	Change the ID of the TextView to item_amount.

	Remove the contents of the text attribute, and change the text attribute below it (the one with the spanner icon) to 250. This value is only used by the Design canvas, and allows you to preview what the layout will look like with set values (even though the real values are populated at runtime):

	Change the textAppearance attribute to @style/TextAppearance.AppCompat.Medium, which will appear in the drop-down as AppCompat.Medium.

	From the Palette, drag another TextView into the design view, roughly between the icon ImageView and the amount TextView.

	Drag a constraint from the left of the TextView to the right handle of the ImageView:

	Drag another constraint from the right of the new TextView to the left of the amount TextView:

	Use the constraint editor to add a constraint to the top of the new TextView.

	Set the top constraint to 8:

	Change the layout_width attribute of the new TextView to match_constraint using the Attributes panel (just below the constraint editor).

	Change the ID of the new TextView to item_description.

	Clear the text attribute, and set the Design text attribute to Airport Shuttle so that you still have something visible in the Design canvas.

	Change the textAppearance attribute to @style/TextAppearance.AppCompat.Medium, which will appear in the drop-down as AppCompat.Medium.

	From the Palette, drag a third TextView into the Design canvas and drop it between the category icon ImageView and the amount TextView.

	Just like the description TextView, constrain the new TextView to the right of the category icon and to the left of the amount TextView.

	Using the constraint editor, add a constraint at the bottom of the new TextView, and set its bottom margin to 8:

	Set the ID of the new TextView to item_timestamp.

	Change the layout_width of the new TextView to match_constraint.

	Drag a constraint from the top of the new TextView to the bottom of the description TextView; this will ensure that they have at least 8dp between them.

	Clear the text attribute, and set the Design tool text attribute to a date such as 27-December-2017.

	In the Component Tree panel, select the CardView at the root of your layout.

	Switch over to the View all attributes panel.

	Open the Layout_Margin group.

	Set the top margin to @dimen/grid_spacer1.

	Change the layout_height of the CardView to wrap_content; the layout will roll up looking something like this:

 Creating a simple ViewHolder class

Creating a ViewHolder is very simple, and it's a good place to encapsulate any display specific logic for rendering the items for a RecyclerView. For the preceding layout, follow these steps to build a ViewHolder:

	Right-click on the ui package in Android Studio, and select New| Java Class.

	Name the new class ClaimItemViewHolder.

	Set the new classes Superclass to android.support.v7.widget.RecyclerView.ViewHolder.

	Click OK to create the new class.

	The main job of a ViewHolder is to speed up the binding between the data model and the user interface widgets and for that to happen, the ViewHolder needs references to each of the View objects it will populate:

private final ImageView categoryIcon;
private final TextView description;
private final TextView amount;
private final TextView timestamp;

	This ViewHolder will also need a way to format the timestamp, and the best way to do that is with a java.text.DateFormat, which is also something to keep a reference to as they're quite expensive to construct:

private final DateFormat dateFormat;

	A ViewHolder is usually constructed with the View object it's expected to bind to. You can inflate the View object within the ViewHolder constructor, but to keep things flexible and avoid argument clutter on the constructor, this ViewHolder implementation will just take the View object it will wrap:

public ClaimItemViewHolder(final View claimItemCard) {
 super(claimItemCard);
 this.categoryIcon = claimItemCard.findViewById(R.id.item_category);
 this.description = claimItemCard.findViewById(R.id.item_description);
 this.amount = claimItemCard.findViewById(R.id.item_amount);
 this.timestamp = claimItemCard.findViewById(R.id.item_timestamp);

	You also need to create the DateFormat object and, for this, you want the long date format in the user's current locale:

this.dateFormat = DateFormat.getDateInstance(DateFormat.LONG);

	This class will need a utility method to figure out which icon should be rendered for a Category that will involve manually referencing the application Resources to retrieve the black versions of the category icons:

public Drawable getCategoryIcon(final Category category) {
 final Resources resources = itemView.getResources();
 switch (category) {
 case ACCOMMODATION:
 return resources.getDrawable(R.drawable.ic_hotel_black);
 case FOOD:
 return resources.getDrawable(R.drawable.ic_food_black);
 case TRANSPORT:
 return resources.getDrawable(R.drawable.ic_transport_black);
 case ENTERTAINMENT:
 return resources.getDrawable(R.drawable.ic_entertainment_black);
 case BUSINESS:
 return resources.getDrawable(R.drawable.ic_business_black);
 case OTHER:
 default:
 return resources.getDrawable(R.drawable.ic_other_black);
 }
}

	You'll also need a utility method to format the amounts so that integer amounts don't have any decimal component, while non-integers only display two decimal places:

public String formatAmount(final double amount) {
 return amount == 0
 ? ""
 : amount == (int) amount
 ? Integer.toString((int) amount)
 : String.format("%.2f", amount);
}

	Finally, you need a way for the adapter to populate all the View elements with data, and because this class is specific to the ClaimItem data objects, you can make this simple by having a setter-like method:

public void setClaimItem(final ClaimItem item) {
 categoryIcon.setImageDrawable(getCategoryIcon(item.getCategory()));
 description.setText(item.getDescription());
 amount.setText(formatAmount(item.getAmount()));
 timestamp.setText(dateFormat.format(item.getTimestamp()));
}

 Creating a ViewHolder with data binding

As you can see from building a traditional ViewHolder implementation, there is quite a lot of work and boilerplate code required just to put the data from a single item onto the screen in a layout. Further, it's actually quite expensive in its own right, because every one of the ViewHolder instances creates and holds an instance of the DateFormatter where they can easily be shared between all the ClaimItemViewHolder instances for a RecyclerView.

In cases like this, data binding can make a huge difference. Using a few tricks, you can actually create a completely generic ViewHolder implementation that will work for any data object in your application (assuming that you can bind it to a layout file). First, you'll need to create a nice generic ItemPresenter, and then modify the layout, and then you're ready to create a generic data-binding ViewHolder implementation. Follow these instructions, and you'll only ever need one ViewHolder implementation:

	Right-click on the presenters package in Android Studio, and select New| Java Class.

	Name the class ItemPresenter.

	Click OK to create the new class.

	The ItemPresenter will need a Context to reference application Resources and files:

private final Context context;

public ItemPresenter(final Context context) {
 this.context = context;
}

	Create a formatAmount utility method the same way as in the simple ViewHolder class:

public String formatAmount(final double amount) {
 return amount == 0
 ? ""
 : amount == (int) amount
 ? Integer.toString((int) amount)
 : String.format("%.2f", amount);
}

	Write a getCategoryIcon utility method into the new ItemPresenter (this is almost exactly the same as the one in the ClaimItemViewHolder, except in how it accesses the Resources object):

public Drawable getCategoryIcon(final Category category) {
 final Resources resources = context.getResources();
 switch (category) {
 case ACCOMMODATION:
 return resources.getDrawable(R.drawable.ic_hotel_black);
 case FOOD:
 return resources.getDrawable(R.drawable.ic_food_black);
 case TRANSPORT:
 return resources.getDrawable(R.drawable.ic_transport_black);
 case ENTERTAINMENT:
 return resources.getDrawable(R.drawable.ic_entertainment_black);
 case BUSINESS:
 return resources.getDrawable(R.drawable.ic_business_black);
 case OTHER:
 default:
 return resources.getDrawable(R.drawable.ic_other_black);
 }
}

	Write a formatDate utility method that will convert the Date objects into text suitable for displaying on the screen. The conversion is done by a DateFormat object, which is only created the first time formatDate is called (it is lazy-initialized). The lazy-initialization is important, as this class is expected to be generic across all possible item presenters in the application and so, there will be cases where it's not used:

private DateFormat dateFormat;
public String formatDate(final Date date) {
 if (dateFormat == null) {
 dateFormat = DateFormat.getDateInstance(DateFormat.LONG);
 }

 return dateFormat.format(date);
}

	Now, open the card_claim_item.xml layout resource.

	Change to the Text view in the editor.

	Create a new layout root element above the CardView, and ensure that you remove the namespace declarations from the CardView and close the layout element at the end of the file:

<layout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools">

	Above the CardView, declare a data block with two variables. It's important to keep these names generic. One will be an instance of ItemPresenter, and the other will be the ClaimItem to be bound by the layout:

<data>
 <variable name="presenter" type="com.packtpub.claim.ui.presenters.ItemPresenter" />
 <variable name="item" type="com.packtpub.claim.model.ClaimItem" />
</data>

	Find the ImageView declaration for item_category and add a new data-bound attribute to use the ItemPresenter to find the correct icon:

<ImageView
 android:id="@+id/category_icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:imageDrawable="@{presenter.getCategoryIcon(item.category)}"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

	Find the amount TextView declaration and data bind its text attribute, using the presenter to format the amount from the ClaimItem:

<TextView
 android:id="@+id/item_amount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginTop="8dp"
 android:text="@{presenter.formatAmount(item.amount)}"
 android:textAppearance="@style/TextAppearance.AppCompat.Medium"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:text="150" />

	Data bind the description from the ClaimItem to the item_description TextView:

<TextView
 android:id="@+id/item_description"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="16dp"
 android:layout_marginTop="8dp"
 android:text="@{item.description}"
 android:textAppearance="@style/TextAppearance.AppCompat.Medium"
 app:layout_constraintEnd_toStartOf="@+id/item_amount"
 app:layout_constraintStart_toEndOf="@+id/category_icon"
 app:layout_constraintTop_toTopOf="parent"
 tools:text="Airport Shuttle" />

	Use the presenter to data bind the timestamp from the ClaimItem to the timestamp TextView:

<TextView
 android:id="@+id/item_timestamp"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:text="@{presenter.formatDate(item.timestamp)}"
 android:textAppearance="@style/TextAppearance.AppCompat.Small"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toStartOf="@+id/item_amount"
 app:layout_constraintStart_toStartOf="@+id/item_description"
 app:layout_constraintTop_toBottomOf="@+id/item_description"
 tools:text="16-December-2017" />

	Now, it's time to start on a generic ViewHolder class that can be reused with any data-bound layout. Right-click on the ui package and select New | Java Class.

	Name the new class DataBoundViewHolder.

	Change the Superclass to android.support.v7.widget.RecyclerView.ViewHolder.

	Click OK to create the new class.

	Add a generic declaration to the class so that you have generic types for the Presenter, and Item (P, I) variables:

public class DataBoundViewHolder<P, I> extends RecyclerView.ViewHolder {

	Every Binding class generated by the data binding system extends ViewDataBinding; the DataBoundViewHolder will actually wrap one of these so that any data-bound layout can be wrapped:

private final ViewDataBinding binding;

	Now, write a constructor that takes a ViewDataBinding object and a Presenter object for the data-bound layout to use. As ViewDataBinding is a generic abstract class, we can't directly call the setPresenter method that will be generated by the data binding system in the CardClaimItemBinding class. Instead, we can use a special generic data binding method that allows you to assign unknown variables based on a generated ID number; this is a bit like using Java reflection, except that the actual implementation is generated at compile time and is very fast:

public DataBoundViewHolder(final ViewDataBinding binding, final P presenter) {
 super(binding.getRoot());
 this.binding = binding;
 this.binding.setVariable(BR.presenter, presenter);
}

If you are presented with a choice of multiple BR classes to import, use the one for your own project (com.packtpub.claim). Much like the normal Android resources (R), the data binding system generates a lookup class for each project.

	Then, write in two setter methods so that the Presenter and item variables can be changed uniformly from the outside:

public void setItem(final I item) {
 binding.setVariable(BR.item, item);
}

public void setPresenter(final P presenter) {
 binding.setVariable(BR.presenter, presenter);
}

The setVariable method is generated at compile time, just like the getter and setter methods as a series of if statements. This makes it a little slower than the actual setter methods, but much faster than using reflection to invoke the setter methods. It's not the sort of area that should need optimization, especially as there are only two possible variables for these data-bound layouts. If your layout needs more than these two variables in a RecyclerView, you should consider composing or inheriting the logic and data required into more specific classes.

The generated setVariable implementation of the card_claim_item layout defined in this section will look something like this:

public boolean setVariable(int variableId, @Nullable Object variable) {
 boolean variableSet = true;
 if (BR.item == variableId) {
 setItem((com.packtpub.claim.model.ClaimItem) variable);
 }
 else if (BR.presenter == variableId) {
 setPresenter((ItemPresenter) variable);
 }
 else {
 variableSet = false;
 }
 return variableSet;
}

As you can see, this code will execute very quickly and won't throw exceptions if an unknown variable ID is given. However, it will throw a ClassCastException if you tried to pass in the wrong type for a data-bound variable.

 Creating a RecyclerView adapter

In order to get data into a RecyclerView, you need an Adapter class, not unlike the PagerAdapter you wrote to display the attachment previews for the CaptureClaimActivity. However, RecyclerView does a lot more of the heavy lifting than ViewPager and as a result, what you can and can't do inside the adapter is far more restricted than with PagerAdapter. Also, unlike a PagerAdapter, a RecylcerView adapter has two actions that are involved in displaying each element: create and bind. When the RecyclerView needs a new child widget for an element, it will invoke onCreateViewHolder, which should return an unpopulated ViewHolder, which will then be passed to onBindViewHolder where the data should be mapped into the View from whatever data source the adapter uses.

First off, the RecyclerView maintains the list of its child views completely, so the adapter must never add or remove them directly. Secondly, the RecyclerView expects the adapter to be stable, that is, the data within the adapter must not change without telling the RecyclerView about the changes.

Unlike older recycling widget classes like ListView and GridView, RecyclerView does not assume that it's presenting the same object model over and over. Instead, each object returned from the Adapter can optionally have a view type indicator; when these are different, the RecylcerView maintains a separate pool for each of the view types and recycles all of them separately.

When using different view types, it's common for the adapter to use the layout resource ID as the view type; these are unique per application and avoid any need for a switch statement or similar mapping between internal view type IDs and the actual resources.

For the travel claim example, you will need an adapter to display all the ClaimItems on the overview screen. Fortunately, Room provides you with a prebuilt LiveData, which can be observed directly, which makes building the adapter much simpler. Follow these simple steps to build a RecyclerView adapter bound to a LiveData object, and use the DataBoundViewHolder to present the data to the user:

	Right-click on the ui package and select New| Java Class.

	Name the new class ClaimItemAdapter.

	Click OK to create the new class.

	Change the class declaration to extend from RecyclerView.Adapter and describe the DataBoundViewHolder generic you will be using:

public class ClaimItemAdapter
 extends RecyclerView.Adapter<DataBoundViewHolder<ItemPresenter, ClaimItem>> {

	This adapter class will inflate the data-bound layout files as resources, so it'll need a LayoutInflator to do the work for it:

private final LayoutInflater layoutInflater;

	The ItemPresenter instances can also be shared between all the claim item layouts that are on screen, so the ClaimItemAdapter should hold a reference to it:

private final ItemPresenter itemPresenter;

	Most importantly, the ClaimItemAdapter needs data to display. Ensure that you instantiate this reference so that you don't need null-checks in your other methods:

private List<ClaimItem> items = Collections.emptyList();

	Now, declare a constructor for ClaimItemAdapter; as ClaimItemAdapter will observe a LiveData object, it'll need a LifecycleOwner as well. The LifecycleOwner tells the LiveData when to notify you of changes, and when not to and also when to unregister any listeners. Typical LifecycleOwners are Activity or Fragment instances, but you can make almost any class a LifecycleOwner:

public ClaimItemAdapter(
 final Context context,
 final LifecycleOwner owner,
 final LiveData<List<ClaimItem>> liveItems) {

 this.layoutInflater = LayoutInflater.from(context);
 this.itemPresenter = new ItemPresenter(context);

For further flexibility, you can allow the ItemPresenter to be passed into the constructor. This will allow the ItemPresenter to be extended or configured outside of the ClaimItemAdapter objects, and each instance can be given different presentation rules.

	Note that the ClaimItemAdapter doesn't keep a reference to the LiveData instance yet, and in fact, it won't directly hold a reference at all. Instead, you'll use an anonymous inner class (or lambda if it's available to you) to observe the LiveData. It's important to know that when you start observing a LiveData instance, you will automatically get an initial event with the current state of the data, if your LifecycleOwner is in the correct state. This means you should never need to attempt to fetch the data directly:

liveItems.observe(owner, new Observer<List<ClaimItem>>() {
 public void onChanged(final List<ClaimItem> claimItems) {
 ClaimItemAdapter.this.items = (claimItems != null)
 ? claimItems
 : Collections.<ClaimItem>emptyList();
 ClaimItemAdapter.this.notifyDataSetChanged();
 }
});

	Now the constructor is complete, and it's time to implement the binding-related features. The first step is to implement onCreateViewHolder, which will use the DataBindingUtil to create the layout and the ViewDataBinding that the DataBoundViewHolder will wrap:

public DataBoundViewHolder<ItemPresenter, ClaimItem> onCreateViewHolder(
 final ViewGroup parent,
 final int viewType) {

 return new DataBoundViewHolder<>(
 DataBindingUtil.inflate(
 layoutInflater,
 R.layout.card_claim_item,
 parent,
 false
),
 itemPresenter
);
}

	Due to the DataBoundViewHolder implementation, the onBindViewHolder method is trivial to implement:

public void onBindViewHolder(
 final DataBoundViewHolder<ItemPresenter, ClaimItem> holder,
 final int position) {

 holder.setItem(items.get(position));
}

	The RecyclerView also needs to know how many items are in the data model:

public int getItemCount() {
 return items.size();
}

This adapter can be very easily adapted further in the same way as the DataBoundViewHolder, to allow you to present any LiveData list returned from a Room database with an arbitrary data-bound layout file. The combination of data binding and LiveData makes for an extremely powerful combination that dramatically simplifies your user-interface code, and avoids the need to write lots of boilerplate structure for every combination of views and models.

 Data binding an adapter

If you want to use data binding on a layout with a RecyclerView in it, you can even data bind the adapter object to the RecyclerView. All you need to do is expose a method to access the desired adapter object in a presenter class:

private RecyclerView.Adapter<?> claimItemsAdapter;

public RecyclerView.Adapter<?> getClaimItemsAdapter() {
 if (claimItemsAdapter == null) {
 claimItemsAdapter = new ClaimItemAdapter(
 this, this,
 database.claimItemDao().selectAll()
);
 }

 return claimItemsAdapter;
}

It's important that you preconstruct or cache the instances you create to avoid recreating the adapter object unnecessarily. It's also important to remember not to make the adapter an ObservableField or similar, since the adapter's content should be what changes, not the adapter itself. To bind the RecyclerView to its adapter, use the data binding system's auto property system:

<android.support.v7.widget.RecyclerView
 app:adapter="@{presenter.claimItemsAdapter}"
 app:layoutManager="android.support.v7.widget.LinearLayoutManager"
 android:id="@+id/claim_items"
 android:clipChildren="false"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

It's really important when using data binding and adapter views together to remember that they both update the user interface. As such, it's important to ensure that you keep the adapter reference in the presenter stable, and don't change it without being sure of yourself. Changing the adapter reference will cause the AdapterView (such as a RecyclerView) to completely rebuild its contents rather than just refreshing its contents. It's much better to use the adapter to notify the AdapterView of changes than it is to make the adapter observable.

 Creating the Overview activity

The travel claim example app needs a nice overview activity to tie together the allowance overview, a list of the claim items, and a way for the user to create new claim items. As we have a Room database, things can become significantly more decoupled, and that's a really good thing. Having a central reactive source of data allows different parts of your application to always reflect the actual state of the application as it changes, without having to coordinate with each other.

The first part of building the OverviewActivity is creating the Activity class itself and populating it with the claim items that the user has entered. Follow these steps to create a skeleton OverviewActivity and register it as the main Activity for the application:

	Start by right-clicking on your main package (that is, com.packtpub.claim) and selecting New | Activity | Empty Activity from the menu.

	Name the new class OverviewActivity.

	Leave all the other fields as their defaults and select Finish to create the new Activity and its layout file.

	Open the new activity_overview.xml layout file and change to the Text editor.

	Android Studio will have placed a ConstraintLayout as the root element; change it to a FrameLayout instead, because this layout is very simple and since the logic will be self-binding, there is no point in using a data-bound layout:

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.packtpub.claim.OverviewActivity">

</FrameLayout>

A FrameLayout is a very simple layout where its children are rendered on top of each other. The first child is painted first, and then the second child is painted on top of the first. This makes it ideally suited for building layered scenes, even when some layers will not always be visible.

	The first child of the FrameLayout will be a simple LinearLayout to allow you to place the allowance overview above the scrolling list of claim items. LinearLayout is ideal here as it's a very simple and very fast layout to use, and we don't need the complexities of a ConstraintLayout:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clipToPadding="false"
 android:orientation="vertical"
 android:paddingTop="@dimen/grid_spacer1"
 android:paddingBottom="@dimen/grid_spacer1">
</LinearLayout>

	The first child of the LinearLayout is the AllowanceOverviewFragment, which will allow the user to edit their daily allowance and see how much they're spending:

<fragment
 class="com.packtpub.claim.ui.AllowanceOverviewFragment"
 android:id="@+id/allowance_overview"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

	Next comes the RecyclerView, which will display a scrolling list of the claim items that the user has entered. Note the clipping and padding attributes here; they ensure that the claim item cards are inset, but that their full borders and shadows will be visible:

<android.support.v7.widget.RecyclerView
 android:id="@+id/claim_items"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:clipToPadding="false"
 android:paddingLeft="@dimen/grid_spacer1"
 android:paddingRight="@dimen/grid_spacer1"
 app:layoutManager="android.support.v7.widget.LinearLayoutManager" />

	Now, open the OverviewActivity class that Android Studio generated; it's time to populate the layout with claim items.

	We'll be rendering a list of ClaimItem objects using the ClaimItemAdapter, and it needs to watch for changes using the LiveData object produced by the database. This requires that the Activity report its life cycle, and this is done by extending one of the Activity implementations provided by the support packages (in this case, AppCompatActivity):

public class OverviewActivity
 extends AppCompatActivity {

	As all the behavior for this Activity is actually handled by its fragments and by the LiveData changes triggered by the ClaimDatabase, the onCreate implementation only needs to set the adapter for the RecyclerView. All other logic and behavior for the OverviewActivity will be handled by the fragments and adapter:

protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_overview);

 final RecyclerView claimItems = findViewById(R.id.claim_items);
 claimItems.setAdapter(new ClaimItemAdapter(
 // both the Context, and LifecycleOwner are the OverviewActivity
 this, this,
 ClaimApplication.getClaimDatabase().claimItemDao().selectAll()
));
}

	Finally, you'll need to change the AndroidManifest.xml file to tell the system that the main entry point for the application is now the OverviewActivity, and not the CaptureClaimActivity; open the manifests folder near the top of your projects file-tree and open the AndroidManifest.xml file.

	Change the activity element declarations so that the MAIN / LAUNCHER intent-filter is in the OverviewActivity element instead of the CaptureClaimActivity element. It's also worth changing the windowSoftInputMode attribute so that the software keyboard doesn't automatically open when the OverviewActivity is started. The keyboard opens by default because the first widget on the screen is the EditText field, where the user can enter their daily allowance:

<activity
 android:name=".CaptureClaimActivity"
 android:label="@string/title_activity_capture_claim"
 android:theme="@style/AppTheme.NoActionBar" />
<activity
 android:name=".OverviewActivity"
 android:windowSoftInputMode="stateHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

If you now run your application, you'll see that while the screen is technically complete, there are no claim items and no way to add them. As such, there is nothing in the RecyclerView to look at or scroll through:

You need to provide a way for your user to add new claim items. The best way is with a floating action button in the bottom-right corner of the screen, and we'll be doing that with a new Fragment. By using a Fragment for this task, you'll be able to place a "new item" floating action button on any screen in the application without having to implement any special code in the Activity class.

 Creating new ClaimItems with a Fragment

An unusual property of using LiveData from a Room database is that various parts of your application can now interact without needing any direct knowledge of each other. In the case of your OverviewActivity, this will allow you to populate the database with new ClaimItem entities without dispatching any sort of "new item" or "item added" events to the ClaimItemAdapter. However, the Room database abstraction layer prevents you from running any query on the main thread unless it returns a LiveData. While the query to retrieve the ClaimItem entities returned a LiveData, inserting new LiveData entities will be required to run in the background. Follow these steps to build a Fragment that can allow the user to capture and record a new travel claim item:

	You'll need a task to insert both a ClaimItem entity and any Attachment entities associated with it. This task will need to run on a background worker thread, so open the ClaimDatabase class in Android Studio.

	After the abstract methods that return, the ClaimItemDao and AttachmentDao declare a new method to return a Runnable task to insert a new ClaimItem:

public Runnable createClaimItemTask(final ClaimItem claimItem) {
 return new Runnable() {
 @Override
 public void run() {
 }
 };
}

	Within the new Runnable task, you'll want to use a transaction to save the contents of the ClaimItem object into the database; if any part of this method fails, the transaction will be rolled back, and the method will have had no effect:

beginTransaction();
try {
 final long claimId = claimItemDao().insert(claimItem);
 claimItem.id = claimId;

 for (final Attachment attachment : claimItem.getAttachments()) {
 attachment.claimItemId = claimId;
 attachment.id = attachmentDao().insert(attachment);
 }
 setTransactionSuccessful();
} finally {
 endTransaction();
}

	You'll also need a method in ClaimItem to ensure that it has content and is considered valid, so open the ClaimItem class.

	At the end of the ClaimItem class, create a new isValid method; this will be used when the CaptureClaimActivity returns a ClaimItem to check whether we should store the new ClaimItem in the database:

public boolean isValid() {
 return !TextUtils.isEmpty(description)
 && amount > 0
 && timestamp != null
 && category != null;
}

	You'll need a new icon for adding claim items; right-click on the drawable resource directory and select New| Vector Asset.

	Using the Icon selector, find and select the icon named add.

	Name the new icon resource ic_add_white_24dp.

	Click on Next and then on Finish to create the new resource.

	Open the new icon resource in the Android Studio text editor.

	Change the fillColor attribute of the path element to make it white:

<path
 android:fillColor="#FFFFFFFF"
 android:pathData="M19,13h-6v6h-2v-6H5v-2h6V5h2v6h6v2z"/>

	Now, right-click on the ui package and select New| Fragment| Fragment (Blank).

	Name the new Fragment class NewClaimItemFloatingActionButtonFragment.

	Turn off the Include fragment factory methods and Include interface callbacks options.

	Click on the Finish button to create the new Fragment class.

	Open the new layout file that should be called fragment_new_claim_item_floating_action_button.xml.

	Replace the content of this file with just a FloatingActionButton:

<android.support.design.widget.FloatingActionButton
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 tools:context="com.packtpub.claim.ui.NewClaimItemFloatingActionButtonFragment"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:fabSize="normal"
 app:srcCompat="@drawable/ic_add_white_24dp" />

	Now, open the new NewClaimItemFloatingActionButtonFragment class.

	Change the class declaration to implement the View.OnClickListener interface:

public class NewClaimItemFloatingActionButtonFragment
 extends Fragment
 implements View.OnClickListener {

	Declare a request-code to be used when sending the user to the CaptureClaimActivity:

private static final int REQUEST_CODE_CREATE_CLAIM_ITEM = 100;

	Change the onCreateView method to also set the OnClickListener of the FloatingActionButton:

@Override
public View onCreateView(
 final LayoutInflater inflater,
 final ViewGroup container,
 final Bundle savedInstanceState) {

 final View button = inflater.inflate(
 R.layout.fragment_new_claim_item_floating_action_button,
 container,
 false
);

 button.setOnClickListener(this);
 return button;
}

	Override the onClick method from the View.OnClickListener and start the CaptureClaimActivity for result:

@Override public void onClick(final View view) {
 startActivityForResult(
 new Intent(getContext(), CaptureClaimActivity.class),
 REQUEST_CODE_CREATE_CLAIM_ITEM);
}

	Override the onActivityResult method to handle the incoming ClaimItem, and if it's valid, save it in the database using the SERIAL_EXECUTOR from AsyncTask:

public void onActivityResult(
 final int requestCode,
 final int resultCode,
 final Intent data) {

 if (requestCode != REQUEST_CODE_CREATE_CLAIM_ITEM
 || resultCode != Activity.RESULT_OK
 || data == null) {
 return;
 }

 final ClaimItem claimItem = data.getParcelableExtra(
 CaptureClaimActivity.EXTRA_CLAIM_ITEM
);

 if (claimItem.isValid()) {
 final ClaimDatabase database = ClaimApplication.getClaimDatabase();
 AsyncTask.SERIAL_EXECUTOR.execute(
 database.createClaimItemTask(claimItem)
);
 }
}

	Now, you'll need to add the new fragment to the OverviewActivity. Open the activity_overview layout file and change to Text mode.

	At the bottom of the FrameLayout root element, include a fragment tag referencing the NewClaimItemFloatingActionButtonFragment and position it at the bottom-right of the screen:

<fragment
 class="com.packtpub.claim.ui.NewClaimItemFloatingActionButtonFragment"
 android:id="@+id/new_claim_item"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin" />

Now you should be able to run the application again; not only should you now have a floating action button at the bottom of the overview screen, but it will work! If you click on the button and capture some details on the CaptureClaimActivity and then select to navigate back to the OverviewActivity, the new claim item will appear in the list, sorted by date.

Unlike using SQLiteDatabase directly, Room will enforce only running queries on a worker thread. This makes it attractive to encapsulate your updates in a Runnable that can be run on a background thread such as you did with the createClaimItemTask in the ClaimDatabase class. Having these methods available on the ClaimDatabase makes them easily reusable, and keeps the logic consistent throughout your application. It also allows you to put them into queues or run them in parallel with other tasks if you choose to use a thread-pool instead of the SERIAL_EXECUTOR from AsyncTask (which will only run one task at a time).

 Allowance overview with a Room database

If you run the overview screen and add a few claims to it, you'll notice that one piece of the code isn't reacting to the new items being added to the database: the allowance overview at the top of the screen. This is because while everything else is connected to the Room database, it's still watching the Allowance data model. Using a data model like this is a good idea when the data is just in memory, but now that you have a database in place, things can change and simplify. For example, the Allowance class only really keeps how much the user plans to spend each day; the claim items can actually be seen as an entirely separate structure in the database model.

As such, you can move the daily allowance into a different type of data storage--SharedPreferences. SharedPreferences are key-value stores for Android that have a shared in-memory representation and atomic updates. If you don't expect them to store too much data, this makes them ideal to keep track of data that doesn't really go in an SQLite database. Let's change the model of the Allowance overview to use the ClaimDatabase and SharedPreferences:

	First, open the AllowanceOverviewPresenter class.

	Change it from using the Allowance class to instead expose the daily allowance as an ObservableInt, and remove the OnPropertyChangeCallback so that the fields now look like this:

public final ObservableField<SpendingStats> spendingStats = new ObservableField<>();
public final ObservableInt allowance = new ObservableInt();
private final UpdateSpendingStatsCommand updateSpendStatsCommand =
 new UpdateSpendingStatsCommand();

	Now, change the UpdateSpendingStatsCommand inner class to take a List of ClaimItem objects instead of an Allowance as its parameter:

private class UpdateSpendingStatsCommand extends ActionCommand<List<ClaimItem>, SpendingStats> {

	Now change the onBackground implementation to run a single scan through the given List of ClaimItem objects and calculate all the spending stats at once:

public SpendingStats onBackground(final List<ClaimItem> items) throws Exception {
 final Pair<Date, Date> today = getToday();
 final Pair<Date, Date> thisWeek = getThisWeek();

 double spentTotal = 0;
 double spentToday = 0;
 double spentThisWeek = 0;

 for (int i = 0; i < items.size(); i++) {
 final ClaimItem item = items.get(i);
 spentTotal += item.getAmount();

 if (item.getTimestamp().compareTo(thisWeek.first) >= 0
 && item.getTimestamp().compareTo(thisWeek.second) <= 0) {

 spentThisWeek += item.getAmount();
 }

 if (item.getTimestamp().compareTo(today.first) >= 0
 && item.getTimestamp().compareTo(today.second) <= 0) {

 spentToday += item.getAmount();
 }
 }

 // for stats we round everything to integers
 return new SpendingStats(
 (int) spentTotal,
 (int) spentToday,
 (int) spentThisWeek
);
}

	Now, change the constructor so that it takes a LifecycleOwner and the starting allowance to display to the user. Then, use the ClaimDatabase to update the spending statistics whenever there are new ClaimItem objects added:

public AllowanceOverviewPresenter(
 final LifecycleOwner lifecycleOwner,
 final int allowance) {

 ClaimApplication.getClaimDatabase()
 .claimItemDao()
 .selectAll()
 .observe(lifecycleOwner, new Observer<List<ClaimItem>>() {
 @Override
 public void onChanged(final List<ClaimItem> claimItems) {
 updateSpendStatsCommand.exec(claimItems);
 }
 });

 this.allowance.set(allowance);
}

	You'll also need to change the updateAllowance method to use the ObservableInt instead of the Allowance object:

public void updateAllowance(final CharSequence newAllowance) {
 try {
 allowance.set(Integer.parseInt(newAllowance.toString()));
 } catch (final RuntimeException ex) {
 //ignore
 allowance.set(0);
 }
}

	Now, open the AllowanceOverviewFragment class.

	Add a SharedPreferences field to the AllowanceOverviewFragment; we'll be using them more than once in this class:

private FragmentAllowanceOverviewBinding binding;
private SharedPreferences preferences;

	Override the onCreate method of Fragment and retrieve the private SharedPreferences instance you'll be storing the daily allowance in. The first argument specifies the name of the SharedPreferences to retrieve, while the second specifies the scope as private, meaning only your application will be able to see or use this SharedPreferences instance:

@Override
public void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.preferences = getContext().getSharedPreferences(
 "Allowance",
 Context.MODE_PRIVATE
);
}

	Create an onCreateView method to create an AllowanceOverviewPresenter and pass the Fragment instance as the LifecycleOwner, and to retrieve the current allowancePerDay from the SharedPreferences. The second argument passed to the SharedPreferences.getInt method is a default value that is returned if there is no existing value stored:

@Override
public View onCreateView(
 final LayoutInflater inflater,
 final ViewGroup container,
 final Bundle savedInstanceState) {

 this.binding = DataBindingUtil.inflate(
 inflater,
 R.layout.fragment_allowance_overview,
 container,
 false
);

 this.binding.setPresenter(new AllowanceOverviewPresenter(
 this,
 preferences.getInt("allowancePerDay", 150)
));

 return this.binding.getRoot();
}

	Finally, create an onDestroy method to store the allowance per day back in the SharedPreferences object. You do this by first requesting an Editor from the SharedPreferences, and then applying the changes. All the changes in an Editor are atomically applied at the same time (atomically):

@Override
public void onDestroy() {
 super.onDestroy();
 preferences.edit()
 .putInt("allowancePerDay", this.binding.getPresenter().allowance.get())
 .apply();
}

Now, if you build and run the application, you'll notice that the allowance overview will correctly show you how much you've spent "today", "this week", and in total. Use the date selector in the CaptureClaimActivity to add a few claim items on different days and see how the user interface reacts and recalculates the amounts that you've spent.

 Test your knowledge

	An instance of RecyclerView will create one View instance for which of these?

	Every item of data

	Every item of data visible on the screen

	Each type of data element that is also visible on the screen

	When attaching an observer to LiveData you need to do which of the following?

	Detach it when its LifecycleOwner is destroyed

	Attach it on the main thread

	Provide a valid LifecycleOwner

	Overview / Dashboard screens should have which of these features?

	They should only use graphs to display statistics

	They should not scroll if it can be avoided

	They should display an overview with the most important information first

	The ViewHolder class is used by the RecyclerView to do what?

	Improve the data binding performance

	Reference the views that will be garbage collected

	Store the View objects in a Bundle

	When using LiveData objects to reference data used by multiple Fragment objects, which of these is true?

	The Fragment instances must share the same LiveData reference to see changes

	The LiveData will only update one of the Fragment instances

	The Fragment classes must all extend android.support.v4.app.Fragment

 Summary

Overview screens are the first thing a user will see and interact with in your application, and will be the area of the application they will spend most of their time in. It's important to keep the screen focused and opinionated on what data is displayed to the user, and how it's displayed. Always consider how long the user has to look at your screen, and what information they will need easy access to. Make use of the RecyclerView and LiveData classes to provide the user with detailed views arranged with the most important information first, and allow them to quickly scroll through their most important recent events.

It's also important to consider the navigation of your application, the various ways the user will leave your overview screen, and how they will get back to it. As far as possible, keep the Overview class responsible for just arranging the data on the screen. Any logic that takes the user away from the screen, for whatever reason, should be encapsulated in Fragment classes that also hold the logic to deal with their eventual return to the overview screen.

In this chapter, we looked at a very simple way to build an overview screen. There are many ways that these sorts of screens can be made more useful and powerful by reshaping the layout on the screen as the user scrolls and drags various elements of the user interface.

In the next chapter, we'll take a look at how to leverage some of the layout systems provided by the Material Design API to allow the user interface to change its shape and emphasis dynamically.

 Designing Material Layouts

When designing and creating the layout for a screen, there are many different schools of thought about how it should be done. Modern layouts are often complex systems that change their shape dynamically as the user interacts with them. In the past, layouts tended to be quite rigid structures with only specialized areas such as windows or slit panels that could be adjusted by the user. However, a mobile application must make better use of their available space, since they're typically used on physically smaller devices. The direct interaction of a touch interface also changes how the user expects an application to behave; you need to not only react to the users gestures, but also be mindful of where their hand and fingers are likely to be on the screen as they might be obscuring some part of the screen, as they drag to scroll through your application.

The easiest way to see how a layout can change and adjust is with a jumbo collapsing toolbar. When the screen opens, the toolbar is full sized and takes up enough space to contain various additional widgets and information. As the screen is scrolled, the action button vanishes, and the toolbar collapses in size. Then, the toolbar pins itself to the top of the screen and remains visible as just the title and possibly some action buttons, as shown here:

This collapsing behavior is something you see commonly in material applications--various parts of the user interface being shown or hidden as the user scrolls or changes what they are doing. These layouts often coordinate the moving, resizing, showing, and hiding of many different widgets at the same time, and there's a special class for that--the CoordinatorLayout.

In this chapter, we'll take a look at the CoordinatorLayout and some other specialist Android layout classes in order to do the following:

	Create layouts that change based on user actions

	Create layouts on flexible grids

	Allow the user to take actions using gestures

	Highlight some widgets above others using elevation

 Looking at material structure

Material layouts have a selection of patterns that applications should follow for every screen they build. This sort of template is often called the scaffolding, and for mobile, it looks like this:

What is important about the scaffolding is that while it defines the basic layout of virtually every screen, it doesn't define how you should achieve this design, and even on Android, you'll find that there are several different ways of creating a screen with the preceding layout structure. Several elements are also optional: the Bottom Bar and floating action button are often left out because they aren't useful to a screen. The App Bar appears on most screens, but can be much larger and can also be folded away to provide the user with more reading space in the content area.

It's also important to understand that by default, the platform theming will put the App Bar (presented by the ActionBar class) into an Activity for you; it's also common to create your own App Bar using the Toolbar class and the NoActionBar theme on the Activity. In fact, in Chapter 2, Designing Form Screens, when you created the CaptureClaimActivity, the Android Studio template did exactly this:

<activity
 android:name=".CaptureClaimActivity"
 android:label="@string/title_activity_capture_claim"
 android:theme="@style/AppTheme.NoActionBar" />

In the CaptureClaimActivity class, near the top of the onCreate method, you'll be able to find the following code snippet:

Toolbar toolbar = findViewById(R.id.toolbar);
setSupportActionBar(toolbar);

This code allows your application to take complete control of the Toolbar, from what it looks like, to what widgets it contains. Setting it as the SupportActionBar tells the AppCompatActivity to delegate any calls to Activity.setTitle and similar methods to the Toolbar, but in no other way changes how the Toolbar interacts with the layout system. This is still firmly under your control now.

 Introducing CoordinatorLayout

Android has a small family of layouts designed to work together to achieve the dynamic movement effects when the user scrolls. At the core of this group is the CoordinatorLayout class, which allows complex behaviors to be attached to any number of floating sibling widgets that can depend on and react to each other's position and size. To illustrate how a CoordinatorLayout actually works, take a look at this diagram:

Even though the FloatingActionButton appears to be floating above the other widgets, it's a direct child of the CoordinatorLayout. It remains in place because it is anchored to the bottom of the toolbar. If the toolbar changes its size or position, the CoordinatorLayout will move the FloatingActionButton so that it appears to be attached to the bottom of the toolbar. These movements are all done together as part of the layout process, resulting in every frame being pixel perfect and everything appearing to move and resize together.

CoordinatorLayout defines two major ways to manipulate its child widgets--anchors and behaviors:

	Anchors are by far the simpler of these two; they simply attach one widget to another widget. The anchors respond to the layout_gravity attribute and a special layout_anchorGravity attribute to determine exactly where the anchored widget should appear relatively to the widget it's attached to.

	Behaviors are more complex; they are entire classes that can be used to manipulate the widget in any way based on other widgets (known as its dependencies). Several classes define their own behavior classes that should be used when they are declared within a CoordinatorLayout. For example, FloatingActionButton declares a FloatingActionButton.Behavior class that will hide the button if its anchor-point approaches too close to the end of the screen, and make it reappear when there is enough space again. This showing and hiding behavior is even accompanied by an animation.

 Coordinating the Overview Screen

The Overview screen you built in Chapter 7, Creating Overview Screens, is a perfect candidate for a CoordinatorLayout. To start with, the allowance overview bar can be made to collapse, and unfold as the user scrolls. This allows more space for the claim items on the screen as they are scrolling, and by expanding the overview again when they scroll upward, the user doesn't have to scroll all the way to the top to get the overview back.

This behavior won't just use the CoordinatorLayout, but will also need the help of the AppBarLayout and CollapsingToolbarLayout classes as you'll need to take control of the Material Design scaffolding to make it work. Follow these steps to move the allowance overview into the header bar and make it collapse:

	First, open the AndroidManifest file from the manifests folder in the project tree (use the Android perspective).

	Find the OverviewActivity entry and add a theme attribute that will tell the system not to provide a system ActionBar, because you'll be adding your own:

<activity
 android:name=".OverviewActivity"
 android:theme="@style/AppTheme.NoActionBar"
 android:windowSoftInputMode="stateHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

	Now, open the activity_overview layout file and change to the text mode. Remove the FrameLayout and all of its contents; you'll need to completely rewrite this file.

	Create the CoordinatorLayout root element with all the standard namespaces and context. Note that this time you'll tell the system that this widget will fit to the root window, and not act as contents:

<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 android:id="@+id/scaffolding"
 tools:context="com.packtpub.claim.OverviewActivity">
</android.support.design.widget.CoordinatorLayout>

	Now, create the AppBarLayout element within the CoordinatorLayout; again, you'll tell the system that the AppBarLayout fits to the system window and is not to be treated as normal content widgets:

<android.support.design.widget.AppBarLayout
 android:id="@+id/app_bar"
 android:layout_width="match_parent"
 android:layout_height="@dimen/app_bar_height"
 android:fitsSystemWindows="true"
 android:theme="@style/AppTheme.AppBarOverlay">
</android.support.design.widget.AppBarLayout>

	Use the code-assistance for the layout_height to create a new dimension resource named app_bar_height, and assign it a value of 180dp:

<dimen name="app_bar_height">180dp</dimen>

	Within the AppBarLayout, you need to declare the CollapsingToolbarLayout. This will handle the collapsing and expanding of the toolbar and other widgets as the user scrolls. You use the layout_scrollFlags to tell it how to collapse and expand, but it's important to note that it's actually the AppBarLayout that takes care of these, so any children of AppBarLayout can use these flags. In this particular case, we'll be telling it to collapse when the user scrolls down the list of items, but not to exit (vanish) completely, and to reenter as soon as the user starts to scroll up the list again:

<android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/toolbar_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 app:contentScrim="?attr/colorPrimary"
 app:expandedTitleGravity="top"
 app:layout_scrollFlags="scroll|enterAlwaysCollapsed|snap|exitUntilCollapsed"
 app:toolbarId="@+id/toolbar">
</android.support.design.widget.CollapsingToolbarLayout>

In the preceding code, the CollapsingToolbarLayout declares its contentScrim as ?attr/colorPrimary. The attributes ? syntax is a type of lookup that is used with theming. It tells the resource-system to look up that attribute in the theme, rather than directly referencing the attribute.

	Within the CollapsingToolbarLayout, you'll need to declare a Toolbar widget. This widget will take the place of the system ActionBar. We use the layout_collapseMode to tell the CollapsingToolbarLayout to pin the Toolbar to the top of the screen once it has been collapsed (rather than having it vanish completely):

<android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:layout_collapseMode="pin"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

	After the Toolbar widget, you can declare the AllowanceOverviewFragment; it will use the parallax collapse mode and will disappear as the use scrolls down the list of claim items:

<fragment
 android:id="@+id/overview"
 class="com.packtpub.claim.ui.AllowanceOverviewFragment"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:layout_marginBottom="@dimen/grid_spacer1"
 app:layout_collapseMode="parallax"
 app:layout_collapseParallaxMultiplier="0.65" />

	That concludes your new AppBarLayout structure; now you need to add the RecyclerView in after the AppBarLayout and tell the CoordinatorLayout that it is scrolling content using the layout_behaviour attribute. This will tell the CoordinatorLayout that when the RecyclerView is scrolled, the AppBarLayout should react to the scrolling:

<android.support.v7.widget.RecyclerView
 android:id="@+id/claim_items"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:clipToPadding="false"
 android:clipChildren="false"
 android:paddingLeft="@dimen/grid_spacer1"
 android:paddingRight="@dimen/grid_spacer1"
 app:layoutManager="android.support.v7.widget.LinearLayoutManager"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

The RecyclerView declared that its behavior references a string resource by the name appbar_scrolling_view_behavior, but you haven't declared any such resource in your strings.xml file, so why doesn't the code assistant complain? This is a string resource declared by the CoordinatorLayout support library, and it gets merged into your application resources during the build. Its contents is the full class-name for the scrolling view Behaviour implementation (that is:).

	The final element in your CoordinatorLayout should be the NewClaimItemFloatingActionButtonFragment, which will automatically gain special behavior within the CoordinatorLayout because of how the FloatingActionButton class is written:

<fragment
 android:id="@+id/new_claim_item"
 class="com.packtpub.claim.ui.NewClaimItemFloatingActionButtonFragment"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin" />

The FloatingActionButton class declares a default Behaviour class that the CoordinatorLayout looks for when any child is added to it. This defines how the FloatingActionButton is positioned on the screen, when it should disappear, reappear, and even move relative to panels that may appear at the bottom of the screen (such as snackbars). The declaration is made using a publicly accessible annotation:

@CoordinatorLayout.DefaultBehavior(FloatingActionButton.Behavior.class)
public class FloatingActionButton extends VisibilityAwareImageButton {

Due to how your application has been structured, the OverviewActivity class doesn't need to be modified for this new layout to work. It will still automatically populate the RecyclerView with the ClaimItem objects, and the fragments will communicate through the database. It is, however, useful to make the new Toolbar widget act as the ActionBar for the OverviewActivity; you can do this by changing the onCreate method to call setSupportActionBar:

protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_overview);

 setSupportActionBar(findViewById(R.id.toolbar));
 // …
}

 Swiping to delete

While you have a way for your users to create claim items, the users have no way to delete the claim items that they have created. A common pattern in lists on mobile apps is to allow the user to swipe right to dismiss or delete items. RecyclerView provides some excellent and easy-to-use structures to enable this sort of behavior; however, it's always important to ensure that users don't delete items by mistake.

In the past, most user interfaces used confirmation dialogs when executing destructive actions. However, these "are you sure" dialogs are a horrible distraction for most users, because such messages violate a key principle--the application assumes that the user probably doesn't want to perform an action that they just took. In reality, the user probably did mean to delete the item, but the application interrupts them to ask whether they're sure about their choice. A much better behavior is to assume that the user does want to take the action, but then to give them a way to undo their action if they have made a mistake. Material Design has a design pattern and widget dedicated specifically to this sort of task--the Snackbar.

In Material Design language, the Snackbar is a small bar that can appear at the bottom of the screen, providing the user with information and possible actions that they can take based on the information given. The most commonly seen use is when something is deleted, and the user is given the chance to undo the delete. Undo actions might appear to be challenging, but they're actually very simple to carry out if correctly wrapped in a Command class. Follow these steps to add a swipe-to-delete action and an undo option to the travel claims application:

	Open the DataBoundViewHolder class in the ui package.

	Your new classes will need a simple way to access the items from the DataBoundViewHolder, but the ViewDataBinding doesn't offer a getVariable method, so you'll need to keep it in a class field and provide a getter method:

private I item;
public I getItem() { return item; }

	You'll also need to modify the setItem method to capture this field:

public void setItem(final I item) {
 this.item = item;
 binding.setVariable(BR.item, item);
}

	Open the OverviewActivity source file in Android Studio.

	At the bottom of the OverviewActivity class, you'll need to declare a new ActionCommand class that will encapsulate both the delete action and the undo operation. Unlike most other ActionCommand classes, this one is not reusable and takes no arguments:

class DeleteClaimItemCommand
 extends ActionCommand<Void, Void>
 implements View.OnClickListener {
}

	The new DeleteClaimItemCommand class will need a reference to the ClaimDatabase, and will also have a ClaimItem field that it will delete and optionally restore:

private final ClaimDatabase database = ClaimApplication.getClaimDatabase();
private final ClaimItem item;
public DeleteClaimItemCommand(final ClaimItem item) {
 this.item = item;
}

	The onBackground implementation deletes the ClaimItem object from the database, but the DeleteClaimItemCommand keeps a reference to the in-memory implementation if the user decides to restore it:

public Void onBackground(final Void noArgs) {
 database.claimItemDao().delete(item);
 return null;
}

This code does not delete the Attachments related to the ClaimItem, which will cause the application to leak attachment files and database rows. In practice, you would also want to ensure that the attachments are cleaned up as well by copying the behavior used for ClaimItem, but that is beyond the scope of this example.

	The onForeground implementation will need to display a Snackbar notification telling the user that the item was deleted; for that, you'll need a localizable message. The Context class offers a convenience getString method that will generate a formatted string from the application resources:

final String message = getString(
 R.string.msg_claim_item_deleted,
 item.getDescription());

	Use the code assistance to create a new string resource named msg_claim_item_deleted:

<string name="msg_claim_item_deleted">%s Deleted</string>

These strings follow the formatting rules defined in java.util.Formatter or String.format, allowing you to create relatively complex formatting rules. By providing different strings.xml files for different languages and formats like this, you can very easily localize most strings in your application.

	In the onForeground method, you'll need to grab a reference to the CoordinatorLayout as a base for the Snackbar:

final View scaffolding = findViewById(R.id.scaffolding);

	Then, create the Snackbar object, specifying its undo action text, and use the DeleteClaimItemCommand as the action handler (OnClickListener):

Snackbar.make(scaffolding, message, Snackbar.LENGTH_LONG)
 .setAction(R.string.undo, this)
 .show();

	Use the code assistance on the R.string.undo reference to create a new string resource for the text of the undo action:

<string name="undo">Undo</string>

	If the user clicks on the undo action, the DeleteClaimItemCommands and onClick methods will be invoked. It can then use its cached reference to the deleted ClaimItem to restore it in the database:

public void onClick(final View view) {
 AsyncTask.SERIAL_EXECUTOR.execute(database.createClaimItemTask(item));
}

	As another inner-class to the OverviewActivity, you'll need a class to provide the action definition and handling for the swipe-to-delete behavior. This new class will extend the SimpleCallback class of the ItemTouchHelper class, which provides the handling for the movement gesture recognition:

private class SwipeToDeleteCallback extends ItemTouchHelper.SimpleCallback {
}

	The SimpleCallback constructor takes two sets of "flags" in the form of int values. These are simply a number of numbers that you can binary "or" (using the | operator) together. These define the different gestures to allow and manage. The first of these are the flags for different types of "move" gestures that can be used to reorder the items in a RecyclerView (leaving this as zero indicates that no move gestures should be recognized). The second flag's argument is for "swipe" gestures, which are what we're interested in here:

SwipeToDeleteCallback() {
 super(0, ItemTouchHelper.RIGHT);
}

	The SimpleCallback class requires that you declare handler methods for moving and swiping, even though the class will not deal with movement gestures. You'll need to declare onMove, but the class can just return false as its implementation:

public boolean onMove(
 final RecyclerView recyclerView,
 final RecyclerView.ViewHolder viewHolder,
 final RecyclerView.ViewHolder target) {

 return false;
}

	Next, you can define the implementation of the onSwipe method, which will create a DeleteClaimItemCommand and execute it:

public void onSwiped(
 final RecyclerView.ViewHolder viewHolder,
 final int direction) {

 final DataBoundViewHolder<?, ClaimItem> holder
 = (DataBoundViewHolder<?, ClaimItem>) viewHolder;
 new DeleteClaimItemCommand(holder.getItem()).exec(null);
}

	Now, to attach the SwipeToDeleteCallback to the RecyclerView, you need to wrap it using the ItemTouchHelper class, and attach that to your RecyclerView instance at the bottom of the onCreate method:

final RecyclerView claimItems = findViewById(R.id.claim_items);
 claimItems.setAdapter(new ClaimItemAdapter(
 this, this,
 ClaimApplication.getClaimDatabase().claimItemDao().selectAll()
));

 new ItemTouchHelper(new SwipeToDeleteCallback())
 .attachToRecyclerView(claimItems);
}

 Elevating widgets

An excellent way of highlighting one widget over the others on the screen is to make it appear over the others on the screen, not two-dimensionally, but floating above them as though in three-dimensions. This is already a clear pattern if you look at the FloatingActionButton classes; they don't just overlap other widgets, but they have a shadow and appear to float in space (hence the class name FloatingActionButton).

One of the great features in the Android widget library is that the View class defines the notion of elevation, which makes it usable by every widget in the toolkit. The elevation of a widget doesn't affect its two-dimensional position or size, but does cause it to produce a shadow that will be correctly shaded as though the widget is floating in three-dimensions. This can be used to create an amazing effect when you need to draw attention to a message, or when the user is repositioning a widget on the screen (for example, reorganizing a list of reminders). Given that most of a Material Design user interface is flat, adding a three-dimensional elevation instantly makes a widget stand out for the user.

Much like the borders and shadow of a CardView widget, when you use elevation, you need to ensure that the shadow is not clipped by the parent widget or the padding attributes. Use the clipChildren and clipToPadding attributes to control this.

Follow these steps to add an elevation effect to the swipe-to-delete behavior callback:

	Open the OverviewActivity and find the SwipeToDeleteCallback inner class.

	The class will need to be able to reset the elevation if the user "drops" an item after picking it up to delete it. For this, the SwipeToDeleteCallback class will need a field with the default card elevation:

final float defaultElevation =
 getResources().getDimensionPixelSize(R.dimen.cardview_default_elevation);

	Every time a child of the RecyclerView is drawn after being picked up, the ItemTouchHelper allows you to override the drawing behavior. In your case, you want to adjust the elevation of the card relative to how far right the user has dragged it. In order to work on older versions of Android, this code uses the ViewCompat class to change the elevation:

public void onChildDraw(
 final Canvas c,
 final RecyclerView recyclerView,
 final RecyclerView.ViewHolder viewHolder,
 final float dX, final float dY,
 final int actionState,
 final boolean isCurrentlyActive) {

 if (isCurrentlyActive) {
 ViewCompat.setElevation(
 viewHolder.itemView,
 Math.min(
 Math.max(dX / 4f, defaultElevation),
 defaultElevation * 16f
)
);
 }

 super.onChildDraw(c, recyclerView, viewHolder, dX, dY, actionState, isCurrentlyActive);
}

	Once the card is released by the user, we need to clear the elevation value by setting it back to its default; the ItemTouchHelper will invoke the clearView callback when the user drops an item:

public void clearView(
 final RecyclerView recyclerView,
 final RecyclerView.ViewHolder viewHolder) {
 ViewCompat.setElevation(viewHolder.itemView, defaultElevation);
 super.clearView(recyclerView, viewHolder);
}

Once you've implemented this behavior, the user will receive secondary visual feedback on the swipe to delete gesture, as the card they drag will appear to rise above the others as they pull it to the right. It'll also do the reverse and appear to descend back to its normal elevation if they drag it to the left again. This elevation feedback can be even more useful on interfaces where the user can change the position of the cards in a list (for example, in a to-do list). Note that as the card's elevation increases, it casts a shadow on the cards both below and above it:

 Building layouts using grids

When building screens, it's common to want specific widgets to appear the same size and shape as other widgets. This is often achieved using flexible grid models for the layout. By dividing the screen into a number of cells, and having each widget occupy one or more cells, you can create very complex layouts that will stretch to any screen size. However, this traditional model is completely outdated when faced with ConstraintLayout, which is capable of maintaining complex relationships between widgets without the need for a grid.

In most situations, ConstraintLayout should be more than capable of managing any complex layout you choose to design, and will be much more flexible than a grid/table layout manager. Unlike a grid-based layout engine, ConstraintLayout is much more flexible when dealing with widgets that are sized based on a font or images that can be various sizes, depending on the physical screen size and pixel-density. While GridLayout will adjust the size of the cells to accommodate such widgets, they are still confined by grid lines.

However, every now and then, you'll need to build a layout based on grid cells. For situations like this, you'll want to use the GridLayout class. GridLayout allows you to define layouts based on an invisible grid, where each widget can take up one or more cells, and the size of each row and column is flexible; that is, each column can be a different width, and each row can be a different height. It's important to remember that GridLayout is not intended for displaying large tables of data, but rather for laying out screens that favor a grid-like structure. If you need to present your user with a scrolling grid (for example, of icon images), then a better model to be used is the RecyclerView with a GridLayoutManager, as this will scale to virtually any number of child components.

There are two different implementations of GridLayout in Android: one is in the platform core APIs, and the other is in the support v7 APIs. For compatibility reasons, it's typically best to use the class from the support package as it includes many of the more recently added features that might not appear on the platform implementation.

To explore the GridLayout a bit, let's take a look at how you will implement the Capture Claim Details card using GridLayout instead of ConstraintLayout:

	First, you'll need to add the GridLayout implementation to your project. Open the Gradle Scripts in the project tree and open the build.gradle for the app module (use the Android perspective).

	In the dependencies list, add a dependency for the grid-layout module:

implementation 'com.android.support:appcompat-v7:26.0.0'
implementation 'com.android.support:gridlayout-v7:26.0.0'

The version number at the end (in this case, 26.0.0) must exactly match the version number of the appcompat module your application references. If these versions don't match exactly, it can lead to instabilities and in some cases, your application won't even compile. Change the version number to match the one declared on the appcompat reference in your build.gradle before continuing to the next step.

	Save the file, and synchronize the project using the Sync Now link that appears at the top of the editor.

	Right-click on the res | layout directory in the project file tree, and select New | Layout resource file.

	Name the new file fragment_capture_claim_grid.

	Change the root element to android.support.v7.widget.GridLayout:

	Change to the Text mode editor.

	As you're using the support libraries GridLayout implementation, several of the XML attributes will be in the app namespace rather than the platform (android) namespace. You'll need to add the app namespace to the GridLayout declaration:

<android.support.v7.widget.GridLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
</android.support.v7.widget.GridLayout>

	GridLayout sets many of the layout attributes by default, and assumes, by default, that each child is in the cell, following the one before it (starting at the top-left cell). It allows you to specify the columnWeight and rowWeight attributes to define how much of the available space each cell should take up. Declare a TextInputLayout to take up 70% of the available space:

<android.support.design.widget.TextInputLayout app:layout_columnWeight="0.7">
 <android.support.design.widget.TextInputEditText
 android:id="@+id/description"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/label_description" />
</android.support.design.widget.TextInputLayout>

The preceding TextInputLayout widget only occupies a single cell within the GridLayout, but that cell has been told to take up 70% of the available horizontal space when rendering.

	Next, declare the amount TextInputLayout; this will also only occupy a single cell, but we'll want it to occupy the remaining 30% of the horizontal space:

<android.support.design.widget.TextInputLayout app:layout_columnWeight="0.3">
 <android.support.design.widget.TextInputEditText
 android:id="@+id/amount"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/label_amount" />
</android.support.design.widget.TextInputLayout>

	Now, we want to declare a DatePickerLayout for the user to select the date, but we need to tell the GridLayout to put it on the next row. You do this using the row and column attributes. This widget also needs to take up the full width of the GridLayout, which means it needs to occupy two columns, which is done using the columnSpan attribute:

<com.packtput.claim.widget.DatePickerLayout
 android:id="@+id/date"
 app:layout_row="1"
 app:layout_column="0"
 app:layout_columnSpan="2"
 app:layout_gravity="fill_horizontal" />

If you take a look in the Design view, you'll note that this layout looks almost identical to the one you wrote in Chapter 2, Designing Form Screens, for capturing the claims. The biggest difference is that the ConstraintLayout uses a fixed minimum size for the Amount, while this layout uses relative sizes by manipulating the weights of the grid cells. The resulting layout should look like this:

 Stack view

Sometimes, it's useful to be able to display long lists of items with only one item visible at a time, for example, the list of attachments for a ClaimItem. In this case, you can use the side-to-side ViewPager as you've already done, but there is another option--the StackView. The StackView class presents its contents as a three-dimensional stack of cards, with the "top" card fully visible, and some of the cards "behind it," as shown:

This is often a very useful pattern, as it provides the user with plenty of screen space to view the top item, while also being able to see that there are other items that can be viewed. This makes it ideal for displaying photos or large cards of data. It's very similar to how Android displays the list of running applications when you tap on the "Recent Apps" button on a device.

The StackView is a classic Adapter view, and works using the same Adapter implementations as ListView or GridView. If done correctly, you can write code that can be used in any of these classes; follow these steps to build a simple StackView and Adapter implementation that can be used to preview the Attachment differently:

	Right-click on the ui.attachments package in the project tree, and select New| Java Class.

	Name the new class AttachmentListAdapter.

	Change the Superclass to android.widget.BaseAdapter.

	Click on OK to create the new class.

	In the new AttachmentListAdapter class, declare a List of Attachment objects to present to the user:

private List<Attachment> attachments = Collections.emptyList();

	Create a constructor to observe a LiveData and assign the List of attachments and notify the StackView when things change:

public AttachmentListAdapter(
 final LifecycleOwner lifecycleOwner,
 final LiveData<List<Attachment>> attachments) {

 attachments.observe(lifecycleOwner, new Observer<List<Attachment>>() {
 @Override
 public void onChanged(final List<Attachment> attachments) {
 AttachmentListAdapter.this.attachments =
 attachments != null
 ? attachments
 : Collections.<Attachment>emptyList();
 notifyDataSetChanged();
 }
 });
}

	Much like a RecyclerView.Adapter implementation, the BaseAdapter needs a method to access the number of items it's expected to present:

public int getCount() { return attachments.size(); }

	Unlike the RecyclerView.Adapter implementations, however, a BaseAdapter is expected to expose the underlying data directly. It's also required to expose a unique ID for each element of data:

public Object getItem(final int i) { return attachments.get(i); }
public long getItemId(final int i) { return attachments.get(i).id; }

	Also, unlike a RecylcerView.Adapter, there is only a single method to create and reuse the existing view items, as well as bind the data to them. In this method, the second argument may be null, but can also be an existing view that is expecting to be recycled:

public View getView(
 final int i,
 final View view,
 final ViewGroup viewGroup) {

 AttachmentPreview preview = (AttachmentPreview) view;
 if (preview == null) {
 preview = new AttachmentPreview(viewGroup.getContext());
 }

 preview.setAttachment(attachments.get(i));

 return preview;
}

	To use a StackView from a layout XML file, you simply need to declare the StackView as you would a RecyclerView or ViewPager:

<StackView
 android:id="@+id/attachments"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

	Then, from the enclosing Activity or Fragment, you will need to set its Adapter. Much like the RecyclerView, the Adapter can also be specified from a data-bound layout. Here's how the code might look in an Activity:

final StackView attachments = findViewById(R.id.attachments);
attachments.setAdapter(new AttachmentListAdapter(
 this,
 database.attachmentDao().selectForClaimItemId(claimItem.id)
));

The StackView class is an excellent way to present the user with a large number of larger and more visual items. It's excellent for browsing things such as photographs or preview graphics, and provides you with an easy-to-use three-dimensional transformation. Before using StackView, you should always consider whether the user will need to see the data from more than one item at a time. Sometimes, it's best to combine a RecyclerView as an "overview" with a StackView for viewing the individual items.

 Test your knowledge

	Elevation should be used for which of the following?

	When the user selects an item in a list

	To selectively highlight one item above a flat layout

	When a user swipes to delete items

	CoordinatorLayout can be used to coordinate movement and size between which of these?

	The components nested in an AppBarLayout

	Any of its direct child widgets

	Fragment in different activities

	To change elevation of a widget in a backward-compatible way, you need to do which of the mentioned?

	Nest the widget in a CardView

	Use the ViewCompat class

	Use Java reflection to call setElevation

	The GridLayout class should be used in which of the following conditions?

	When ConstraintLayout is not available

	To display large tables of data

	To lay out screens along grid lines

 Summary

Taking ownership of what is normally the system's decorations for your application provides you with a huge variety of additional flexibility and power. By using the CoordinatorLayout to host the scaffolding and content of your screens, you further extend your flexibility by allowing widgets to dynamically interact with each other, even when being animated. This provides you with a way to produce pixel-perfect screens with minimal additional work.

Using layouts that cannot only dynamically change their shape, but also change their content using gestures such as swipe-to-dismiss to further enhance the direct manipulation aspects of a touchscreen user interface have been covered. At the same time, it's important to always consider the interactions of your user and when to interrupt them, especially around destructive actions. While there are still times where you might want to use a confirmation dialog, it's generally better to give users a method to undo their actions. It's often a very simple thing to keep the deleted entity objects in-memory until the Snackbar vanishes and is released from memory. Inserting entities that you have deleted from Room will actually maintain their IDs, meaning that their rows are restored exactly as they were before they were deleted.

In the next chapter, we'll take a look at navigation in Android applications, and explore various user interface features that are provided for your user to navigate your application. We'll also take a look at some techniques that allow you to take more control of your application's navigation flow. Providing consistent and quality navigation makes a huge difference to your user's experience.

 Navigating Effectively

Broadly speaking, navigation is how your user gets from one screen to another in your application. More specifically, however, it's what a user needs to do in order to reach a goal within your application. Navigation is an almost completely invisible part of your application's user interface design. It's an area that is often neglected, frequently done badly, and as a result, often leads users to frustration.

The problem is that the navigation design of an application is often a side effect of the user interface design, rather than something that has been planned. Navigation, just like a single screen, can and should be designed to center around the user rather than the designer or developer. Using the techniques you've already learned in this book, you should be able to make almost any navigation flow work easily, because the elements should not be tightly coupled to each other.

In this chapter, we'll look at navigation and navigation patterns within the Material Design language. You'll learn how to do the following:

	Plan and design the navigation flow of an application

	Use the standard navigation menu component

	Build tabbed navigation applications

	Navigate using fragments instead of Activities

 Planning navigation

Before leaping into your latest app idea, it's a good idea to stop and consider what you are trying to allow the user to do, and figure out how they will actually do it. One of the best ways to do this is with the decision tree or navigation tree. These can be easily drawn on paper, or if you're collaborating with other people, index cards on a magnetic whiteboard (or even a pin-board) are very effective.

The idea is to not just draw out the possible screens in your app, but how the user will get to each one. Navigation diagrams don't just help to define what screens your application actually needs, but will help ensure that the user will never be "lost" in your application. If the navigation lines become too complex, then you need to simplify the navigation (possibly by adding or removing some of the screens). Overly complex navigation is often hidden in the use of an application, but when drawn on a diagram, the complex relationships between screens become obvious, and often, a solution will become apparent.

To start drawing your diagram, create a box or card that represents the user's main entry into the application. Then, branch from each possible action that the user might take from that screen. For each action, draw a simple icon or describe the type of action the user is expected to take. For example, a circle can represent a floating action button, three staggered lines can represent a swipe gesture, and so on. These icons will also help by ensuring that the gestures and actions on a screen remain obvious to the user, and will help you avoid navigation techniques that hide the behaviors from the user. Here's an example navigation diagram for the current state of the travel claims app:

It's immediately apparent from the diagram that everything flows deeply into the application, and that there are currently three distinct action areas: New Item, Delete Item, and Add Attachment. Larger applications should still have these logical groupings of action areas, and should not have navigation lines that have to crossover too much of the diagram. If they do, it's a sign of an overcomplex navigation structure, and moving things around on the diagram will often help you produce a better and more intuitive application.

Now, let's take a look at various Android components built specifically for navigation.

 Tabbed navigation

When applications are broken down into a small number of logical areas, tabs often become the most obvious and simplest method of navigation. Most application's navigation is deeply hierarchical, and in these cases, tabs are not a good choice for a navigation mechanism. Tab navigation is best used when each tab will be used roughly as much as each of the other tabs (that is, they have roughly equal importance). There are two major types of tabbed layouts in Android: bottom tabs and top tabs (also known as action bar tabs or toolbar tabs).

Top tabs are the classic method of adding tabs to an Android application, and are perfect when the application areas are not switched between often. This is because they are at the top of the screen and typically far away from where the user's fingers are. Most typically, a user has their fingers near the bottom of the screen, close to the software keyboard and system navigation buttons:

Bottom tabs, on the other hand, are a far more subtle and challenging navigation technique to implement effectively. Bottom tabs take up significantly more vertical screen space than their top-bar cousins, and therefore need to work for the extra space they consume. Bottom tabs are good to implement if the user will switch between the spaces frequently and spend roughly the same amount of time in each. As they are at the bottom of the screen, they are typically more accessible to the user and therefore it's easier for them to switch between the screens they offer:

With either of these tab-based navigation options, it's important to consider that the tabs should always be visible in the application and therefore your application will have several root nodes in your navigation tree (one for each tab). You should also avoid navigating the user between tabs too much, as this can be confusing. Instead, each tab should represent a distinct part of the application process, almost like a mini-app.

The tab components provided by Android don't actually perform any of the navigation themselves; instead, it's assumed that you will encapsulate the actual navigation container and logic yourself. It's normal to use the ViewPager class to manage the switching between different tab screens, and a single Fragment for each of the tabs. Android Studio also includes some simple templates for both of these navigation patterns. Let's take a look at how you can build a simple Activity with tabs at the top:

	Open the File menu, and select New | New Project.

	Name the new project Navigation.

	Select an appropriate Company Domain to determine the package:

	Click on the Next button.

	Select Phone and Tablet support, and at least API 16 lever support:

	Then, click Next.

	In the Activity Gallery, scroll right to the bottom and select Tabbed Activity:

	Click on the Next button.

	Name the new Activity TopTabsActivity.

	Scroll down to the bottom of the wizard to Navigation Style.

	Change the Navigation Style to Action Bar Tabs (with ViewPager):

	Click Finish to complete the wizard.

	Wait for Android Studio to finish creating your project.

If your project has compile errors in the IDE, you might need to add the support library to the new project. Open the build.gradle for app module, and add

implementation 'com.android.support:support-v4:26.0.0'

(with the correct version number) to the dependencies.

	Once the project has been created, Android Studio will have built a new Activity with three tabs in its AppBarLayout. Open the res/layout directory, and open the activity_tob_tabs.xml layout file to edit the number and appearance of the tabs:

<android.support.design.widget.TabLayout
 android:id="@+id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <android.support.design.widget.TabItem
 android:id="@+id/tabItem"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/tab_text_1" />

 <android.support.design.widget.TabItem
 android:id="@+id/tabItem2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/tab_text_2" />

 <android.support.design.widget.TabItem
 android:id="@+id/tabItem3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/tab_text_3" />
</android.support.design.widget.TabLayout>

It's best to avoid having too many tabs in any sort of tabbed layout. If you are using text labels (as the template does), you should try and avoid having more than three tabs. If you require more than three, it's best to use the Material icons and remove the text descriptions.

	To edit what appears in the tabs, you'll need to open the TopTabsActivity class.

	Find the SectionsPagerAdapter inner class at the bottom of the file.

	In this class, you can create a switch statement in the getItem method to create the Fragment instances for each tab. For example, the "Flight Search" images used earlier might have a getItem implementation looking like this:

public Fragment getItem(final int position) {
 switch (position) {
 case 0:
 return new FlightSearchFragment();
 case 1:
 return new BookingsFragment();
 case 2:
 return new ProfileFragment();
 }

 throw new IndexOutOfBoundsException(
 "no tab for position " + position);
}

Using a switch statement or similar structure instead of populating an array ensures that the Fragment objects are only allocated when they are actually needed. If the user doesn't change tabs, only one will need to be instantiated.

In the TopTabsActivity, you'll see in the onCreate method that Android Studio tethers the TabLayout in the AppBarLayout with the ViewPager, using two listener classes from the TabLayout class:

mViewPager.addOnPageChangeListener(
 new TabLayout.TabLayoutOnPageChangeListener(tabLayout));
tabLayout.addOnTabSelectedListener(
 new TabLayout.ViewPagerOnTabSelectedListener(mViewPager));

These listeners will keep the selected tab in the TabLayout and the current Fragment displayed by the ViewPager in sync. When a tab is selected, the appropriate page will be displayed and when the ViewPager is swiped, the appropriate tab will be selected.

 Bottom tabs navigation

Using the bottom navigation tabs is quite different in code structure to placing tabs in the toolbar of the application. Where the toolbar tabs use TabItem widgets to render their content, the BottomNavigationView uses a menu to decide how it should look. A menu, much like a layout file, is a specialized XML resource file in Android. They also compacted to binary XML during compilation of the project and can be inflated at runtime using a MenuInflator object. Unlike a layout resource, a menu specifies lists of menu items and submenus, and while these have text descriptions and optional icons, they have no other render logic of their own. As a result, they are perfect for representing navigation options to a variety of different widgets.

Bottom tabs are often used to present alternative views--different user interfaces on top of the same data; for example, search flights, upcoming bookings, and past reservations. All of them are flights for the user, but from different perspectives.

Let's build an Activity to use the BottomNavigationView to navigate between different areas of an application:

	Right-click on the main package in the Navigation project and select New | Activity | Bottom Navigation Activity.

	Name the new Activity as BottomTabsActivity.

	Click Finish to create the new structure.

	Android Studio will create several new files: the Activity class, the new layout XML file, several new icon files, and the navigation menu resource.

	Open the new res/layout/activity_bottom_tabs.xml layout resource.

	Ensure that the editor is in the Design mode.

	In the Component Tree panel, select the message (TextView) item and delete it:

	In the Palette panel, open the Containers and drag a ViewPager into the middle of the design canvas:

	Using the Attributes panel, add constraints to all sides of the new ViewPager and make them 0:

	Change the layout_width and layout_height attributes to match_constraint.

	Change the ID of the ViewPager widget to container.

	Right-click on the res/drawable directory in the project view, and select New | Vector Asset.

	Use the Icon selector to find the standard search icon, and leave the name as is (ic_search_black_24dp).

	Select Next, and then Finish to import the icon into your project.

	Import the flight takeoff and bookmark icons in the same way.

	Open the res/menu/navigation.xml menu resource file. In the Design view, you should be presented with a menu editor, looking like this:

	Select the Home menu item by clicking on it in the Design canvas.

	In the Attributes panel, change the item's ID to navigation_search.

	Use the string resource editor to change the title attribute to a new string resource called title_search, with the content Search.

	Use the icon resource selector to change the icon to the ic_search_black_24dp icon you imported.

	Select the Dashboard menu item in the Design canvas.

	Change the ID attribute in the Attributes panel to navigation_upcoming.

	Use the string resource editor to change the title attribute to a new string resource called title_upcoming, with the content Upcoming Flights.

	Use the icon resource selector to change the icon to the ic_flight_takeoff_black_24dp icon you imported.

	Select the Notifications menu item in the Design canvas.

	Change the ID attribute in the Attributes panel to navigation_flown.

	Use the string resource editor to change the title attribute to a new string resource called title_flown, with the content Past Bookings.

	Use the icon resource selector to change the icon to the ic_bookmark_black_24dp icon you imported.

	Now, open the BottomTabsActivity source file.

	Remove the reference to the TextView, and replace it with a reference to the ViewPager and BottomNavigationView:

private TextView mTextMessage; // remove this line
private ViewPager container;
private BottomNavigationView navigation;

	The BottomNavigationView (unlike the TabLayout used for top tabs) includes no listeners to automatically map between the selected tab and a ViewPager, so you'll need to map the MenuItem ID values to the index of the pages that should be displayed. Create an int array with the MenuItem ID values in the same order as the pages:

private final int[] pageIds = new int[]{
 R.id.navigation_search,
 R.id.navigation_upcoming,
 R.id.navigation_flown
};

	The template created a BottomNavigationView.OnNavigationItemSelectedListener anonymous inner class to display the name of the selected tab in the TextView. You instead want the ViewPager to change to the selected tab Fragment, and you can do this using the array of ID values you just declared:

private BottomNavigationView.OnNavigationItemSelectedListener onNavigationItemSelectedListener
 = new BottomNavigationView.OnNavigationItemSelectedListener() {

 public boolean onNavigationItemSelected(final MenuItem item) {
 for (int i = 0; i < pageIds.length; i++) {
 if (pageIds[i] == item.getItemId()) {
 container.setCurrentItem(i);
 return true;
 }
 }

 return false;
 }
};

	You'll also need a listener for when the user swipes between the tabs on the ViewPager, so that the BottomNavigationView also highlights the correct tab:

private ViewPager.OnPageChangeListener onPageChangeListener =
 new ViewPager.SimpleOnPageChangeListener() {
 public void onPageSelected(final int position) {
 navigation.setSelectedItemId(pageIds[position]);
 }
 };

	In the onCreate method, remove the assignment to the TextView, and assign the new ViewPager field:

mTextMessage = findViewById(R.id.message); // remove this line
container = findViewById(R.id.container);

	Change the BottomNavigationView assignment and listeners to assign to the field in your Activity, and then correctly assign both the listeners:

navigation = findViewById(R.id.navigation);
navigation.setOnNavigationItemSelectedListener(
 onNavigationItemSelectedListener);
container.addOnPageChangeListener(onPageChangeListener);

	You can now assign a ViewPagerAdapter to the ViewPager with three tabs (such as the SectionsPagerAdapter generated in the TopTabsActivity):

container.setAdapter(
 new SectionsPagerAdapter(getSupportFragmentManager()));

If the preceding line complains about TopTabsActivity not being an enclosing class, then change the SectionsPagerAdapter to be a static inner class--public static class SectionsPagerAdapter extends FragmentPagerAdapter.

The listeners in this example can be reused in any number of applications that require bottom-tabbed navigation. The only thing you'll need to change is the list of pageIds that are displayed to the user. You should avoid having more than three or four tabs in the BottomNavigationView; it normally implies that another form of navigation is more appropriate to your application.

 Navigation menus

Sometimes, you need to provide your user with a broad set of navigation options that won't fit into a set of tabs. This is where a hidden navigation menu, sometimes called a hamburger menu, becomes useful. This menu pattern was once popular to put as a sort of main menu, available on every screen in your application. However, navigation menus hide options, and they often encourage sloppy navigation design, because they provide a space where any navigation items can be dumped. It's better to try and avoid any form of hidden navigation until you're absolutely sure that you need it.

They can be useful when they augment other navigation patterns (such as tabs), and are used to offer seldom used or advanced functionality that the user is unlikely to access every day. For example, on a photo gallery screen, a hidden menu might be used to access the ability to create new labels, access photos that have been deleted, and to access settings and help.

Let's add a navigation menu to the example with the bottom tabs, to allow the user access to some other functionality that they might need:

	Right-click on the res/menu directory and select New | Menu resource file.

	Name the new file nav_menu, and click OK to create the new resource file.

	Open the Text editor for the new file.

	Copy the following menu structure into the new file:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/loyalty_programs"
 android:title="Frequent Flyer" />
 <item
 android:id="@+id/deals"
 android:title="Special Deals" />
 <item
 android:id="@+id/guides"
 android:title="Travel Guide" />
 <item
 android:id="@+id/settings"
 android:title="Settings">
 <!-- nesting a menu produces a "group" in the navigation menu -->
 <menu>
 <item android:id="@+id/profile"
 android:title="Profile"/>
 <item android:id="@+id/about"
 android:title="About"/>
 </menu>
 </item>
</menu>

	Now, open the activity_bottom_tabs.xml layout file.

	Change to the Text editor.

	The root element should currently be a ConstraintLayout; you'll need to wrap it inside a DrawerLayout widget that will manage the showing and hiding of the navigation drawer. You'll also need to give the ConstraintLayout a top-margin the same size as the ActionBar; otherwise, it will be hidden behind the system ActionBar (another way around this is to use the AppBarLayout and CoordinatorLayout with no system ActionBar):

<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/drawer_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:openDrawer="start"
 tools:context="com.packtpub.navigation.BottomTabActivity">
 <!-- This ConstraintLayout is your old root layout widget -->
 <android.support.constraint.ConstraintLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="?attr/actionBarSize">

	After the ConstraintLayout element is closed, you'll need to add the NavigationView, which will contain the navigation menu you just wrote:

</android.support.constraint.ConstraintLayout>

 <android.support.design.widget.NavigationView
 android:id="@+id/nav_view"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:fitsSystemWindows="true"
 app:menu="@menu/nav_menu" />
</android.support.v4.widget.DrawerLayout>

	Open the BottomTabActivity source file.

	By default, the NavigationView won't respond to any form of tapping menu items, and won't even close the navigation drawer when you select a menu item. You'll need to add a listener and tell it what to do yourself. At the bottom of the onCreate method, look up the NavigationView and add a listener to at least close the navigation drawer:

final NavigationView navigationView = findViewById(R.id.nav_view);
navigationView.setNavigationItemSelectedListener(new NavigationView.OnNavigationItemSelectedListener() {
 public boolean onNavigationItemSelected(final MenuItem item) {
 // your normal click handling would go here
 final DrawerLayout drawer = findViewById(R.id.drawer_layout);
 drawer.closeDrawer(GravityCompat.START);
 return true;
 }
});

	Users also expect to be able to close the navigation drawer using the back button. This requires you to override the default back-button behavior:

public void onBackPressed() {
 final DrawerLayout drawer = findViewById(R.id.drawer_layout);
 if (drawer.isDrawerOpen(GravityCompat.START)) {
 drawer.closeDrawer(GravityCompat.START);
 } else {
 super.onBackPressed();
 }
}

Overriding the back button behavior like this is something you should be very careful with. The default behavior is strongly consistent across the entire platform and all well-behaved applications. Applications that have inconsistent back-button behavior are obvious to users, and are often very frustrating.

The navigation drawer here is a very good example of its use within an application context. The bottom tabs allow the user quick access to the most commonly used areas of the application, while the navigation drawer can be used to access the less frequently used features. Remember that navigation drawers hide features of your application and should only be used for features that are not required for the user, to make effective use of your application. It's sometimes worth forcibly opening the navigation drawer the first time the screen is opened by the user (you can use a SharedPreferences to remember that they have seen it). You can do this using the DrawerLayout.openDrawer method in Activity.onCreate.

Also, remember that while overriding the default back-button behavior is important for the user experience in this specific case, it's normally not a good idea. Inconsistent back-button behavior is something that users pick up on very easily, and it's one of the most common irritations. For some behaviors such as closing the navigation drawer, it's important because it's the most common pattern, but using the ability to ask whether the user is "Sure they want to exit" (and similar additional behaviors) is a waste of the user's time, and should be avoided.

 Navigating using Fragments

So far in the book, you've mostly been navigating users from one Activity to another Activity, and this is in fact how most applications are built. However, there is another option, which is often much more flexible and allows you to build even more modular applications--navigation using Fragment instances. So far, we've only really looked at Fragments as little blocks of your application that can be assembled to form parts of a screen, but they can be so much more than that.

The tabbed Activity classes both provide a sort of navigation using the ViewPager class and the FragmentPagerAdapter class. In these cases, each of the pages that the user can swipe to is a complete Fragment, with its life cycle that is paused and resumed, stopped, and started as the user swipes the Fragment in or out of view.

If you look into the FragmentPagerAdapter class, you'll find that it doesn't add and remove the Fragment view instances directly to the ViewPager object. Instead, it uses a FragmentTransaction to add and remove the Fragment to the ViewPager using the ViewPager ID attribute:

mCurTransaction = mFragmentManager.beginTransaction();
// …
fragment = getItem(position);
mCurTransaction.add(container.getId(), fragment,
 makeFragmentName(container.getId(), itemId));

The FragmentTransaction class allows you to define any number of actions that will all appear to happen at once. You can add, remove, attach, detach, and replace any number of Fragment instances on your user interface, and then trigger them all at once. The best part is that you can also add the transaction to the "back stack". This means that the user can undo the transaction by pressing the back button on their device.

So, by creating your main Activity with a content space (like the ViewPager in the tabs examples), and populating it with Fragment objects, you can simulate Activity to Activity navigation. This also means that your primary navigation controls, such as tabs or a hidden navigation menu, only need to be defined in your activity layout rather than on the layouts of each screen in the application. This also makes the navigation within your application slightly quicker, because the heavy-weight components of the screen are reused for each navigation.

Let's add some navigation behaviors to the bottom tabs example that we've started, so that the navigation menu options actually do something:

	First, you'll need a Fragment class that you can use for the various navigation actions you'll have in the example. Right-click on your default package (that is, com.packtpub.navigation) and select New| Fragment| Fragment (blank).

	Name the new Fragment class PlaceholderFragment.

	Deselect the Include fragment factory methods? and Include interface callbacks? checkboxes:

	Click on Finish to create the new fragment class and layout file.

	Open the fragment_placeholder.xml layout file in Design mode.

	Select the FrameLayout in the Component Tree panel.

	In the Attributes panel, toggle to View all attributes.

	Find the background attribute, and set it to #ffffff (white) so that the background of this Fragment is opaque.

	Select the TextView in the Component Tree panel.

	In the Attributes panel, change the ID attribute to placeholder_text.

	Change the textAppearance attribute to @style/TextAppearance.AppCompat.Display1, which will appear in the drop-down as AppCompat.Display1.

	Now, open the new PlaceholderFragment Java source file.

	Declare a static String constant to allow the PlaceholderFragment to hold its placeholder-text argument:

private static final String ARG_TEXT = "text";

	Change the onCreateView method so that it sets the text of the TextView to the placeholder-text:

public View onCreateView(
 final LayoutInflater inflater,
 final ViewGroup container,
 final Bundle savedInstanceState) {

 final View rootView = inflater.inflate(
 R.layout.fragment_placeholder,
 container,
 false
);

 final TextView textView =
 rootView.findViewById(R.id.placeholder_text);
 textView.setText(getArguments().getString(ARG_TEXT));
 return rootView;
}

	Create a convenience factory method to create the PlaceholderFragment with the placeholder-text specified as a method argument:

public static PlaceholderFragment newInstance(final String text) {
 final PlaceholderFragment fragment = new PlaceholderFragment();
 final Bundle args = new Bundle();
 args.putString(ARG_TEXT, text);
 fragment.setArguments(args);
 return fragment;
}

	Open the activity_bottom_tabs.xml layout resource in the Text editor.

	Find the ViewPager below the BottomNavigationView widget.

	Change the ViewPager so that it is wrapped in a full-size FrameLayout with an ID of host; this will be used to contain the Fragment instances used to navigate the user around the app:

<FrameLayout
 android:id="@+id/host"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 app:layout_constraintBottom_toTopOf="@+id/navigation"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout_editor_absoluteX="8dp"
 tools:layout_editor_absoluteY="8dp">

 <android.support.v4.view.ViewPager
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</FrameLayout>

	Open the BottomTabsActivity source file.

	When the user taps on one of the bottom navigation items, you want to ensure that any navigation they have done is cleared so that the back button doesn't navigate them back into their previous stack, and ensure that there are no residual Fragment instances on the screen. In the OnNavigationItemSelectedListener.onNavigationItemSelected method in your anonymous class, you'll want to pop the backstack, before telling the ViewPager to change tab:

private BottomNavigationView.OnNavigationItemSelectedListener
 onNavigationItemSelectedListener
 = new BottomNavigationView.OnNavigationItemSelectedListener() {

 @Override
 public boolean onNavigationItemSelected(final MenuItem item) {
 final FragmentManager fragmentManager =
 getSupportFragmentManager();
 if (fragmentManager.getBackStackEntryCount() > 0) {
 fragmentManager.popBackStack(
 fragmentManager.getBackStackEntryAt(0).getId(),
 FragmentManager.POP_BACK_STACK_INCLUSIVE);
 }

 for (int i = 0; i < pageIds.length; i++) {
 // ...

	At the bottom of the onCreate method, you need to add a new listener to the NavigationView to listen for the taps in the menu. These will trigger the navigation using the FragmentManager, and will also close the navigation drawer:

final NavigationView navigationView = findViewById(R.id.nav_view);
navigationView.setNavigationItemSelectedListener(new NavigationView.OnNavigationItemSelectedListener() {
 @Override
 public boolean onNavigationItemSelected(final MenuItem item) {
 final String location = item.getTitle().toString();

 getSupportFragmentManager()
 .beginTransaction()
 .replace(
 R.id.host,
 PlaceholderFragment.newInstance(location)
)
 .setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN)
 .addToBackStack(location)
 .commit();

 final DrawerLayout drawer = findViewById(R.id.drawer_layout);
 drawer.closeDrawer(GravityCompat.START);
 return true;
 }
});

As a bonus, the preceding code will also produce a lovely transition navigation between each of the navigation actions. It's also possible that you might want to clear the backstack each time the user takes one of these navigation actions. On top of that, you may also want to select specific tabs in the BottomNavigationView to indicate which part of the app the user is in, or you may want the FrameLayout to wrap the entire ConstaintLayout so that the bottom tabs vanish when the user is navigated using the FragmentManager.

It's important to note that in this structure, the other layouts and Fragment instances are still in the layout. They're just hidden by the Fragment instances being placed over them as the user navigates using the menu. To avoid this, you can wrap the ViewPager in a dedicated Fragment class, but it's important to add it to the layout through the FragmentManager in the Activity.onCreate method and not by using the <fragment> tag in the layout XML. The FragmentManager will only remove a Fragment from the layout if it was added via a FragmentTransaction in the first place.

 Test your knowledge

	When using bottom tabs for navigation, which of these is important?

	They all have single color icons

	The tabs are of roughly equal importance

	There are always exactly three tabs

	Top tabs are preferred to bottom tabs in which of these situations?

	When the user won't need to navigate as frequently

	When the tabs don't have icons

	When there are more than three tabs

	Fragments can be used for navigation in which of these cases?

	Only when a navigation drawer is used as well

	Any time the user navigates within the application

	When they can be nested in a FrameLayout

	When the user selects an item in a navigation drawer, which of these is true?

	The drawer needs to be closed by the user

	The drawer should be closed programmatically

	The drawer is closed automatically after a short delay

 Summary

Navigation is a critical part of a user's experience, and should be carefully thought out and designed. Material design has various different design structures and widgets to help you implement more effective navigation, but it's important to use them carefully and in the right place. As with any screen design, it's important to consider what the user will want to do most often, and to rank each possible action and navigation from the most important to the least on every screen they are available in.

In many applications, dedicated navigation components won't even be needed, and navigation will be achieved purely through goal-oriented actions from an overview screen or dashboard. In all instances, it's a good idea to draw up a navigation map ahead of time (even if it's incomplete or overly simplified). They will often tell you what sort of navigation structure and components your application will require.

Navigation achieved using the FragmentManager instead of always launching a new Activity is an extremely powerful pattern. It offers a large number of additional options and significantly more control over the backstack, and even the animations played during each transition. It's also possible to change more than one onscreen Fragment in a single FragmentTransaction, which can be used to produce some amazing effects.

In the next chapter, we'll go back to the travel claim example and explore some more of the RecyclerView. The chapter will take a look at some of the more advanced capabilities of the RecyclerView and how to integrate it with the LiveData class and Room using some powerful classes from the support API to achieve some exciting effects.

 Making Overviews Even Better

When you built the overview/dashboard screen in Chapter 7, Creating Overview Screens, you used a RecyclerView and used Room and data binding to retrieve the list of records from the database and display them to the user, and it worked fantastically well. However, it can be done even better. RecyclerView is an incredibly powerful engine for data display, and we've only really scratched the surface of what it's capable of. In this chapter, we'll take a deeper look at some of the ecosystem surrounding the RecyclerView and integrate some big improvements into the claim example. Specifically, we'll explore the following:

	Different ways to lay out a RecyclerView with more than one view type

	Ways to improve the RecyclerView performance

	Animating changes to RecyclerView

	Keeping the complexity off the main thread

 Multiple view types

RecyclerView is capable of handling almost any number of different types of widgets for display on the screen, and recycling them all independently. This is an amazingly powerful and useful technique, not just for being able to display different types of data on the screen, but also to adjust the layout of the RecyclerView in a way that is mostly transparent. However, you'll need to look at how exactly you want to break the layout up.

There are generally two main reasons you will want to use different view types in a RecyclerView:

	To break up a long list of items with a divider

	As you have different types of data you want to render together

Let's start with creating and adding dividers; you can just adjust the margin of each of the widgets when the data is bound to them, but that doesn't help the user understand why the divider is there. Often, you'll want a divider to carry details of what it actually represents, such as a date label. In these cases, you need widgets to render the label.

You can create a special variant of your normal item layout that includes the divider, by embedding it in a LinearLayout. For example, if you wanted to add a divider label to the claim items displayed in the overview of the travel claim application, you could add a special layout named card_claim_item_with_divider, and have it look something like this:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android">
 <data>
 <variable
 name="presenter"
 type="com.packtpub.claim.ui.presenters.ItemPresenter" />

 <variable
 name="item"
 type="com.packtpub.claim.model.ClaimItem" />
 </data>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:layout_marginBottom="@dimen/grid_spacer1"
 android:text="@{presenter.dividerLabel(item)}"
 android:textAppearance="@style/TextAppearance.AppCompat.Caption" />

 <include
 item="@{item}"
 layout="@layout/card_claim_item"
 presenter="@{presenter}" />
 </LinearLayout>
</layout>

This approach is very simple to implement, because the divider is made part of the item that appears below it. This, in turn, means that your Adapter implementation only needs to decide whether or not an item needs a divider or not, as opposed to keeping track of the dividers as their own object type.

However, the approach also has several large disadvantages; each divider now carries an entire card with it, and if there are no dividers on the screen, the RecyclerView will still maintain a pool of them off-screen. This means that the entire unused card is unusable, and takes up much more memory and data than it should. The other problem with this approach is that you have nested the widgets another layer deep, within a LinearLayout. The LinearLayout renders the contained widgets in exactly the same way as the LinearLayoutManager attached to the RecyclerView. So, this layout introduces a widget into the layout system that doesn't really add any value and will negatively impact the application's performance.

So, what is the alternative? It's quite simple, really; treat dividers as special items in your RecyclerView. When you break up a RecyclerView, each view type is given an integer identifier that allows the RecyclerView to keep track of them independently in different recycling pools, and ensure that each one is only used in the right place. The easiest way to introduce dividers as special items, is to introduce them as special items in your dataset. This can be as simple as adding null values into the List of ClaimItem objects where dividers are required, but that won't play very nicely with data binding layers, and doesn't scale well.

A better way is to use a wrapper object in the dataset that tells the Adapter implementation how to render each of the items. This list can be calculated upfront and reduces the complexity of the layout and rendering. This also allows for very complex choices to be made for every item in the dataset, without affecting the user's perceived performance of the application. Let's build a DisplayItem class that can be used along with the DataBoundViewHolder class, to allow for any number of different item types to be used together in a single Adapter:

	Right-click on the com.packtpub.claim.ui package in the travel claim example project and select New| Java Class.

	Name the new class DisplayItem and click OK.

	Declare an integer field to represent the layout resource for each DisplayItem object. These will be used by the Adapter class to figure out which layout to load and render:

public class DisplayItem {
 public final int layout;

	This class is expected to be used as part of a mixed list, making generics inappropriate at this level. Declare a plain Object field to hold the data (if there is any) for the DisplayItem to bind to its layout:

public final Object value;

	Now, you'll need a constructor to assign these two fields:

public DisplayItem(
 final int layout,
 final Object value) {

 this.layout = layout;
 this.value = value;
}

	As a convenience to the Adapter classes, the DisplayItem will offer a bindItem method to help with the DataBoundViewHolder class:

public <I> void bindItem(final DataBoundViewHolder<?, I> holder) {
 @SuppressWarnings("unchecked") final I item = (I) value;
 holder.setItem(item);
}

This is a very simple class to implement, but makes a very big difference in how the Adapter implementation works. As the dataset in the Adapter is no longer the raw dataset read from the database or network, you're free to mix various data sources without having to do any of the work in the onBindViewHolder method. The DisplayItem is a bit like a ViewHolder that doesn't actually hold the user-interface widgets; instead, it just signals which layout needs to be used for the data it carries.

 Introducing dividers

In order to introduce dividers into the claim overview screen, you'll need to run a second pass over the data being delivered from the Room database layer, and figure which items require a divider. This should be done on a background worker thread, so that larger datasets won't impact the user experience. Let's get to work and add some simple dividers to the travel claim app to appear between claim items made on different days; this will require some major changes to how the ClaimItemAdapter class works. The most obvious change is that it will now have a List of DisplayItem objects instead of directly containing a List of ClaimItem objects.

Follow these steps to restructure the ClaimItemAdapter to use DisplayItem objects to mix both claim items and dividers in the RecyclerView:

	First, you'll need a nice line that you can use as a divider. This will be a drawable that can be rendered using an ImageView widget. Right-click on the res/drawable directory and select New| Drawable resource file.

	Name the new file horizontal_divider, and click OK to create the new resource.

	Change to the Text editor.

	By default, Android Studio will have created a selector drawable, but you want to declare a shape drawable. Replace the generated template code with the following XML drawable:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="line">

 <stroke
 android:width="1dp"
 android:color="#e0e0e0" />
</shape>

	You'll also need a layout to use for the dividers in the RecyclerView. Right-click on the res/layout directory and select New| Layout resource file.

	Name the new layout file widget_divider.

	Change the Root element to layout.

	Click OK to create the new layout resource file.

	The new layout doesn't actually need any variables to be bound, so you can leave the data section empty. Use an ImageView to render the new horizontal_divider at full width:

<layout xmlns:android="http://schemas.android.com/apk/res/android">
 <data></data>

 <ImageView
 android:layout_width="match_parent"
 android:layout_height="@dimen/grid_spacer1"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:src="@drawable/horizontal_divider" />
</layout>

	Now, open the ClaimItemAdapter source file.

	Change the List of ClaimItem objects to a List of DisplayItem objects:

private List<DisplayItem> items = Collections.emptyList();

	Declare a new override method--getItemViewType--and use the DisplayItem.layout value to identify the differences between the layouts that will be used in the RecyclerView. This method will delegate to the DisplayItem objects and use the layout resource ID as an identifier:

@Override
public int getItemViewType(final int position) {
 return items.get(position).layout;
}

It's a common trick to directly use the layout resource ID to determine the different view types in a RecyclerView. This avoids any mapping between internal ID numbers and the layout resources.

	Now, change the onCreateViewHolder method to use the viewType to decide which layout resource to load. The viewType will be passed in by the RecyclerView, and will be the same value that was returned by getItemViewType:

@Override
public DataBoundViewHolder<ItemPresenter, ClaimItem>
 onCreateViewHolder(
 final ViewGroup parent,
 final int viewType) {

 return new DataBoundViewHolder<>(
 DataBindingUtil.inflate(
 layoutInflater,
 viewType,
 parent,
 false
),
 itemPresenter
);
}

	Change the onBindViewHolder method to use the DisplayItem.bindItem method, rather than directly invoking DataBoundViewHolder.setItem:

@Override
public void onBindViewHolder(
 final DataBoundViewHolder<ItemPresenter, ClaimItem> holder,
 final int position) {

 items.get(position).bindItem(holder);
}

	At the bottom of the ClaimItemAdapter class, you'll need a new ActionCommand inner class to do the work of calculating where the dividers should be placed, and wrapping all the ClaimItem objects in DisplayItem objects:

private class CreateDisplayListCommand
 extends ActionCommand<List<ClaimItem>, List<DisplayItem>> {

	The CreateDisplayListCommand will need a utility method to decide whether or not to insert a divider between two items. This utility method will simply check whether both items have timestamps on the same day:

boolean isDividerRequired(
 final ClaimItem item1, final ClaimItem item2) {
 final Calendar c1 = Calendar.getInstance();
 final Calendar c2 = Calendar.getInstance();

 c1.setTime(item1.getTimestamp());
 c2.setTime(item2.getTimestamp());

 return c1.get(Calendar.DAY_OF_YEAR)
 != c2.get(Calendar.DAY_OF_YEAR)
 || c1.get(Calendar.YEAR)
 != c2.get(Calendar.YEAR);
}

	Then, you'll need to implement the onBackground method of ActionCommand, and process the list of ClaimItem objects into a List of DisplayItem objects:

@Override
public List<DisplayItem> onBackground(
 final List<ClaimItem> claimItems)
 throws Exception {

 final List<DisplayItem> output = new ArrayList<>();

 for (int i = 0; i < claimItems.size(); i++) {
 final ClaimItem item = claimItems.get(i);
 output.add(new DisplayItem(R.layout.card_claim_item, item));

 if (i + 1 < claimItems.size() // not the last item
 && isDividerRequired(item, claimItems.get(i + 1))) {

 output.add(new DisplayItem(R.layout.widget_divider, null));
 }
 }

 return output;
}

	To complete the CreateDisplayListCommand implementation, you'll need to implement the onForeground method. This will assign the new List of DisplayItem objects up to the ClaimItemAdapter and notify the RecyclerView of the changes:

@Override
public void onForeground(final List<DisplayItem> value) {
 ClaimItemAdapter.this.items = value;
 notifyDataSetChanged();
}

	You'll need an instance of CreateDisplayListCommand for the ClaimItemAdapter to use each time the LiveData is updated. Create a new field at the top of the ClaimItemAdapter class, and instantiate it:

private final CreateDisplayListCommand createDisplayListCommand
 = new CreateDisplayListCommand();
private final LayoutInflater layoutInflater;
private final ItemPresenter itemPresenter;
private List<DisplayItem> items = Collections.emptyList();

	Now, you can change the constructor to use the CreateDisplayListCommand instead of directly referencing the List of ClaimItem objects returned by the Room database:

public ClaimItemAdapter(
 final Context context,
 final LifecycleOwner owner,
 final LiveData<List<ClaimItem>> liveItems) {

 this.layoutInflater = LayoutInflater.from(context);
 this.itemPresenter = new ItemPresenter(context);

 liveItems.observe(owner, new Observer<List<ClaimItem>>() {
 @Override
 public void onChanged(final List<ClaimItem> claimItems) {
 createDisplayListCommand.exec(claimItems);
 }
 });
}

If you run the travel claim application now, you'll have a lovely thin and light divider between any claim items that were captured for different dates. Try creating a few using the datepicker to shift the days and force the user interface to produce different groupings of cards. You'll also find that because all the data still comes from the database, you can add and remove the data, and the user interface will remain up to date.

 Updating by Delta Events

Up until this point, when the data changes in the database, the ClaimItemAdapter simply tells the RecyclerView that the data has changed. This is not the most efficient use of resources, because the RecyclerView doesn't actually know what in the model has changed, and it's forced to relayout the entire scene as though the entire model has changed (although it will reuse the widgets it has already pooled).

RecyclerView actually has a secondary mechanism that allows you to tell it what has changed, rather than just saying that the data has changed. This is provided through a series of notifications the signal single items, or ranges being added, removed, and moved. The problem is that in order to use these methods, you need to know what has actually changed.

Most developer's first instincts here will be to use more events and signal from the DAO or a delegate layer what is changing, and then catch those events in the Adapter and forward them to the RecyclerView. This can be made to work, and in fact, it can work quite well when done through an event bus rather than having the Adapter directly attach itself to the DAO layer. The problem is that it also forces you to generate these events, translate them, and they can become unwieldy as the possible list of simultaneous changes becomes more complex.

Another way is to leave the events up to Room. When new data is provided via LiveData, you can compare the dataset currently displayed to the user with the new dataset and calculate what has changed. This is the same way that version control software such as Git or Mercurial work; they compare what you have done with what you started with to create a delta, or diff of the changes. This can be complicated and hard work, but Android support library has you covered; it provides a class named DiffUtil that can not only be used to compute the differences between virtually any two datasets, but also produce the correct set of events to deliver to the RecyclerView. Let's use DiffUtil in the ClaimItemAdapter, to only apply the changes to the RecyclerView:

	Before searching for differences, it's important to be able to determine whether two ClaimItem objects refer to the same database record, but are different. For that, you'll need a complete equals method, which can be generated by Android Studio. Open the ClaimItem source file in Android Studio.

	Click on the class name in the editor, and then select Code|Generate from the main menu bar.

	Select equals() and hashCode() from the pop-up menu.

	Use all the defaults that are provided by the IDE, clicking on Next and Finish until the wizard is complete.

	Open the ClaimItemAdapter source file.

	At the bottom of the ClaimItemAdapter class below the CreateDisplayListCommand inner class, declare a new ActionCommand inner class to deal with updating the existing list of DisplayItem objects, and triggering the required change notifications:

private class UpdateDisplayListCommand
 extends ActionCommand<
 Pair<List<DisplayItem>, List<ClaimItem>>,
 Pair<List<DisplayItem>, DiffUtil.DiffResult>
 > {

This class takes and processes Pair objects containing two parameters each. As input, we'll be passing the old List of DisplayItem objects, and the new List of ClaimItem objects that it needs to process. As output, it will produce the new List of DisplayItem objects, and a DiffResult that can be used to trigger the update events.

	The first thing you'll need in the UpdateDisplayListCommand is the onBackground method. This method will use the List of DisplayItem objects passed in through the Pair as the "old" List of items, and will generate a "new" List of DisplayItem objects by invoking the CreateDisplayListCommand directly:

@Override
public Pair<List<DisplayItem>, DiffUtil.DiffResult> onBackground(
 final Pair<List<DisplayItem>, List<ClaimItem>> args)
 throws Exception {

 final List<DisplayItem> oldDisplay = args.first;
 final List<DisplayItem> newDisplay =
 createDisplayListCommand.onBackground(args.second);

	Now that you have the List that is currently being displayed to the user and the List that needs to be displayed, it's time to calculate the differences between them. In order to keep things completely generic, the DiffUtil defines a callback interface that is queried to find the details of the two lists. In the UpdateDisplayListCommand class, we'll simply use an anonymous inner class:

final DiffUtil.DiffResult result =
 DiffUtil.calculateDiff(new DiffUtil.Callback() {
 @Override
 public int getOldListSize() {
 return oldDisplay.size();
 }

 @Override
 public int getNewListSize() {
 return newDisplay.size();
 }

	The Callback implementation also requires a method to compare items at two different positions, to see whether they appear to be the same item. The first thing to do is to check whether their layouts appear to be the same. If the layouts aren't the same, we can be sure that they are not the same object. If the layouts are the same, then we can look at the layout integer as an indicator of what type of data is in the DisplayItem object. If it's a ClaimItem, we use the database ID of the objects to see whether they represent the same record in the database:

@Override
public boolean areItemsTheSame(
 final int oldItemPosition,
 final int newItemPosition) {
 final DisplayItem oldItem = oldDisplay.get(oldItemPosition);
 final DisplayItem newItem = newDisplay.get(newItemPosition);

 if (oldItem.layout != newItem.layout) {
 return false;
 }

 switch (newItem.layout) {
 case R.layout.card_claim_item:
 final ClaimItem oldClaimItem = (ClaimItem) oldItem.value;
 final ClaimItem newClaimItem = (ClaimItem) newItem.value;
 return oldClaimItem != null
 && newClaimItem != null
 && oldClaimItem.id == newClaimItem.id;
 case R.layout.widget_divider:
 return true;
 }

 return false;
}

	The Callback also needs another method to test whether the contents of the two objects has actually changed. This method will only be invoked by the DiffUtil if the areItemsTheSame method returned true, which permits you to take some shortcuts through the implementation by assuming that both sides represent the same record:

@Override
public boolean areContentsTheSame(
 final int oldItemPosition,
 final int newItemPosition) {
 final DisplayItem oldItem = oldDisplay.get(oldItemPosition);
 final DisplayItem newItem = newDisplay.get(newItemPosition);

 switch (newItem.layout){
 case R.layout.card_claim_item:
 final ClaimItem oldClaimItem = (ClaimItem) oldItem.value;
 final ClaimItem newClaimItem = (ClaimItem) newItem.value;
 return oldClaimItem != null
 && newClaimItem != null
 && oldClaimItem.equals(newClaimItem);
 case R.layout.widget_divider:
 return true;
 }

 return false;
}

	That concludes the Callback implementation. Now, you'll need to close the onBackground method by returning a Pair containing the new list of DisplayItem objects and the DiffResult:

 }); // end of the DiffUtil.Callback implementation

 return Pair.create(newDisplay, result);
} // end of the onBackground implementation

	In the onForeground method of the UpdateDisplayListCommand, you'll need to assign the new list of DisplayItem objects up to the ClaimItemAdapter, just as before. However, instead of notifying the RecyclerView that the whole model has changed, you can use the DiffResult to relay the differences you found as a series of events:

@Override
public void onForeground(
 final Pair<List<DisplayItem>,
 DiffUtil.DiffResult> value) {
 ClaimItemAdapter.this.items = value.first;
 value.second.dispatchUpdatesTo(ClaimItemAdapter.this);
}

	Back at the top of the ClaimItemAdapter, you'll now need a field with an instance of the new UpdateDisplayListCommand class:

public class ClaimItemAdapter extends
 RecyclerView.Adapter<DataBoundViewHolder<ItemPresenter, ClaimItem>> {

 private final UpdateDisplayListCommand updateCommand
 = new UpdateDisplayListCommand();
 private final CreateDisplayListCommand createDisplayListCommand
 = new CreateDisplayListCommand();
 private final LayoutInflater layoutInflater;
 private final ItemPresenter itemPresenter;

	Now, in the ClaimItemAdapter class's constructor, the LiveData observer changes again. If the data is from the first notification, there is no point in calculating the differences between the two lists, but if it's any invocation after that, you can now run it through the UpdateDisplayListCommand:

public ClaimItemAdapter(
 final Context context,
 final LifecycleOwner owner,
 final LiveData<List<ClaimItem>> liveItems) {

 this.layoutInflater = LayoutInflater.from(context);
 this.itemPresenter = new ItemPresenter(context);

 liveItems.observe(owner, new Observer<List<ClaimItem>>() {
 @Override
 public void onChanged(final List<ClaimItem> claimItems) {
 if (!items.isEmpty()) {
 updateCommand.exec(Pair.create(items, claimItems));
 } else {
 createDisplayListCommand.exec(claimItems);
 }
 }
 });
}

These changes might seem like a lot of work just to change the events produced by the Adapter implementation, but they can be made relatively generic with some work so that they can be reused in various different list implementations. The changes also bring a much nice user experience to the table: animations. Because you are now telling the RecyclerView exactly what is changing, it will automatically animate the changes for you.

The DiffUtil is also an excellent tool in this case because of the dividers. Although the model changes one ClaimItem at a time, the DiffUtil also takes care of adding and removing any dividers that are affected by these changes. If you triggered each of these events from the database layer, you would need to handle these extra changes manually, and while DiffUtil might not be the most efficient tool, it keeps the data absolutely consistent.

 Test your knowledge

	How many different view types can you use in a single RecyclerView instance?

	One or two

	Any number

	256

	When using a DiffUtil, which of the following applies to the data you are comparing?

	It must be a database entity

	It must be comparable

	It is exposed through a Callback

	When adding dividers to a RecyclerView, you should do which of these?

	Make them part of the item above the divider

	Add them to the display in the onBindViewHolder method

	Make them distinct items in the dataset

 Summary

In this chapter, we largely focused on the RecyclerView and how to make it work even better within your application, and especially for overview/dashboard screens. Changes such as adding the dividers and animations don't change the functionality of an application, but they do change the user experience. In this case, they make it easier for the user to understand the screen and easier for them to understand what happened when things changed.

These sorts of changes can be seen as "polishing" the application. You can build the application without them to ensure that everything works, and then add them in afterward. It's a good idea to slowly build a list of generic structures that can be used to quickly polish any application. A good example will be a generic ActionCommand to use the DiffUtil and apply the changes to an Adapter.

In the next chapter, we'll spend some more time on polishing applications. We'll look at animations, colors, and styling, and explore how to define and use them throughout an application to apply a consistent theme.

 Polishing Your Design

Application polish is one of the more subtle areas of the user experience. The mix of colors, fonts, and animations are generally not something that users register on a conscious level, but this doesn't mean they're not important. While the choice of colors doesn't directly affect the application's functionality, it does affect the usability of the application. These choices can also be the difference between a user completing a sale through your application, or the same user uninstalling it.

Android has a massive array of tools that you can use to polish your application. Applying branding, colors, and extensive theming to your application can be done in ways that allow you to maintain a distinct look and feel, while still following Material Design guidelines and without building any custom widgets. In fact, most graphical effects for widgets on Android can be achieved purely through styling. In this chapter, we'll explore the given topics:

	How to choose and apply colors to an application

	How and when to generate color palettes dynamically

	Creating and applying animations, and when to do so

	Defining and using custom styles for widgets

 Choosing colors and theming

Colors are one of the least understood and most important aspects of your user interface design. Text colors must stand out from the background colors to keep text legible, but not too much either. Color choices should follow a palette throughout the application and should reflect the application's branding, but should also help convey meaning to the user. Choosing the right mix of colors will maximize the usability of your application, while helping reduce the user's cognitive load. The wrong color combinations will make text more difficult to read, cause eye strain, and increase the user's levels of cognitive fatigue.

When you apply custom colors to your application, it's important to ensure that you don't have too many colors, and that they are applied consistently within the application. Color conveys meaning; it can be used to tell the user that the new button is the opposite of the delete button. These styles should be defined as resources and applied consistently throughout your application. Consistent styling helps the user understand each screen in the application more quickly, by telling them what they are looking at. Typically, style information is defined in the res/values/styles.xml file of your project. This is an excellent starting point in our exploration of colors and in polishing your application. If you open the res/values/styles.xml file of the travel claim example app, you'll see something like this near the top of the file:

<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
</style>

This defines a style named AppTheme, which is applied to your entire application from the AndroidManifest.xml file. The style declares that its parent is the Theme.AppCompat.Light.DarkActionBar style, which is imported from the app-compat library (in your build.gradle dependencies). The parent of the style is a bit like the parent of a class; it defines all the defaults, and you can override them in the child style. In the default AppTheme style, there are three colors that are overridden with references to color resources: primary, primary-dark, and accent. These colors are used all over the AppTheme for the backgrounds of the Toolbar objects, buttons, floating action buttons, and so on. Primary is used for the background of a Toolbar and FloatingActionButton by default, primary-dark is used for the status bar background, and accent is used for the foreground of FloatingActionButton and the labels above the TextInputLayout widgets.

 Producing an application palette

The first thing to do when applying colors to your application is to decide on your application color scheme, or palette. A palette is a small group of colors that form the basis of your theme, and can be adjusted (typically by making them brighter or darker) to produce a wide range of colors that will all look similar enough to be seen as part of the same theme.

It's best to use a good color designing or palette construction tool. An excellent one is Paletton, which is available at http://paletton.com for free (another good tool is https://www.materialpalette.com/). For this section, we'll use Paletton to define a basic color palette for the travel claims application example; let's get started:

	Navigate to http://paletton.com in your web browser of choice.

	There are two major parts to the Paletton application; on the left is a color-wheel with draggable handles that allow you to select a primary color (the secondary colors are derived automatically using various available algorithms). On the right of the application is the palette sample for the application:

	Use the Scheme Type selector to choose the second type of color scheme: Adjacent colors (3-colors).

	To the right of the Scheme Type selector, use the small toggle button to turn on add complementary. This will add a complimentary color to your palette. A complementary color will be on the opposite side of the color-wheel to your main color, and will serve as accent color.

	Adjust the base color and shades until the palette preview on the right is a combination you are happy with:

	By clicking on any of the boxes in the palette preview and then their hex codes, you can copy the RGB hex code to the clipboard and paste it into Android Studio:

	Ensure that you use colors from the top-left box for your primary and primaryDark colors, while you use a color from the bottom-right box for the accent color.

	In Android Studio, use Tools | Android | Theme Editor to open the Android Theme Editor.

	In the Theme panel on the right-hand side, you'll find a list of colors that define your theme:

	Click on the color buttons in the Theme Editor to open a color editor. Copy the colors from Paletton into the theme editor for primary, primary-dark, and accent.

If you run the travel claim example application now, you'll see that the entire application has a completely new theme. The floating action button will be the same color as the underline on the EditText widget. This will be your accent color, while the background of your Toolbar will be your primary color.

It' generally best to use your primary color's complementary color as your accent color. This is the color that is on the opposite side of color wheel, and will normally have an excellent contrast against your primary color. The contrast will help readability and reduce eye strain. It's important to ensure legibility for everyone, and Paletton includes a Vision simulation option below the palette preview that can be used to test your palette for various types of colorblindness.

 Generating palettes dynamically

There are times when you're not sure what your palette should be ahead of time. There are also times that you would like the color scheme to match some user content, such as a photo or the album art for the music they're listening to. In cases like these, it's nice to be able to grab the key colors from an image and produce a palette that will match them. The problem is that the palette still needs to not be too jarring, and your text still needs to be legible against the background color. These are pretty hard problems to solve in pure code, but Android support libraries have an excellent little tool that does exactly this--the Palette API.

A very useful way of using generated palettes is to colorize cards with different icons according to the colors in the icon. Let's write a CardView implementation that can colorize its contents according to a generated palette:

	You'll first need to add the Palette API to your project. In the travel claim app, open the app module's build.gradle file in Android Studio.

	In the dependencies at the bottom of the file, include the Palette API by declaring this:

implementation 'com.android.support:palette-v7:+'

	Click on the Sync Now link that appears at the top of the editor panel.

	Right-click on the widget's package and select New| Java Class.

	Name the new class ColorizedCardView.

	Change the Superclass to android.support.v7.widget.CardView.

	Add android.support.v7.graphics.Palette.PaletteAsyncListener to the Interface(s).

	Click OK to create the new class.

	Add the required View constructors so that the class can be used from XML files:

public ColorizedCardView(final Context context) {
 super(context);
}

public ColorizedCardView(
 final Context context,
 final AttributeSet attrs) {
 super(context, attrs);
}

public ColorizedCardView(
 final Context context,
 final AttributeSet attrs,
 final int defStyleAttr) {
 super(context, attrs, defStyleAttr);
}

	The ColorizedCardView doesn't just change its own background, it needs to change the color of any text as well so that the text remains legible to the user. This means that the ColorizedCardView needs to find all the TextView instances that don't have their background Drawable set (a Button is just a TextView with a specialized background, and we want to leave that as is). This method will traverse (depth-first) into the ColorizedCardView, and add any TextView objects it finds to a Collection:

static Collection<TextView> findTextViews(
 final ViewGroup viewGroup,
 final Collection<TextView> textViews) {

 final int childCount = viewGroup.getChildCount();
 for (int i = 0; i < childCount; i++) {
 final View child = viewGroup.getChildAt(i);

 if (child instanceof ViewGroup) {
 // recurse downwards
 findTextViews((ViewGroup) child, textViews);
 } else if (child instanceof TextView
 && child.getBackground() == null) {
 textViews.add((TextView) child);
 }
 }

 return textViews;
}

	Each Palette is actually a list of Swatch objects, each one containing a base color and colors suitable for heading text and body text. The ColorizedCardView allows you to specify a Swatch directly to colorize the background and all the text:

public void setSwatch(final Palette.Swatch swatch) {
 setCardBackgroundColor(swatch.getRgb());

 final Collection<TextView> textViews = findTextViews(
 this, new ArrayList<TextView>()
);

 if (!textViews.isEmpty()) {
 for (final TextView textView : textViews) {
 textView.setTextColor(swatch.getBodyTextColor());
 }
 }
}

	When a Palette is generated, it can have any number of Swatch objects. There are a selection of standard swatches that are normally generated when you create a Palette from a Bitmap, but any number of them may remain unpopulated (null). When you colorize the card by a Palette object, you'll need to look for an available Swatch; in the ColorizedCardView implementation. We'll favor light swatches over dark swatches, and muted swatches over vibrant:

public void setPalette(final Palette palette) {
 if (palette.getLightMutedSwatch() != null) {
 setSwatch(palette.getLightMutedSwatch());
 } else if (palette.getLightVibrantSwatch() != null) {
 setSwatch(palette.getLightVibrantSwatch());
 } else if (palette.getDarkMutedSwatch() != null) {
 setSwatch(palette.getDarkMutedSwatch());
 } else if (palette.getDarkVibrantSwatch() != null) {
 setSwatch(palette.getDarkVibrantSwatch());
 }
}

You may need to adjust the ordering of this method in your application, depending on the colors chosen for the rest of the application. Typically, muted colors cause less eye strain for your users, but you may want to colorize action buttons using vibrant colors to draw attention to them.

	Now, we need a way to specify a Bitmap to colorize the entire ColorizedCardView with. The Palette uses a Builder object to generate its swatches, and has its own built-in AsyncTask to handle generating the Palette on a background thread (which can take a few seconds on larger images or slower devices). The setColorizeBitmap method is defined so that it's easy to invoke from a data-bound layout XML file. The Palette.Builder needs a callback to handle the generated Palette, which will be the ColorizedCardView instance (remember that you've implemented the PaletteAsyncListener interface):

public void setColorizeBitmap(final Bitmap image) {
 new Palette.Builder(image).generate(this);
}

@Override
public void onGenerated(final Palette palette) {
 setPalette(palette);
}

	You'll also need a way to colorize the ColorizedCardView based on a Drawable object, which will offer better interoperability with application Resources. The following renderDrawable method has a shortcut if the Drawable object is a BitmapDrawable (which simply wraps a Bitmap); otherwise, it'll try and render the Drawable to a Bitmap object. As a Drawable has bounds that include its position (and not just its size), you'll need to translate the Canvas that it's going to draw on so that it renders in the top-left corner of the Bitmap:

private Bitmap renderDrawable(final Drawable drawable) {
 if (drawable instanceof BitmapDrawable) {
 return ((BitmapDrawable) drawable).getBitmap();
 }

 final Rect bounds = drawable.getBounds();
 final Bitmap bitmap = Bitmap.createBitmap(
 bounds.width(),
 bounds.height(),
 Bitmap.Config.ARGB_8888
);

 final Canvas canvas = new Canvas(bitmap);
 canvas.translate(-bounds.left, -bounds.top);
 drawable.draw(canvas);

 return bitmap;
}

public void setColorizeDrawable(final Drawable drawable) {
 setColorizeBitmap(renderDrawable(drawable));
}

To use the ColorizedCardView in the travel claim application, you can find and download colored icons for all the categories and change the ItemPresenter to use them, instead of the standard black icons we imported from the Material Icons set. An excellent resource for finding icons and sets of icons is Iconfinder--https://www.iconfinder.com/. Iconfinder allows you to search for and filter icon sets according to your criteria, and purchase or download the icons you need for your application.

To change the overview screen to use your favorite colorful icons, follow these steps:

	Place your new icons in the res/drawable directory of your application; ensure that you download PNG icons so that they can be read by Android.

	Open the card_claim_item layout resource in Android Studio.

	Change to the Text editor.

	Change the declaration of the CardView to a ColorizedCardView, and use the app:colorizeDrawable data binding attribute to invoke setColorizeDrawable with the same Drawable that will be rendered as the icon:

<com.packtpub.claim.widget.ColorizedCardView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/grid_spacer1"
 android:foreground="?attr/selectableItemBackground"
 android:onClick="@{() -> presenter.viewClaimItem(item)}"
 app:colorizeDrawable="@{presenter.getCategoryIcon(item.category)}"

	Open the ItemPresenter Java source file.

	Change the icons returned by the getCategoryIcon method to return your new icons, instead of those used by the category selector:

public Drawable getCategoryIcon(final Category category) {
 final Resources resources = context.getResources();
 switch (category) {
 case ACCOMMODATION:
 return resources.getDrawable(R.drawable.hotel);
 case FOOD:
 return resources.getDrawable(R.drawable.dinner);
 case TRANSPORT:
 return resources.getDrawable(R.drawable.airplane);
 case ENTERTAINMENT:
 return resources.getDrawable(R.drawable.clapboard);
 case BUSINESS:
 return resources.getDrawable(R.drawable.briefcase);
 case OTHER:
 default:
 return resources.getDrawable(R.drawable.misc);
 }
}

The icon names used earlier are just an example; you'll need to use the names of the icon files you downloaded and placed in the drawable directory.

The ColorizedCardView is a very useful and generic implementation of colorization using the Palette class. Using the bold background colors on each card makes them quickly recognizable to the user, and allows the user to more quickly find what they are looking for in a long scrolling list of items. As it can be automatically colorized using data binding, the ColorizedCardView can be populated with virtually any content.

 Adding animations

Animations may appear to just be a nice bit of polishing on top of your user interface, but they can also serve an important purpose. In any design, whether it's a building, an API, or a user interface, it's good to try and follow a principle of least surprise. Try and offer your user things that make sense without them having to try and understand the details of how it works. A good example of violating this principle is when a button is wired incorrectly. If you were to press the copy button on a printer, and instead of making a copy it printed a test page, this would be a surprise. You expected the machine to do one thing because of the label, but it did something unexpected.

It's always important to consider what your user will expect to happen when they look at or use your application's user interface. Using well-known names and icons for the elements of a user interface help make it instantly understood by your user, but sometimes your application will change what is on the screen without being entirely obvious as to what has changed. In cases like this, animations become essential to tell users what has happened. A good example of using animation to express a change is the automatic animations you added to the RecyclerView using the DiffUtil class. When the user adds a new claim item, it appears in the list at the correct position, but an animation will draw the user's attention to where it has appeared and let them know that it's the new item.

Animations have to strike a careful balance. However, if everything is animated, then the user can become frustrated by the extra time being taken by the animations. This leads to another important factor--animations should be quick. The Android platform defines a short animation as just 200 milliseconds, just one-fifth of a second.

You've already added implicit animations to the travel claim application using the RecyclerView and DiffUtil. Implicit animations are all over in the Android platform and cover a wide range of everyday cases, such as the changes in the RecyclerView contents. There are also ways to add your own animations to layouts and widgets, and there are several widgets that are specifically designed to render animations and transitions.

Within layout animations, there are four basic actions that an animation can perform on a widget or group of widgets that are being animated.

A widget can be translated, which involves moving it left or right, up or down (or any combination of those), as shown here:

An animation can also scale a widget. This involves changing its size to make it appear larger or smaller. Scaling, like translation, can be applied on either the horizontal (x) axis, or the vertical (y) axis, or both of them together:

You can also have an animation rotate the widget. Rotation is not a natural change for a user interface widget, as typically, all widgets are layouts out of a box-like grid. Rotation can be very useful, and can produce a pleasing effect when applied to widgets that appear to be round (such as a FloatingActionButton or a circular avatar):

While all the first three transformations are concerned with the physical structure of the widget being animated, the fourth one changes how opaque it is. The alpha transformation allows you to produce animations where widgets appear to fade-in or fade-out:

These four animation actions can be combined into what Android calls a set. A set is a group of animation actions that will all appear to happen at the same time.

 Creating custom animations

Android animations are in fact resource files, much like an icon or a layout. The animations that apply to layouts and widgets are XML files that define the various transformations and are placed in the res/anim directory. Android provides a small selection of simple animations that you can use in your application, without needing to build your own:

	android.R.anim.fade_in - @android:anim/fade_in

	android.R.anim.fade_out - @android:anim/fade_out

	android.R.anim.slide_in_left - @android:anim/slide_in_left

	android.R.anim.slide_out_right - @android:anim/slide_out_right

These four animations cover two different types of transition: fading out and in, or sliding the widgets from left to right. Nothing stops you from mixing them together, for example, fading the widget out and then sliding a new one in from the left.

To do these sorts of transitions, there are a family of Android widgets that will manage the animation for you. These can either focus on animating the content (that is, text or an image), or they transition through a list of child widgets. The base of these classes is android.widget.ViewAnimator, and the best-known implementations are these:

	TextSwitcher: Behaves like an animated TextView; each time its text is changed, it animates between the old text and the new text

	ImageSwitcher: Just like TextSwitcher, but for images

	ViewFlipper: It is used like a FrameLayout, but only one of its children is shown at a time, and you can have it animate between them

Let's create two new animation sets to animate some text, and change the category label in the CategoryPickerFragment to use a TextSwitcher:

	Right-click on the res directory in the travel claim example app and select New | Android resource file.

	Name the new file slide_in_top.

	Change the Resource type to Animation (not Animator):

An Animator allows the direct manipulation of any property in any Java Object; while this is a very powerful system to use, it does not work with classes such as TextSwitcher. Animation refers to the view animation system, which is designed specifically for animating widgets, and has various performance enhancements in the layout system to avoid the user interface stuttering during animations.

	Click OK to create the new animation XML resource.

	On the <set> element, we need to define how long the animation will take, and the interpolator. The interpolator defines the relative motion of the animation. Does it happen with linear smoothness (which often appears artificial, but is the easiest), or does the animation appear to bounce, or something else entirely? In this case, we will use the standard anticipate_overshoot_interpolator, which includes a small bounce effect at the end of the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/anticipate_overshoot_interpolator"
 android:shareInterpolator="true"
 android:duration="@android:integer/config_shortAnimTime">
</set>

	This animation will consist of two parts. The first part is a translation from offscreen, downward to where the text should normally appear. The second part is a fade in from fully transparent to opaque. Each action taken by a view animation is defined in terms of what the value should be when the animation starts, and what the value should be when it stops (from and to). The values in between are defined by the time of each frame, and the interpolator. Inside the <set> element, add a translation to bring the view along the y-axis from above where it ends:

<translate
 android:fromYDelta="-50%p"
 android:toYDelta="0" />

	Now, add the fade-in using an alpha action. A zero alpha value indicates that the widget should be invisible, while a one indicates that it should be fully opaque. The alpha is a floating-point number, so you can define any value between zero and one for partial transparency:

<alpha
 android:fromAlpha="0.0"
 android:toAlpha="1.0" />

	While a single animation is nice, you need two animations running together to create a transition. Right-click on the new res/anim directory and select New| Animation resource file.

	Name the new animation slide_out_bottom.

	Click OK to create the new resource file.

	This animation works the same way as slide_in_top, but pushes the view downward and makes it transparent:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/anticipate_overshoot_interpolator"
 android:shareInterpolator="true"
 android:duration="@android:integer/config_shortAnimTime">

 <translate
 android:fromYDelta="0"
 android:toYDelta="50%p" />

 <alpha
 android:fromAlpha="1.0"
 android:toAlpha="0.0" />
</set>

	Now, you'll need to change the CategoryPickerFragment to use a TextSwitcher instead of a TextView. Start by opening the fragment_category_picker layout resource file and change to the Text editor.

	Locate the TextView at the bottom of the file, and change it to be a TextSwitcher. A TextSwitcher needs two TextView child elements to animate between. Each time you change the text on the TextSwitcher, it puts the new text on the invisible TextView and then animates between the visible TextView and the invisible one (that is, it switches them around and hence its name). You'll need to tell the TextSwitcher to use the animation resources you just created as its in and out animations:

<TextSwitcher
 android:id="@+id/selected_category"
 android:inAnimation="@anim/slide_in_top"
 android:outAnimation="@anim/slide_out_bottom"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:textAppearance="@style/TextAppearance.AppCompat.Medium" />

 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:textAppearance="@style/TextAppearance.AppCompat.Medium" />
</TextSwitcher>

	Open the CategoryPickerFragment source file and change the references to the TextView to a TextSwitcher. There will be one as a field, and the other should be in the onCreateView method:

private RadioGroup categories;
private TextSwitcher categoryLabel;

// …

categories = (RadioGroup) picker.findViewById(R.id.categories);
categoryLabel = (TextSwitcher) picker.findViewById(R.id.selected_category);

	Open the IconPickerWrapper source file. This currently wraps a TextView, but will now need to wrap a TextSwitcher. Like the CategoryPickerFragment, change the references from TextView to TextSwitcher:

private final TextSwitcher label;
public IconPickerWrapper(final TextSwitcher label) {
 this.label = label;
}

That's all you need to do in this case; the CaptureClaimActivity will now have a very pleasing animation on the text in the category chooser, which indicates that the icons are used to change the category. While a TextSwitcher doesn't subclass TextView, it does expose the same critical method for these cases--setText(CharSequence). Unfortunately, this means that you can't substitute the classes directly one for the other. Instead, you'll need to treat each as a separate type (as earlier). You can, however, create abstract wrapper class to wrap these two and allow your layout to define whether there should be animations or not:

public abstract class TextWrapper<V extends View> {
 public final V view;

 public TextWrapper(final V view) {
 this.view = view;
 }

 public abstract void setText(CharSequence text);

 public abstract CharSequence getText();

 public static TextWrapper<TextView> wrap(final TextView tv) {
 return new TextWrapper<TextView>(tv) {
 @Override
 public void setText(final CharSequence text) {
 view.setText(text);
 }

 @Override
 public CharSequence getText() {
 return view.getText();
 }
 };
 }

 public static TextWrapper<TextSwitcher> wrap(final TextSwitcher ts) {
 return new TextWrapper<TextSwitcher>(ts) {
 @Override
 public void setText(final CharSequence text) {
 view.setText(text);
 }

 @Override
 public CharSequence getText() {
 return ((TextView) view.getCurrentView()).getText();
 }
 };
 }

 public static TextWrapper<?> wrap(final View v) {
 if (v instanceof TextView) {
 return wrap((TextView) v);
 } else if (v instanceof TextSwitcher) {
 return wrap((TextSwitcher) v);
 } else {
 throw new IllegalArgumentException("unknown text view: " + v);
 }
 }
}

This class can be used to wrap references to widgets that can be either TextView or TextSwitcher, depending on the context. This allows you to reuse more of your Java code when dealing with cases where some screens require a simple layout, while others require animations. It's generally a useful pattern to remember, because it reduces the coupling between your user interface and your code when you can't use the class inheritance, and want to avoid casting.

Data binding can also be used to solve this problem. By having the CategoryPickerFragment, use a data-bound layout; the TextSwitcher will automatically animate when the model was changed by the user clicking on the RadioButton widgets.

 Activating more animations

There are some other small ways in which Android can provide your application with animations that let the user know what is going on. For example, you can tell any ViewGroup implementation (any of the Layout classes: FrameLayout, LinearLayout, or ConstraintLayout) to animate the changes to the layout. You do this by simply turning on animateLayoutChanges in your layout resource:

<android.support.v7.widget.CardView
 android:animateLayoutChanges="true"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

This is especially useful when you offer the ability to unfold a card to expose more functionality or more information. Coupling the animateLayoutChanges attribute with the ViewGroup class is a very powerful combination. ViewStub is a special type of widget that can be used like an <include>, that only loads when you tell it to. When it's loaded, it doesn't act as a container, but replaces itself with the layout it has loaded. Using animateLayoutChanges inflating a ViewStub can automatically trigger a nice animation to reveal the new content to the user. The following code snippet is a CardView that will animate the inflation of a menu that can be made to appear at the bottom of the card:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:contentPadding="@dimen/grid_spacer1">

 <android.support.constraint.ConstraintLayout
 android:animateLayoutChanges="true"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/imageView"
 android:layout_width="48dp"
 android:layout_height="48dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_category_food" />

 <TextView
 android:id="@+id/heading"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:textAppearance="@style/TextAppearance.AppCompat.Large"
 app:layout_constraintStart_toEndOf="@+id/imageView"
 app:layout_constraintTop_toTopOf="parent"
 tools:text="Dinner a the Hotel" />

 <TextView
 android:id="@+id/date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 app:layout_constraintStart_toEndOf="@+id/imageView"
 app:layout_constraintTop_toBottomOf="@+id/heading"
 tools:text="22-September-2017" />

 <ViewStub
 android:id="@+id/menu"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout="@layout/card_menu"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/date" />

 </android.support.constraint.ConstraintLayout>
</android.support.v7.widget.CardView>

When you inflate the preceding ViewStub, it will replace itself with the contents of the card_menu layout resource, and the ConstraintLayout will animate the change, making the card_menu appear to unfold. You can use the following code snippet to inflate the ViewStub when the CardView is tapped on by the user:

cardView.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(final View view) {
 final ViewStub menu = (ViewStub) findViewById(R.id.menu);
 menu.inflate();
 view.setOnClickListener(null);
 }
});

The preceding code is a single-use OnClickListener that removes itself when it's been triggered. This is important because once a ViewStub has been inflated, it no longer exists in the layout. After the preceding listener is triggered, findViewById(R.id.menu) will return the root element of the card_menu layout resource, not the ViewStub.

 Creating custom styles

When polishing your application, you'll find that certain styling requirements become common over the entire application, but in specific places. For example, the positive / go buttons should have a specific background color that highlights them from the other buttons in the application, or that the negative / delete buttons should have a color that highlights them as destructive for the user.

Android offers you the ability to define your own styles apart from those defined by the system. The theming system in Android is built entirely on top of the styling system. Styles have some very simple attributes:

	Styles can be named

	A style can change any attribute exposed in the layout XML file

	A style can inherit from another style and override its attributes (a bit like classes extending each other)

	Styles are defined as value resources (a bit like dimensions, strings, and colors)

Let's jump right in and create a new style for the travel claim application for the amount-input; we want to create a style that can be reused whenever the user needs to type a monetary amount into the application:

	Open the styles.xml resource file in the res/values project folder.

	You'll note in this file that you already have several styles defined by the Android Studio templates. These are mostly theme-related styles, and will apply to the entire application. We want to define a new style that can be applied to specific widgets. Declare a new style element named AmountInput:

<style name="AmountInput">
</style>

	The first thing we want this style to do is to align the text to the right of the input box. This is normally done by changing the android:gravity attribute on the EditText box. In the style element, you need to declare this as an item you wish to override:

<item name="android:gravity">right</item>

	You also want to change the focus behavior so that when the user taps to edit the amount, the existing value is selected. This allows them to more easily enter a new number, which is more common than wanting to edit an existing number. The TextView class defines an attribute named selectAllOnFocus that is perfect for this purpose:

<item name="android:selectAllOnFocus">true</item>

	To apply the style to the amount input, open the fragment_claim_capture_details.xml layout resource in Text mode (this is from the Try it Yourself section of Chapter 4, Composing User Interfaces).

	Find the EditText entry for the amount, and apply the style. It's important to note that the style attribute is not in the android XML namespace:

<EditText
 style="@style/AmountInput"
 android:id="@+id/amount"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/label_amount"
 android:inputType="number|numberDecimal" />

When you run the application or change to the Design view, you'll find that the amount field is now right aligned, and if you tap on it, the entire content will be selected. This style can now be applied to any number of fields in your application:

Styles themselves can be overridden at each layer. When you inherit from another style, the child can override any of its parent items. When a widget has a style applied, any attributes specified on the widget's XML element take precedence over the style being applied. For example, if you wanted to create an AmountInput styled widget that left aligned its text content (instead of the style's right alignment), you might use the following:

<EditText
 style="@style/AmountInput"
 android:id="@+id/amount"
 android:gravity="left"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/label_amount"
 android:inputType="number|numberDecimal" />

Although it's not commonly done, you can also use styles to apply attributes, such as labels and hints, to widgets. This allows for two screens to easily replicate a widget exactly, without requiring an include. Any time you find that your layout code appears to repeat itself, consider using a style if an include doesn't look suitable.

 Test your knowledge

	When choosing a color scheme, it's important that the accent color has which of these features?

	It is the same hue as the primary color

	It is complementary to the primary color

	It is not black and not white

	Dynamically generating a palette should meet which of these conditions?

	It should be used in preference to defining the color scheme up front

	It should be done on a background thread

	It should only be used in media applications

	Which of these is to be kept in mind while animating layouts in your application?

	They should not block or distract the user from achieving their goals

	They should be done whenever the user interface changes

	They should be kept as simple as possible to conserve battery

	Custom styles can be used to define which of these?

	Common groups of attributes for widgets based on their class

	Common groups of attributes to be applied through the style attribute

	Default values for any attribute in a layout resource file

 Summary

Polishing an application (much like optimizing an application) shouldn't be taken on too early in its development, as it can distract getting the application working and making the user experience smooth. It is, however, a vital part of an application's development, and the careful application of colors, fonts, and animations can sometimes be the difference between success and failure.

Using color tools such as Paletton make the selection of a color-scheme much easier. It's important to also consider how color-blind people will see your application, and to ensure that the application is still usable by this sizeable portion of the population. If you know someone who has any form of color blindness, ask them to help test your choice in colors. Alternatively, use the color blindness simulations that palette design tools such as Paletton provide.

When adding animations to the application, it's a good idea to leverage the default animation systems provided by the platform. Avoid adding animations to widgets that don't already provide some form of animation capability. If you find yourself animating things by hand, there is probably something wrong. Try and stick to using the animations built into classes like RecyclerView and ViewPager, while using animating widgets such as TextSwitcher where appropriate. It's also important to keep animations short. While you might think your animation looks lovely, your users will become frustrated if they slow down the use of the application.

In this chapter, we looked at various ways in which your application can be styled to fit a color-scheme, and polished with animations and styles for certain components. In the next chapter, we'll look at how to create your own completely customized widget classes and how to repurpose the existing widget classes for new or specialized use cases.

 Customizing Widgets and Layouts

In everyday development on Android, you'll find that the core platform and support libraries offer a wide range of widgets and layouts for you to build your application. There are also a wealth of open source and third-party widgets available on the internet. The Android Arsenal website (https://android-arsenal.com/) is a well-cataloged list of APIs available for Android, and it is an excellent starting point when you need some functionality that is not available in the platform or support libraries. Even with this massive wealth of available widgets and libraries, you'll sometimes find yourself wanting a widget that hasn't already been built.

Creating your own widgets on any platform is a sizable undertaking. Widgets need to be able to render themselves to look as native as possible using graphics primitives such as lines, arcs, circles, and polygons. Many Android widgets (such as Button) avoid having to do this using the excellent Drawable class and resources. This enables you to customize the look of widgets simply by changing the drawable resources they use to a stateful drawable (as you did with the RadioButton widgets in Chapter 2, Designing Form Screens).

In this chapter, we'll take a look at how to build custom widgets and layout components. We'll take a look at the best practices to use when building your own View implementations, and how to render 2D graphics using the Android graphics APIs. Specifically, we'll explore the following:

	Creating a completely custom View class

	Rendering 2D graphics using graphics primitives

	How to create a custom ViewGroup to produce custom layout effects

	Rendering animations using Drawable objects

	Creating View classes that self-animate

 Creating custom view implementations

Sometimes, the existing widgets just aren't enough, no matter how much you customize them. Sometimes, you need to display something that simply isn't supported by the platform. In these cases, you might find yourself needing to implement your own custom widget. The View class can be easily extended to produce many different effects, but there are a few things that are worth knowing before you tackle it:

	The rendering for a View is expected to happen in the onDraw method.

	When rendering the graphics for the View, you'll use a Canvas to send the drawing instructions.

	Each View is responsible for calculating the offsets for its padding, and by default, the graphics will be clipped to these dimensions.

	You should avoid any object allocation (including arrays, if possible) in the onDraw method. The onDraw methods are probably the most time-sensitive method calls in any application, and need to produce as little garbage as possible. Any object allocations should be done in other methods and just used in the onDraw implementation.

In the travel claims example, it will be really nice if the user can see a simple overview graph of their spending for the last few days. To do this, we'll need to write a class that can draw this graph for them. It's useful to be able to change some of the View attributes (specifically, the size and color of the line graph) using the layout XML file. For this, you'll need to specify the attribute names and their type information for the layout resource compiler. Follow these instructions to write a simple line-graph View implementation:

	Right-click on the res/values resource directory in the travel claim app and select New| Values resource file.

	Name the new file attrs_spending_graph_view.

	Click OK to create the new resource file.

	You'll use this file to declare some new XML attributes for the resource compiler that can be used in your layout XML files when dealing with your new graph View class. These XML attributes are given type information (in the form of a format attribute), which affects how the resource compiler handles them in the layout XML:

<resources>
 <declare-styleable name="SpendingGraphView">
 <attr name="strokeColor" format="color" />
 <attr name="strokeWidth" format="dimension" />
 </declare-styleable>
</resources>

	Now, right-click on the widget package and select New| Java Class.

	Name the new class SpendingGraphView.

	Change the Superclass to android.view.View.

	Click OK to create the new class.

	In the SpendingGraphView, declare variables to hold the values that can be specified in the layout XML files. These should typically reflect the names used in the XML file, and should be initialized with sensible default values:

private int strokeColor = Color.GREEN;
private int strokeWidth = 2;

	Next, declare an array for the data points to be rendered into the graph. In this implementation, we'll assume that each data point is the amount spent on an unspecified day:

private double[] spendingPerDay;

	As mentioned earlier, the onDraw implementation should have to do as little work as possible. In this graph implementation, it means that the entire graph is actually calculated ahead of time, and cached in local variables to be drawn in the onDraw method. The Android graphics APIs provide a Path class to define any abstract group of connected lines, and the Paint class that defines the colors, stroke size (pen), fill-style, and so on. You'll need to declare one of each of these to be calculated and rendered:

private Path path = null;
private Paint paint = null;

Storing the widget's rendering state on a field in the class might seem to go against everything you know about where you should store and pass state, but a widget is a form of state container. Its job is to present its state to the user and to capture events to trigger state changes. Keeping the construction of the graphics primitives out of the onDraw implementation means that the graphics pipeline isn't slowed by recalculating the graphics state from the graph data for every frame.

	Now, implement the standard constructors for a View class. You'll want all of these constructors to invoke a single init() method to handle the actual initialization of the widget, which in this case, will also need to fetch and read the attributes given in the layout XML:

public SpendingGraphView(final Context context) {
 super(context);
 init(null, 0);
}

public SpendingGraphView(
 final Context context,
 final AttributeSet attrs) {
 super(context, attrs);
 init(attrs, 0);
}

public SpendingGraphView(
 final Context context,
 final AttributeSet attrs,
 final int defStyle) {
 super(context, attrs, defStyle);
 init(attrs, defStyle);
}

	Now, implement the init method and use the Context to convert the AttributeSet object and its data into a TypedArray object. This is where all the style information is merged in from the current Theme of the application. When you are finished with a TypedArray, you need to recycle them, handing them back to the platform to be reused. This helps the performance of the obtainStyledAttributes method:

private void init(final AttributeSet attrs, final int defStyle) {
 final TypedArray a = getContext().obtainStyledAttributes(
 attrs, R.styleable.SpendingGraphView, defStyle, 0);

 strokeColor = a.getColor(
 R.styleable.SpendingGraphView_strokeColor,
 strokeColor);

 strokeWidth = a.getDimensionPixelSize(
 R.styleable.SpendingGraphView_strokeWidth,
 strokeWidth
);

 a.recycle();
}

	In order to paint the graph correctly, you'll need a utility method to help find the scale of the vertical axis. This involves finding the maximum value that the graph will have, and unfortunately, the Android platform doesn't expose a method to do this directly, so you'll need to implement it yourself:

protected static double getMaximum(final double[] numbers) {
 double max = 0;

 for (final double n : numbers) {
 max = Math.max(max, n);
 }

 return max;
}

	The next step is to implement the actual rendering method for the graph data. This method will be invoked on the main thread, but won't be invoked as part of the rendering loop. Instead, you'll calculate all the values and plot the graph using a Path object (a vector graphics primitive). Then, this method will store the plotted line and the Paint to use in the path and paint fields you declared, and signal that the View is invalid and needs to have its onDraw method called as soon as possible:

protected void invalidateGraph() {
 if (spendingPerDay == null || spendingPerDay.length <= 1) {
 path = null;
 paint = null;
 invalidate();

 return;
 }

 final int paddingLeft = getPaddingLeft();
 final int paddingTop = getPaddingTop();
 final int paddingRight = getPaddingRight();
 final int paddingBottom = getPaddingBottom();

 final int contentWidth =
 getWidth() - paddingLeft - paddingRight;
 final int contentHeight =
 getHeight() - paddingTop - paddingBottom;
 final int graphHeight =
 contentHeight - strokeWidth * 2;

 final double graphMaximum = getMaximum(spendingPerDay);

 final double stepSize = (double) contentWidth / (double) (spendingPerDay.length - 1);
 final double scale = (double) graphHeight / graphMaximum;

 path = new Path();
 path.moveTo(paddingLeft, paddingTop);

 paint = new Paint();
 paint.setStrokeWidth(strokeWidth);
 paint.setColor(strokeColor);
 paint.setFlags(Paint.ANTI_ALIAS_FLAG);
 paint.setStyle(Paint.Style.STROKE);

 path.moveTo(
 paddingLeft,
 contentHeight - (float) (scale * spendingPerDay[0]));

 for (int i = 1; i < spendingPerDay.length; i++) {
 path.lineTo(
 (float) (i * stepSize) + paddingLeft,
 contentHeight - (float) (scale * spendingPerDay[i]));
 }

 invalidate();
}

It would actually be quite possible to encapsulate this code in an ActionCommand or AsyncTask, so that these calculations don't block the main thread. You will need to invoke the invalidate() method in onForeground(), or use the postInvalidate() method instead (which posts the invalidate() signal to the main thread). Moving such complexity to a background thread is good practice if the amount of data the graph is expected to present became very large.

	Now, you're ready to override the onDraw method and actually paint the graph onto the Canvas provided by the platform. This onDraw implementation simply verifies that the graph has been rendered, and then paints the fields onto the screen:

@Override
protected void onDraw(final Canvas canvas) {
 if (path == null || paint == null) {
 return;
 }

 canvas.drawPath(path, paint);
}

It's useful to know that you can construct a Canvas yourself by having it paint to an offscreen Bitmap object, allowing you to capture screenshots of widgets by invoking their onDraw method yourself.

	Now, you just need a few getter and setter methods to allow your application to specify the data to be rendered, and a programmatic way to change and fetch the XML attribute values. The setter methods also need to invoke the invalidateGraph() method to cause the data to be recalculated and rendered:

public void setSpendingPerDay(final double[] spendingPerDay) {
 this.spendingPerDay = spendingPerDay;
 invalidateGraph();
}

public int getStrokeColor() {
 return strokeColor;
}

public void setStrokeColor(final int strokeColor) {
 this.strokeColor = strokeColor;
 invalidateGraph();
}

public int getStrokeWidth() {
 return strokeWidth;
}

public void setStrokeWidth(final int strokeWidth) {
 this.strokeWidth = strokeWidth;
 invalidateGraph();
}

The SpendingGraphView requires that its actual data is delivered programmatically using the setSpendingPerDay method. This can, fortunately, be done easily using the data-binding system, which will also keep the data up to date when the data changes.

 Integrating the SpendingGraphView

Integrating the SpendingGraphView into an application is as simple as declaring it in your layout XML file, and providing it with some data points to render:

<com.packtpub.claim.widget.SpendingGraphView
 android:id="@+id/spendingGraphView"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:strokeWidth="2dp"
 app:strokeColor="@color/colorAccent"
 app:spendingPerDay="@{dataSource.spendingPerDay}"/>

You can also programmatically find the SpendingGraphView using findViewById, and invoke the setSpendingPerDay method from your Java code. Integrating the SpendingGraphView into the travel claim example is a little more complex. The graph belongs on the overview screen, since it gives the user a quick visual indication of what their last few days of spending have looked like. If the user starts scrolling, the graph needs to scroll off the screen so that there is more screen space for the claim items. A nice way to do this is to leverage the DisplayItem class you wrote to handle the spacers, and simply add one at the beginning of the overview. Let's integrate the new SpendingGraphView with the overview screen:

	Right-click on the res/layout directory and select New| Layout resource file.

	Name the new resource file card_spending_graph.

	Change the Root element to be layout.

	Click OK to create the new resource file.

	This layout resource will be used with the DataBoundViewHolder, and we'll be passing the spending-per-day indirectly as the item variable. It's also worth noting that the XML namespace for your custom attributes on the SpendingGraphView (strokeColor and strokeWidth) is the app namespace. This is what the layout resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<layout>
 <data>
 <variable
 name="item"
 type="double[]" />
 </data>

 <android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:contentPadding="@dimen/grid_spacer1">

 <com.packtpub.claim.widget.SpendingGraphView
 android:id="@+id/spendingGraphView"
 android:layout_width="match_parent"
 android:layout_height="@dimen/spending_graph_height"
 app:spendingPerDay="@{item}"
 app:strokeColor="@color/colorAccent"
 app:strokeWidth="2dp" />
 </android.support.v7.widget.CardView>
</layout>

	Use the Code Assistant on the layout_height attribute to create a new dimension value named spending_graph_height (as was just highlighted) in your dimens.xml values resource file:

 <dimen name="app_bar_height">180dp</dimen>
 <dimen name="spending_graph_height">80dp</dimen>
</resources>

	Open the ClaimItemAdapter source file.

	Most of the changes will be in the CreateDisplayListCommand inner class. You'll need to calculate the user's spending for a selection of recent days. To do this, you'll need to know how many days ago each claim was, so that you can add its amount to the correct day. This method simply counts backward one day at a time, until it reaches the given timestamp:

int countDays(final Date timestamp) {
 final Calendar calendar = Calendar.getInstance();
 calendar.setTime(timestamp);

 final Calendar counterCalendar = Calendar.getInstance();
 counterCalendar.clear(Calendar.HOUR_OF_DAY);
 counterCalendar.clear(Calendar.MINUTE);
 counterCalendar.clear(Calendar.SECOND);
 counterCalendar.clear(Calendar.MILLISECOND);

 int days = 0;
 while (calendar.before(counterCalendar)) {
 days++;
 counterCalendar.add(Calendar.DAY_OF_YEAR, -1);
 }

 return days;
}

Time APIs such as JODA time (http://www.joda.org/joda-time/) and the Java 8 time APIs offer methods specifically for calculating the difference between two instants in time (in various different time units). However, the use of these APIs is beyond the scope of this book.

	Next, you'll need another method in the CreateDisplayListCommand to create the array of amounts representing the user's spending over the last few days. To keep the implementation simple and quick, we limit this to ten days by default. The getSpendingPerDay method creates a double for each of these days, and adds the amounts to each double for the ClaimItem objects filed on each day:

double[] getSpendingPerDay(final List<ClaimItem> claimItems) {
 final double[] daysSpending = new double[10];
 final int lastItem = daysSpending.length - 1;
 Arrays.fill(daysSpending, 0);

 for (final ClaimItem item : claimItems) {
 final int distance = countDays(item.getTimestamp());

 // the ClaimItems are in timestamp order
 if (distance > lastItem) {
 break;
 }

 daysSpending[lastItem - distance] += item.getAmount();
 }

 return daysSpending;
}

	The final thing to do in the CreateDisplayListCommand, is to create a DisplayItem as the first item in the list:

public List<DisplayItem> onBackground(
 final List<ClaimItem> claimItems)
 throws Exception {

 final List<DisplayItem> output = new ArrayList<>();
 output.add(new DisplayItem(
 R.layout.card_spending_graph,
 getSpendingPerDay(claimItems)));

 for (int i = 0; i < claimItems.size(); i++) {

	You'll also need to add some new code to the UpdateDisplayListCommand inner class, because it doesn't know how to compare the spending graph for the DiffUtil. In the implementation of the areItemsTheSame method in the DiffUtil.Callback, you can treat the card_spending_graph layout resources exactly the same as the separators, because there is only one of them in the list:

@Override
public boolean areItemsTheSame(
 final int oldItemPosition,
 final int newItemPosition) {
 // ...

 switch (newItem.layout) {
 case R.layout.card_claim_item:
 final ClaimItem oldClaimItem = (ClaimItem) oldItem.value;
 final ClaimItem newClaimItem = (ClaimItem) newItem.value;
 return oldClaimItem != null
 && newClaimItem != null
 && oldClaimItem.id == newClaimItem.id;
 case R.layout.widget_divider:
 case R.layout.card_spending_graph:
 return true;
 }

 return false;
}

	However, you also need the DiffUtil to detect that the graph data may have changed. In this case, we simply assume that the data has changed, and force the RecyclerView to bind the new data points to the existing SpendingGraphView:

@Override
public boolean areContentsTheSame(
 final int oldItemPosition,
 final int newItemPosition) {
 final DisplayItem oldItem = oldDisplay.get(oldItemPosition);
 final DisplayItem newItem = newDisplay.get(newItemPosition);

 switch (newItem.layout) {
 case R.layout.card_claim_item:
 final ClaimItem oldClaimItem = (ClaimItem) oldItem.value;
 final ClaimItem newClaimItem = (ClaimItem) newItem.value;
 return oldClaimItem != null
 && newClaimItem != null
 && oldClaimItem.equals(newClaimItem);
 case R.layout.widget_divider:
 return true;
 case R.layout.card_spending_graph:
 return false;
 }

 return false;
}

	The one last thing to ensure is that the user can't swipe the SpendingGraphView to delete it from the RecyclerView, as this will be a huge surprise for the user. Open the OverviewActivity source file and locate the SwipeToDeleteCallback inner class.

	We need to tell the ItemTouchHelper that the first item in the list cannot be swiped or moved. We do this by overriding the default getMovementFlags method. This method usually just returns the flags that you passed into the constructor, but you now want these flags to change for just one item:

@Override
public int getMovementFlags(
 final RecyclerView recyclerView,
 final RecyclerView.ViewHolder viewHolder) {

 if (viewHolder.getAdapterPosition() == 0) {
 return 0;
 }

 return super.getMovementFlags(recyclerView, viewHolder);
}

 Creating a layout implementation

In most applications, you'll find that a combination of the ConstraintLayout, CoordinatorLayout, and some of the more primitive layout classes (such as LinearLayout and FrameLayout)) are more than enough to achieve any layout requirements you can dream up for your user interface. Every now and again though, you'll find yourself needing a custom layout manager to achieve an effect required for the application.

Layout classes extend from the ViewGroup class, and their job is to tell their child widgets where to position themselves, and how large they should be. They do this in two phases: the measurement phase and the layout phase.

All View implementations are expected to provide measurements for their actual size according to specifications. These measurements are then used by the View widget's parent ViewGroup to allocate the amount of space the widget will consume on the screen. For example, a View might be told to consume, at most, the screen width. The View must then determine how much of that space it actually requires, and records that size in its measured dimensions. The measured dimensions are then used by the parent ViewGroup during the layout process.

The second phase is the layout phase, and it is conducted by the ViewGroup parent of each View widget. This phase positions the View on the screen, relative to its parent ViewGroup location, and specifies the actual size that the widget will consume on the screen (typically based on the measured size calculated in the measurement phase).

When you implement your own ViewGroup, you'll need to ensure that all of your child View widgets are given a chance to measure themselves before you perform the actual layout operations.

Let's build a layout class to arrange its children in a circle. To keep the implementation simple, we'll assume that all the child widgets are the same size (for example, if they were all icons):

	Right-click on the widget package in the travel claim example app, and select New| Java Class.

	Name the new class CircleLayout.

	Change the Superclass to android.view.ViewGroup.

	Click OK to create the new class.

	Declare the standard ViewGroup constructors:

public CircleLayout(final Context context) {
 super(context);
}

public CircleLayout(
 final Context context,
 final AttributeSet attrs) {
 super(context, attrs);
}

public CircleLayout(
 final Context context,
 final AttributeSet attrs,
 final int defStyleAttr) {

 super(context, attrs, defStyleAttr);
}

	Override the onMeasure method to calculate the size of the CircleLayout and all of its child View widgets. The measurement specifications are passed in as int values, which are interpreted using the static methods in the MeaureSpec class. Measurement specifications come in two flavors: at most and exactly, and each has a size value attached. In this particular layout, we always measure the CircleLayout as the size given in the specification. This means that the CircleLayout will always consume the maximum amount of space available. It also expects all of its children to be able to specify sizes without the match_parent attribute (as this will cause each child to take up all the available space):

@Override
protected void onMeasure(
 final int widthMeasureSpec,
 final int heightMeasureSpec) {
 super.onMeasure(widthMeasureSpec, heightMeasureSpec);
 measureChildren(widthMeasureSpec, heightMeasureSpec);

 setMeasuredDimension(
 MeasureSpec.getSize(widthMeasureSpec),
 MeasureSpec.getSize(heightMeasureSpec));
}

	The next method to implement is the onLayout method. This performs the actual arrangement of the child View widget within the CircleLayout, by invoking their layout method. The layout method should never be overridden, because it's closely tied to the platform and performs several other important actions (such as notifying layout listeners). Instead, you should override onLayout, but invoking layout.CircleLayout assumes that all the child View widgets are of the same size (and forces this as part of the onLayout implementation). This onLayout method simply calculates the available space, and then positions the child View widgets in a circle around the outside edge:

protected void onLayout(
 final boolean changed,
 final int left,
 final int top,
 final int right,
 final int bottom) {

 final int childCount = getChildCount();

 if (childCount == 0) {
 return;
 }

 final int width = right - left;
 final int height = bottom - top;

 // if we have children, we assume they're all the same size
 final int childrenWidth = getChildAt(0).getMeasuredWidth();
 final int childrenHeight = getChildAt(0).getMeasuredHeight();

 final int boxSize = Math.min(
 width - childrenWidth,
 height - childrenHeight);

 for (int i = 0; i < childCount; i++) {
 final View child = getChildAt(i);
 final int childWidth = child.getMeasuredWidth();
 final int childHeight = child.getMeasuredHeight();

 final double x = Math.sin((Math.PI * 2.0)
 * ((double) i / (double) childCount));
 final double y = -Math.cos((Math.PI * 2.0)
 * ((double) i / (double) childCount));

 final int childLeft = (int) (x * (boxSize / 2))
 + (width / 2) - (childWidth / 2);
 final int childTop = (int) (y * (boxSize / 2))
 + (height / 2) - (childHeight / 2);
 final int childRight = childLeft + childWidth;
 final int childBottom = childTop + childHeight;

 child.layout(childLeft, childTop, childRight, childBottom);
 }
}

Although the implementation of the onLayout method is quite long, it's also relatively simple. Most of the code is concerned with determining the desired position of the child View widgets. Layout code needs to execute as quickly as possible, and should avoid allocating any objects during the onMeasure and onLayout methods (similar to the rules of onDraw). Layout is a critical part of building the screen from a performance standpoint, because no rendering can actually occur without the layout being completed. The layout will also be rerun every time the layout changes its structure. For example, if you add or remove any child View widgets, or change the size or position of the ViewGroup. Changing the size of a ViewGroup might happen on every frame if you use a CoordinatorLayout, where the ViewGroup is being collapsed (or if you change its size as part of a property-animation).

 Creating animated views

Most widget animation can be taken care of using the animation APIs in Android. The standard animation APIs are designed to take care of animations with a defined start and end, or animations that form a simple loop. Some animations, however, don't fit into this mold; a good example would be a game. A game has many animations running continuously, and you can even think about the entire game screen as a single, continuous animation.

There are a number of widgets that need to be continuously animated, and your standard Android animation API won't work. In these cases, you'll need a View that can continuously animate and update itself as long as it's visible to the user. In these cases, a slightly different design is called for, as the widget will always be changing.

To illustrate how to write a widget that has a continuous animation, let's write a View class that animates some number of bouncing Drawable objects. Each Drawable will be tracked separately, and when it reaches a side, it will "bounce off", and head in the other direction. This class is unrelated to the travel claim example code, so you can add it to a new project if you like. Follow these steps to write a BouncingDrawablesView:

	On your default package, select New| Java Class.

	Name the class widget.BouncingDrawablesView.

	Make the Superclass android.view.View.

	Click on OK to create the new class.

	You'll have some number of bouncing objects in the scene, and you'll need to track both their position and speed vector. For this, you'll want to encapsulate each bouncing Drawable in a Bouncer object; we'll write this as an inner class:

public static class Bouncer {
 final Drawable drawable;
 final Rect bounds;
 int speedX;
 int speedY;

 public Bouncer(
 final Drawable drawable,
 final int speedX,
 final int speedY) {

 this.drawable = drawable;
 this.bounds = drawable.copyBounds();
 this.speedX = speedX;
 this.speedY = speedY;
 }

	The next thing to do in the Bouncer inner class is to create a single step method, which will set up the Bouncer for the next animation frame to be rendered. This method will take a parameter that represents the boundaries of the field it's being rendered on. If the next position collides with any of the edges of the field, the Bouncer will avoid crossing the edge and will reverse direction on the axis it would have collided with:

void step(final Rect boundary) {
 final int width = bounds.width();
 final int height = bounds.height();

 int nextLeft = bounds.left + speedX;
 int nextTop = bounds.top + speedY;

 if (nextLeft + width >= boundary.right) {
 speedX = -speedX;
 nextLeft = boundary.right - width;
 } else if (nextLeft < boundary.left) {
 speedX = -speedX;
 nextLeft = boundary.left;
 }

 if (nextTop + height >= boundary.bottom) {
 speedY = -speedY;
 nextTop = boundary.bottom - height;
 } else if (nextTop < boundary.top) {
 speedY = -speedY;
 nextTop = boundary.top;
 }

 bounds.set(
 nextLeft,
 nextTop,
 nextLeft + width,
 nextTop + height
);
}

	The Bouncer class also needs a convenient draw method that will update the boundaries of the Drawable, before rendering it to a given Canvas object. The Bouncer keeps track of its own boundaries, so that all the Bouncer instances can actually share the same Drawable instance, and simply paint it at different locations on the field:

 void draw(final Canvas canvas) {
 drawable.setBounds(bounds);
 drawable.draw(canvas);
 }
} // end of Bouncer inner class

	Now, in the BouncingDrawablesView, declare an array of Bouncer objects that will be contained and animated by the View implementation:

private Bouncer[] bouncers = null;

	The BouncingDrawableView also needs a status field to track whether it should be animating or not:

private boolean running = false;

	Next, declare the standard View implementation constructors:

public BouncingDrawablesView(
 final Context context) {
 super(context);
}

public BouncingDrawablesView(
 final Context context,
 final AttributeSet attrs) {
 super(context, attrs);
}

public BouncingDrawablesView(
 final Context context,
 final AttributeSet attrs,
 final int defStyleAttr) {
 super(context, attrs, defStyleAttr);
}

	Implement the onDraw method by simply telling each of the Bouncer objects to paint themselves:

@Override
protected void onDraw(final Canvas canvas) {
 super.onDraw(canvas);

 if (bouncers == null) {
 return;
 }

 for (final Bouncer bouncer : bouncers) {
 bouncer.draw(canvas);
 }
}

	Next, you'll need to implement that actual logic to animate each frame. Do this by creating an onNextFrame method that first checks whether the animation should still be running (if it's not running, we stop the animation), and then tells each Bouncer to move one step in the animation. After you've set up the next animation frame, you'll need to tell the platform to repaint the BouncingDrawablesView, by calling the invalidate() method. Once the onNextFrame() method is complete, we schedule it to be invoked again in 16 milliseconds time (scheduling just under 60 frames per second):

private final Runnable postNextFrame = new Runnable() {
 @Override
 public void run() {
 onNextFrame();
 }
};

void onNextFrame() {
 if (bouncers == null || !running) {
 return;
 }

 final Rect boundary = new Rect(
 getPaddingLeft(),
 getPaddingTop(),
 getWidth() - getPaddingLeft() - getPaddingRight(),
 getHeight() - getPaddingTop() - getPaddingBottom()
);

 for (final Bouncer bouncer : bouncers) {
 bouncer.step(boundary);
 }

 invalidate();
 getHandler().postDelayed(postNextFrame, 16);
}

	In order to automatically start the animation when the BouncingDrawablesView becomes visible and make it stop when it's invisible, you need to know when the BouncingDrawablesView is attached to the Window (when it's attached to the screen components). To do this, you'll need to override onAttachedToWindow and invoke onNextFrame(). However, onAttachedToWindow is invoked before the layout is executed, so you'll schedule onNextFrame() to be run at the end of the current event queue:

@Override
protected void onAttachedToWindow() {
 super.onAttachedToWindow();
 running = true;

 post(postNextFrame);
}

@Override
protected void onDetachedFromWindow() {
 super.onDetachedFromWindow();
 running = false;
}

	Finally, write a setter and getter for the Bouncer objects:

public void setBouncers(final Bouncer[] bouncers) {
 this.bouncers = bouncers;
}

public Bouncer[] getBouncers() {
 return bouncers;
}

Setting up the BouncingDrawablesView is a very simple process. An Activity will need to create an array of Bouncer objects with some random positions and speeds, and then hand them over to the BouncingDrawablesView instance to take care of them. As soon as the BouncingDrawablesView becomes visible on the screen, it will start animating the Drawable objects around the screen. A simple example setup of the BouncingDrawableView might look something like this:

final BouncingDrawablesView bouncingDrawablesView = (BouncingDrawablesView) findViewById(R.id.bouncing_view);
final BouncingDrawablesView.Bouncer[] bouncers = new BouncingDrawablesView.Bouncer[10];
final Random random = new Random();
final Resources res = getResources();

final Drawable icon = res.getDrawable(R.drawable.ic_other_black);
final int iconSize = res.getDimensionPixelSize(R.dimen.bouncing_icon_size);
for (int i = 0; i < bouncers.length; i++) {
 final Rect bounds = new Rect();
 bounds.top = random.nextInt(400);
 bounds.left = random.nextInt(600);
 bounds.right = bounds.left + iconSize;
 bounds.bottom = bounds.top + iconSize;
 icon.setBounds(bounds);

 bouncers[i] = new BouncingDrawablesView.Bouncer(
 icon,
 random.nextBoolean() ? 6 : -6,
 random.nextBoolean() ? 6 : -6
);
}

bouncingDrawablesView.setBouncers(bouncers);

 Test your knowledge

	When rendering specialized graphics for a custom widget, you need to do which of these?

	Buffer all the rendering in an offscreen Bitmap

	Set a custom background Drawable

	Override the onDraw method

	Where should you create instances of graphics primitives such as Drawable, Paint and Path for rendering in onDraw?

	On the main thread

	In the onDraw method

	Anywhere that doesn't affect onDraw directly

	What are the two phases involved in the layout process?

	Layout and then measurement

	Measurement and then layout

	Measurement and then rendering

	When painting a Drawable object, you need to do which of the following?

	Pass it a valid Canvas object

	Use Canvas.paintDrawable

	Invoke its onDraw method

	To tell the platform that a widget needs to repaint itself (from the main thread), you use which of these?

	View.redraw()

	View.invalidate()

	View.repaint()

 Apply your knowledge

Most of what has been covered in this book is a mix of theory (how to go about designing a screen) and hard practical knowledge (writing the code to produce that screen). When you combine a good theoretical base with practical knowledge of the platform you're working on, you have a powerful combination. Being about to write great applications isn't just about being able to write code (very little in programming is about being able to just write code). It's about having an eye for detail in the user interface, and always thinking about your users.

Android is an amazingly powerful platform when used correctly. In this book, you've learned to use APIs such as data binding, the Room data storage system, and LiveData. This mix of APIs on the Android Platform doesn't just allow you to rapidly develop excellent applications, but it also provides an excellent separation between different areas of your code base. They also don't, in any way, reduce the power you can leverage from the underlying platforms and systems (such as SQLite).

The Android community is massive, and there is plenty to find and work with outside of the core platform that can make development even easier. Here are a few links to resources, documentation, and APIs, that are especially useful:

	The official Android platform reference:

https://developer.android.com/reference/packages.html

	Firebase (handles hosting, push-notifications, database synchronization, authentication, and much more):

https://firebase.google.com/

	The Android Arsenal, an unofficial list of third-party APIs and widgets:

https://android-arsenal.com/

	Joda-Time API, the de-facto standard time API before Java 8 on the core Java platform, still useful on Android, though:

http://www.joda.org/joda-time/

	The official SQLite website:

https://sqlite.org/

Finally, here are some fun ideas for projects that you might want to try implementing once you've finished this book:

	Try expanding the travel claim example to allow for multiple trips.

	Write a simple expense tracker to allow your user to enter and track their spending.

	A packing/moving organizer app, allowing the user to photograph the contents of boxes and record their contents for when they are moving their house.

	A to-do list application, allowing the user to create various lists of things they need to do and check them off when done. To make this more interesting, you can add reminders and deadlines (items that must be completed by a certain date and time).

	A real-time chat application, which is a bit more complex; use the Firebase Real-time database to store and synchronize the chat messages.

 Summary

Building your own custom components can be a lot of work, but can also be extremely rewarding. Having complete control over the measurement, layout, and rendering cycle provides you with an amazing amount of power to virtually build any widget that you can imagine. Android also has some excellent defaults defined, allowing you to focus on how your widget should look and work, rather than getting stuck on the intricacies of the rendering pipeline.

The Drawable class is one of the most powerful graphics primitives Android has. It's difficult to call it a primitive due to how powerful they actually are. Wherever possible, use them instead of a Bitmap or Path, as they make future improvements much simpler, and easily integrate with the resources system.

Using the Handler class to animate a widget is also a very powerful and low-level mechanism. It's often a good idea to introduce a sense of real time into these sorts of animations so that frames that take slightly longer, or shorter, to render don't affect the overall feel of the application. This can be done simply by using the timestamp in each frame and moving values according to that, instead of having fixed values. In this case, the speed of the Bouncer will become the number of pixels/time instead of a fixed number of pixels per frame.

Before building your own widgets or layouts, you should always look around on the internet to see whether there is an existing project that does what you are looking for. Knowing how widgets are actually built and fit together is useful knowledge, and should give you the confidence to not just create your own, but also help others build theirs.

 Activity Lifecycle

Every Activity within an app runs within the App Process, but each Activity is also subject to its own lifecycle. These are methods that are triggered by the platform when the Activity is about to change states, for example, when the user exits the Activity temporarily to use another Activity (whether it's in the same application, or another one). Fragment objects are also subject to a lifecycle, and while it mostly follows the same pattern as the Activity lifecycle, it also has the notion of being "attached" and "detached" from its parent Activity.

The following workflow explains the Activity lifecycle in detail:

 Test Your Knowledge Answers

This appendix contains answers to all the Test Your Knowledge quizzes that appear in the chapters.

 Chapter 2 - Designing Form Screens

	When designing a form screen, what is the first thing you should consider?

	The data you need from your user - this will determine what fields are required and will inform your other decisions

	What is the standard spacing increment in Material design?

	8 Density Independent Pixels

	The ConstraintLayout, ViewPager, and CardView are part of the support APIs. What does this mean?

	Their bytecode must be included with your application if you use them

	When building a new layout, your root widget should always be which of these?

	The simplest widget that makes sense for your layout - other options may provide more power, but will consume more system resources

 Chapter 3 - Taking Actions

	What's the best way to implement event handlers?

	There isn't one - you need to consider each case, and choose the most appropriate pattern

	What are the conditions for any methods that changes the state of a user-interface widget?

	They must be called from the main thread

	Code running as part of an event handler should fulfill which of the following conditions?

	Only interact with the user interface - anything else should be done on a worker thread

	When requesting data from another Activity, the data is returned through which of these?

	A callback on your Activity object

 Chapter 4 - Composing User Interface

	When developing a layout subclass, which of the following options is the best?

	Avoiding assigning ID attributes to child widgets - the ID attributes can cause unexpected side-effects in the application

	Which of these applies to the Bundle passed at an Activity in onCreate?

	It is populated in the onSaveInstanceState method

	When the data for an Adapter changes, which of the mentioned happens?

	It should notify any attached listeners

	Fragments and View classes should meet which of the following conditions?

	They should have their data and state pushed into them from the Activity

 Chapter 5 - Binding Data to Widgets

	Android's data binding framework follows what sort of binding?

	Model-View (unidirectional) binding

	Data Bound Layouts have variables that must be which of the following?

	Any Java Object

	Which of the following features belongs to data binding expressions?

	They are a special expression language

	To trigger an update of a data-bound user interface, you must do which of these?

	Make a change that the Binding object can observe

 Chapter 6 - Storing and Retrieving Data

	The Room API for Android provides which of the following?

	A lightweight API on top of SQLite

	Returning LiveData from a Room DAO requires that you do which of these?

	You observe it for changes in order to retrieve data

	Database queries that don't return LiveData should do what?

	Be run on a worker thread

	Writing an update method for Room requires which of the listed?

	An @Update method taking an Entity object on an interface

 Chapter 7 - Creating Overview Screens

	An instance of RecyclerView will create one View instance for which of these?

	Every item of data visible on the screen

	When attaching an observer to LiveData, you need to do which of the following?

	Provide a valid LifecycleOwner

	Overview/Dashboard screens should have which of these features?

	They should display an overview with the most important information first

	The ViewHolder class is used by the RecyclerView to do what?

	Improve the data binding performance

	When using LiveData objects to reference data used by multiple Fragment objects, which of these is true?

	The Fragment instances must share the same LiveData reference to see changes

 Chapter 8 - Designing Material Layouts

	Elevation should be used for which of the following?

	To selectively highlight one item above a flat layout

	CoordinatorLayout can be used to coordinate movement and size between which of these?

	Any of its direct child widgets

	To change elevation of a widget in a backward-compatible way, you need to do which of the mentioned?

	Use the ViewCompat class

	The GridLayout class should be used in which of the following conditions?

	To lay out screens along grid lines

 Chapter 9 - Navigating Effectively

	When using bottom tabs for navigation, which of these is important?

	The tabs are of roughly equal importance

	Top tabs are preferred to bottom tabs in which of these situations?

	When the user won't need to navigate as frequently

	Fragments can be used for navigation in which of these cases?

	Any time the user navigates within the application

	When the user selects an item in a navigation drawer, which of these is true?

	The drawer should be closed programmatically

 Chapter 10 - Making Overviews Even Better

	How many different view types can you use in a single RecyclerView instance?

	Any number

	When using a DiffUtil, which of the following applies to the data you are comparing?

	It is exposed through a Callback

	When adding dividers to a RecyclerView, you should do which of these?

	Make them distinct items in the dataset

 Chapter 11 - Polishing Your Design

	When choosing a color scheme, it's important that the accent color has which of these features?

	It is complementary to the primary color

	Dynamically generating a palette should meet which of these conditions?

	It should be done on a background thread

	Which of these is to be kept in mind while animating layouts in your application?

	They should not block or distract the user from achieving their goals

	Custom styles can be used to define which of these?

	Default values for any attribute in a layout resource file

 Chapter 12 - Customizing Widgets and Layouts

	When rendering specialized graphics for a custom widget, you need to do which of these?

	Override the onDraw method

	Where should you create instances of graphics primitives such as Drawable, Paint, and Path for rendering in onDraw?

	Anywhere that doesn't affect onDraw directly

	What are the two phases involved in the layout process?

	Measurement and then layout

	When painting a Drawable object, you need to do which of the following?

	Pass it a valid Canvas object

	To tell the platform that a widget needs to repaint itself (from the main thread), you use which of these?

	View.invalidate()

 OEBPS/Images/image00320.jpeg
Editing buffer space

waf e[iJifol TTTTT Jwlofr]i]d

Length of the string

OEBPS/Images/image00321.jpeg
Observable

1 implements
H

1 0..* Observer

ModelObjectClass

+notifyChange(): void

OEBPS/Images/image00318.jpeg
Component Tree

v % CoordinatorLayout

v ™ AppBarLayout

[<include> & c

© attach (FloatingActionButton)

OEBPS/Images/image00319.jpeg
HIeIIIIIOI [wlo]r]r]d

Length of the string

OEBPS/Images/image00322.jpeg
> Bjava
> Beres

v (@ Gradle Scripts

@ buidgradie (Project: Clair)

1gradle-wrspper.properties Kradle Ver=ion)
& proguardules pro (ProGusr Fules for app)
J1gradle properties (Project Properies)

@ sertings gradle (Project Sertings)

Jjlocal properties (SDK Location)

OEBPS/Images/image00323.jpeg
AllowanceOverviewFragment

Y

AllowanceOverviewPresenter

y

Allowance

Data Bind

i

! .
ing

0
L

OEBPS/Images/image00324.jpeg
Fragment Name

AllowanceOverviewFragment

Create layout XWIL?

Fragment Layout Name

fragment allowance_overview

[tnclude fragment factory methods?

(O Include interface callbacks?

OEBPS/Images/image00327.jpeg
Incoming
Change

Load
Updated
Model

Mo

del

User
Interface

Refresh Ul

OEBPS/Images/image00328.jpeg
res
v (@ Grade scripts
(@ buildgradie (Project: Claim)

build.gradle (Module: ap

£ gradie-wrapper.properties fSrade version)
& proguard-rules.pro (ProGuard Rules for app)
S Pl ot s

OEBPS/Images/image00325.jpeg
Daily Allowance Today ~ Week Total

' 0 0O

OEBPS/Images/image00326.jpeg
User
Interface

User Changes

Refresh Ul

Model

OEBPS/Images/image00309.jpeg
Description IAmoun

l«— Claim Form

Date Picker —ﬂ> Date
00000 ® :
Label Text [<+— Category Picker

Current
Attachment
Preview [+— Attachments
Preview
Add Attachment Area

Floating Action Button.
—

OEBPS/Images/image00310.jpeg
Vv Bzres
b [drawable

%

» £ mipmap

» Bu values

OEBPS/Images/image00307.jpeg
&' Android - Ok %I

v haapp
v manifests

java ﬂ

OEBPS/Images/image00308.jpeg
content://media/external/images/media/

4

OEBPS/Images/image00313.jpeg
Name: [model Atachment

Kind: [€ class

Gt |

Interface(s): | android.os.Parcelable

OEBPS/Images/image00311.jpeg
File name:
Root element:

Source set:

Directory name:

widget_date_picker

merge.

layout

OEBPS/Images/image00312.jpeg
i Android -

bt manifests
v mjava
1 compacktpubclaim

3 1 Project

<} Z: Structure

aptures

| LinkCe+ Projectwith Gradle

% cu Cuiex
001 copy cutec
Copy Path

Covy as Plai Text

OEBPS/Images/image00316.jpeg
Activity =

Model Updated

Fragment —/—‘

Data Model

Other Fragment

Change Events,

Other Fragment

OEBPS/Images/image00317.jpeg
Image File
Image File
Image File
Image File
Image File
Image File
Image File
Image File

Image File

Adapter

W

OEBPS/Images/image00314.jpeg
Creates a blank fragment that is compatible back to API level 4.

Fragment Name:

I

Fragment Layout Name:

Source Language:

CategoryPickerFragment

Create layout XML?

fragment_category_picker

(0] Include fragment factory methods?

[0 Include interface callbacks?

[tova

OEBPS/Images/image00315.jpeg
Event Delivered Upwards

o

Fragment
Other Fragment

Activity

spremumop paysnd ale sabueyd

OEBPS/Images/image00342.jpeg
Claim

Dally Allowance Today Week Total

fiss o o o0

OEBPS/Images/image00343.jpeg
Scroller

Material is the metaphor.

A material metaphor is the unifying theory of a
rationalized space and a system of motion. The
material is grounded in tactile reality, inspired by the
study of paper and ink, yet technologically advanced
and open to imagination and magic.

Qurfaces and edaes of the material nravide vieuial

Material is the metaphor.

A material metaphor is the unifying theory of a

The foundational elements of print based design
typography, grids, space, scale, color, and use of
imagery guide visual treatments. These elements do
far more than please the eye. They create hierarchy,
meaning, and focus. Deliberate color choices,

edge to edge imagery, large scale typography, and
intentional white space create a bold and graphic
interface that immerse the user in the experience.

An emphasis on user actions makes core
£ inrdlanaliv imnmediatahr annarert and nemvidac

OEBPS/Images/image00340.jpeg
layout width

layout height
Textview

555

23

[wragl16

24

wrapf

OEBPS/Images/image00341.gif
Airport Shuttle
16-December-2017

250

OEBPS/Images/image00345.jpeg
<&— Coordinator

OEBPS/Images/image00346.jpeg
S Example 500 & FExample 500 & FExample 500

September 10,2017 ~ September 10,2017 ~ September 10,2017
Airport Shuttle 540 Airport Shuttle 5 Airport Shuttle
September 10,2017 September 10,2017 September 10, 2017
Flights 8500 == Flights 8500 == Flights 8500

September 8, 2017 September 8,2017 September 8,2017

OEBPS/Images/image00344.jpeg
ContentArea

Bottom Bar

OEBPS/Images/image00349.jpeg

OEBPS/Images/image00350.jpeg
Overview

Y Y

New Item ‘ Delete Item —

y

New Item Screen Snackbar: Undo

Save Item <] Add Attachment .
I !

Select Attachment Screen

y

Attachment File Selected —@—

OEBPS/Images/image00347.jpeg
File name:
Root element:

Source set:

Directory name:

fragment capture_claim_grid

android.support.v7.widget GridLayout|

main

layout

OEBPS/Images/image00348.jpeg
09 September 2017

OEBPS/Images/image00331.jpeg
@

Overview

OEBPS/Images/image00332.jpeg
Daily Allowance Today Week Total
W 0 0 335
- Breakfast 120

September 30, 2017

& Dinner 120
"~ September 30,2017

Airport Shuttle
m September 24,2017 95

OEBPS/Images/image00329.jpeg
res
v (@ Grade scripts
(@ buildgradie (Project: Claim)

build.gradle (Module: ap

£ gradie-wrapper.properties fSrade version)
& proguard-rules.pro (ProGuard Rules for app)
S Pl ot s

OEBPS/Images/image00330.jpeg
)

Overview

Y
- I\
Drill View
(Compose Down Item
\. J
[LT
View
Item

OEBPS/Images/image00333.jpeg
Description

|om }r(otel) 995

ust 2

Calegow’ + - ’

Amount

OEBPS/Images/image00334.jpeg
File name:
Root element:

Source set:

Directory name:

card_claim_item

‘android.support.v7.widget CardView|

main

layout

OEBPS/Images/image00335.jpeg
Adtributes Q | %~ - | Attributes

© [imagevew ||

<«

Qe w8 [

>

,
K b |

OEBPS/Images/image00338.jpeg
QSD

OEBPS/Images/image00339.jpeg
D

[textview2

21|~

24

32

OEBPS/Images/image00336.jpeg
TextView
text
e

OEBPS/Images/image00337.jpeg

OEBPS/Images/image00362.jpeg
Scheme Type Shades Selector
| Palette Preview

Base Color -

OEBPS/Images/image00363.jpeg
Primary

Primary Dark

OEBPS/Images/image00364.jpeg
Apply s base color

RGBMed 838095

resp-2s5 131, 141, 149

RGB[O-100%] 51.4, 55.3, 58.4
Huet (RYS) 226°

Luminosity [0-100%] 54.48 %
Rel. luminosiy by WCAG 26.04 %

LA 58.08, -1.93, -5.5

OEBPS/Images/image00367.jpeg
]

OEBPS/Images/image00247.jpeg

OEBPS/Images/image00368.jpeg
& 1 @]

OEBPS/Images/image00365.jpeg
Theme

I Apptheme - Default

Theme parent

[epcomgat igh heme spacompt ishsDataciontar

colorprimary .

olor/colorPrimary

®

colorPrimaryDark

olor/colorPrimaryDark

®

colorAccent

olor/colorAccent

@

OEBPS/Images/image00366.jpeg

OEBPS/Images/image00250.jpeg

OEBPS/Images/image00371.jpeg
Description Amount

Lunch 150

Date

October 1,2017

OEBPS/Images/image00251.jpeg
Sign in or register SIGN IN OR REGISTER

OEBPS/Images/image00372.jpeg
Activity entered

)

’—> onCreate()

User navigates back onstar)
1o the Activity *

onResume()

App Process Killed
le application)

Running

System needsmemory User leaves Activity User re-enters
Tor foreground apps ¥ the Activity
!)
onPause()
Activity is in Background User re-enters
(not visible to user) the Activity
onStop() %

1]

Activity is finished or
destroyed by the system

v

onDestroy()

Activity Shutdown

(can be Garbage Collected)

OEBPS/Images/image00248.jpeg

OEBPS/Images/image00369.jpeg

OEBPS/Images/image00249.jpeg

OEBPS/Images/image00370.jpeg
File name:
Resource type:
Root element:
Source set:

Directory name:

Available qualifie

slide_in_top

Animation

lAnimator
Icolor
IDrawable
lFont
lLayout

‘@ Network Code "T2nsition

Tl

OEBPS/Images/image00353.jpeg
Application name

Navigation

Company domain

packtpub.com

OEBPS/Images/image00351.jpeg
Closest Airport...

OEBPS/Images/image00352.jpeg
Q o
=
Search B Profile

OEBPS/Images/image00356.jpeg
Navigation Style

Action Bar Tabs (with ViewPager) v
[Swipe Views (ViewPager)

Action Bar Tabs (with ViewPager)

o] o) (o) N

OEBPS/Images/image00357.jpeg
Component Tree *

7/ container (ConstraintLayout)

7 navigation (BottomNavigationVie

OEBPS/Images/image00354.jpeg
Select the form factors and imum SDK
‘Some devices require additional SDKs. Low API levels arget more devices, but offe fewer API features.

hone and Tablet

A1 Gy e B

By targeting APT 16 and later, your app wilrun on approximately 99.2% of devices. Help me choose

(0] include Anckoid nstant App support

) Wear

ApL21:Ancid 50 (ol ||
Ow

At Ao Ll -]
() Android Auto

(] Android Things
AP 2cArid 70 g -}

OEBPS/Images/image00355.jpeg
Master/Detail Flow Navigation Drawer Activity Scroling Activity Settings Activity

Tabbed Activity

(e I (o] [)

OEBPS/Images/image00360.jpeg
Home

Dashboard

Notifications

OEBPS/Images/image00361.jpeg
Fragment Name

| Placeholgerfragment

Create layout XML?

Fragment Layout Name

[fragment placenolder]

[Include fragment factory methods?

O include interface callbacks?

OEBPS/Images/image00358.jpeg
Palette Q #-

Al RadioGroup
Widgets Listview
e Gridview
e = bxpandableListview
1 Scrollview

_ HorizontalScrollView
leac TabHost
D @ Webview
Transitons | Q searchview

Advanced
Google

OEBPS/Images/image00359.jpeg
Attributes Qe

D
b [+
3
i [16
50 e =
B2

OEBPS/Images/image00263.jpeg
ooy YY

OEBPS/Images/image00264.jpeg
First Name

First Name Jeff

Last Names Last Names

OEBPS/Images/image00265.jpeg
Description

OEBPS/Images/image00268.jpeg
Label Text

OEBPS/Images/image00269.jpeg
Label Text

OEBPS/Images/image00266.jpeg
Label Text Label Text Label Text Label Text

OEBPS/Images/image00267.jpeg
. Label Text

. Label Text

. Label Text

OEBPS/Images/image00272.jpeg
‘Add No Activity

Bottom Navigation Activity

OEBPS/Images/image00273.jpeg
Activity Name:
Layout Name:

Tite:

CoproreClaimaciviy]

activity_capture_claim

Capture Claim

Wit

OEBPS/Images/image00270.jpeg

OEBPS/Images/image00271.jpeg
Description

Amount

Date

Label Text

Attachment Previews

OEBPS/Images/image00252.jpeg
Configure your new project

Application name:

Company domain:

Package name:

SimpleLayout

packtpub.com

com packipubsimplelayout

OEBPS/Images/image00253.jpeg
Select the form factors and minimum SDK

wire additional SDKS. Low API levels target more devices, but offer fewer AP features.

PG 4.1 elly Bean) B

By targeting API 16 and later, your app willrun on approximately 99.2% of devices. Helpme choose

() include Android nstant App support

] Wear

AP121: Android 5.0 (Lollipop) '
Ow

AP121: Android 5.0 (Lollipop) .
() Android Auto

(] Android Things

APL24:Androd 70 oo B

OEBPS/Images/image00254.jpeg
Tabhed Activirv.

Scrolling Activity

Settings Activity

= - eIy

OEBPS/Images/image00257.jpeg
C [E BBl ©- ONexuss- m25- ©noActionsar @Language- HI-

OEBPS/Images/image00258.jpeg
Attributes

D

layout wickh [wrap_content |
layout height [wrap_content |
TextView

text Hello World!

Frext |

contentDescription |

pearance

OEBPS/Images/image00255.jpeg

OEBPS/Images/image00256.jpeg
Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

I ; . N

(& Profile or Debug APK. &' Android Auto ¥ Android TV Activity
D » & Folder »

OEBPS/Images/image00261.jpeg
> manifests
v miova
v £ com packtpub simplelayout
© = MainActivity

» £ com packtpub.simplelayout (androidTest)
» £ com packtpub.simplelayou (t==¢)
v hzres
b Ex drawable
layout
. activity_mainxmi
. app_bar_mainxml
. content mainxml
. nav_header_main.xmi
v B menu
. activity_main_drawer.xmi
& mainaxmi
mipmap.
v Exvalues
& colors.xml

& dimens.xml
2 drawables.xmi
& strings.xml

& stylesxmi

OEBPS/Images/image00262.jpeg
Flepame: [

OEBPS/Images/image00259.jpeg

OEBPS/Images/image00260.jpeg

OEBPS/Text/nav.xhtml

 Guide

 		Table of Contents

 		Cover

 Table of contents

 		Preface

 		What this book covers

 		What you need for this book

 		Who this book is for

 		Conventions

 		Reader feedback

 		Customer support

 		Downloading the example code

 		Errata

 		Piracy

 		Questions

 		Creating Android Layouts

 		Material Design

 		Android Studio

 		Android application structure

 		Creating SimpleLayout

 		Discovering the layout editor

 		Organizing project files

 		Summary

 		Designing Form Screens

 		Exploring form screens

 		Designing a layout

 		Creating a form layout

 		Creating the description box

 		Adding the amount and date inputs

 		Creating the category chooser

 		Making icons change with state

 		Creating the category picker layout

 		Adding the attachment preview

 		Try it yourself

 		Test your knowledge

 		Summary

 		Taking Actions

 		Understanding Android event requirements

 		Listening for some events

 		Wiring the CaptureClaimActivity events

 		Handling events from other activities

 		Making events quick

 		Multiple event listeners

 		Test your knowledge

 		Summary

 		Composing User Interfaces

 		Designing a modular layout

 		Creating the DatePickerLayout

 		Creating the data model

 		Creating the Attachment class

 		Creating the Category enum

 		Creating the ClaimItem class

 		Wrapping up the category picker

 		Creating the Attachment Pager

 		Creating the Attachment preview widget

 		Creating the Attachment Pager Adapter

 		Creating the Create Attachment Command

 		Creating the Attachment Pager Fragment

 		Capturing the ClaimItem data

 		Try it yourself

 		Test your knowledge

 		Summary

 		Binding Data to Widgets

 		Exploring data models and widgets

 		The Observer pattern

 		Enabling data binding

 		Data binding a layout file

 		Creating an Observable model

 		Establishing the AllowanceOverviewFragment

 		Creating the AllowanceOverview layout

 		Updating the SpendingStats class

 		Data binding and fragments

 		Test your knowledge

 		Summary

 		Storing and Retrieving Data

 		Data storage in Android

 		Using the SQLite database

 		Introducing Room

 		Adding Room to the project

 		Creating an Entity model

 		Creating the Data Access Layer

 		The LiveData class

 		Implementing Data Access Objects in Room

 		Creating a database

 		Accessing your Room database

 		Test your knowledge

 		Summary

 		Creating Overview Screens

 		Designing an Overview screen

 		Elements of an Overview screen

 		Creating layouts for ViewHolders

 		Creating a simple ViewHolder class

 		Creating a ViewHolder with data binding

 		Creating a RecyclerView adapter

 		Data binding an adapter

 		Creating the Overview activity

 		Creating new ClaimItems with a Fragment

 		Allowance overview with a Room database

 		Test your knowledge

 		Summary

 		Designing Material Layouts

 		Looking at material structure

 		Introducing CoordinatorLayout

 		Coordinating the Overview Screen

 		Swiping to delete

 		Elevating widgets

 		Building layouts using grids

 		Stack view

 		Test your knowledge

 		Summary

 		Navigating Effectively

 		Planning navigation

 		Tabbed navigation

 		Bottom tabs navigation

 		Navigation menus

 		Navigating using Fragments

 		Test your knowledge

 		Summary

 		Making Overviews Even Better

 		Multiple view types

 		Introducing dividers

 		Updating by Delta Events

 		Test your knowledge

 		Summary

 		Polishing Your Design

 		Choosing colors and theming

 		Producing an application palette

 		Generating palettes dynamically

 		Adding animations

 		Creating custom animations

 		Activating more animations

 		Creating custom styles

 		Test your knowledge

 		Summary

 		Customizing Widgets and Layouts

 		Creating custom view implementations

 		Integrating the SpendingGraphView

 		Creating a layout implementation

 		Creating animated views

 		Test your knowledge

 		Apply your knowledge

 		Summary

 		Activity Lifecycle

 		Test Your Knowledge Answers

 		Chapter 2 - Designing Form Screens

 		Chapter 3 - Taking Actions

 		Chapter 4 - Composing User Interface

 		Chapter 5 - Binding Data to Widgets

 		Chapter 6 - Storing and Retrieving Data

 		Chapter 7 - Creating Overview Screens

 		Chapter 8 - Designing Material Layouts

 		Chapter 9 - Navigating Effectively

 		Chapter 10 - Making Overviews Even Better

 		Chapter 11 - Polishing Your Design

 		Chapter 12 - Customizing Widgets and Layouts

OEBPS/Images/cover00373.jpeg
Hands-On
Android Ul
Development

OEBPS/Images/image00275.jpeg
Description

Dinner at Hotel

OEBPS/Images/image00276.jpeg
Palette
Al

Widgets
Text

ridLayout
= RecyclerView

n 7 Toolbar

Containers.
Images
Date
Transitions
Advanced
Google
Design

OEBPS/Images/image00274.jpeg
Design

Text

OEBPS/Images/image00279.jpeg
Resource name: | grid_spacer!

OEBPS/Images/image00280.jpeg
Images
Date
Transitions
Advanced

Google

OEBPS/Images/image00277.jpeg
View all atr

Auributes Q] 1
R W Q@ o 3

OEBPS/Images/image00278.jpeg

OEBPS/Images/image00283.jpeg
(G wedc] [MFED
EditText ~ [cickwedr] "PPE O textCapCharacters

inpuType it texCopiogds
e [e

o

OEBPS/Images/image00281.jpeg
Attributes

D

Q (% -1 Atributes

‘ description layout

(]

«<

555

D

Q %+ - Attributes

Q %~ - | Attributes

Q &%

[description_layout D

description Jayout

D

description Jayout

[16

b

loa
52

5
ES
H

— @

OEBPS/Images/image00282.jpeg

OEBPS/Images/image00284.jpeg
inpurType textCapords| picc s Resource

hint

OEBPS/Images/image00298.jpeg
1§ Android -
v aapp

» [manifests

et
» En drawable
» Ea layout
» Enmenu
;
K

£ mipmap
£ values
> @ Gradle Scripts

OEBPS/Images/image00299.jpeg
AssetType: © Materiallcon O Local file (SVG, PSD)

Name: ic_hotel_black

Size 32 JapxB2_Jop A Overide
Opacty ———————) 100%

] Enable auto mirroring for RTLlayout

Teon [

OEBPS/Images/image00296.jpeg
O AppCompat EditText

~ Project

OEBPS/Images/image00297.jpeg

OEBPS/Images/image00302.jpeg
RadioButton
style
button

buttonTint

OEBPS/Images/image00303.jpeg

OEBPS/Images/image00300.jpeg
Copy file /home/jason/work/p...im/app/src/main/res/drawable/

Newname: | ic_hotel white.xmi

To directory: |Ihomefjason/workdprojects/Books/Android Ul 2/Claim/app/srelmainires/drawable HD
o= Gt o peh oo

pen copy n editor

(o Il

OEBPS/Images/image00301.jpeg
(CrETr—

v Layout Margin 2.84p.7.7

bottom
end
Ieft
right

OEBPS/Images/image00305.jpeg
Name: uiDatePickerWrapper

Kind: @ Class B

Superclass:

Interface(s): | nFocusChangeListener, android.app.DatePickerDialog.OnDateSetListener|]

Package: | com packtpubclaim

Visibilty: @ Public O Package Private

Modifiers: @ None O abstract O Einal

[Show Select Overrides Dialog

OEBPS/Images/image00306.jpeg
Create Test

Create subclass
Make package-private

OEBPS/Images/image00304.jpeg
i Android -

bt manifests
v mjava
1 compacktpubclaim

3 1 Project

<} Z: Structure

aptures

| LinkCe+ Projectwith Gradle

% cu Cuiex
001 copy cutec
Copy Path

Covy as Plai Text

OEBPS/Images/image00287.jpeg
Attributes

D

Q &% -1

L 1

loa

32

Attributes

D

OEBPS/Images/image00288.jpeg
- = = =
Eei@—ﬁm Eescripuon %\im

OEBPS/Images/image00285.jpeg
Resource name: | label description

Resource value: | Description

OEBPS/Images/image00286.jpeg

OEBPS/Images/image00291.jpeg
= -
escription WHAmount »
= o —

OEBPS/Images/image00292.jpeg
Resource name: | label date

Resource value: | Date

Source set main

File name: strings.xmi -

OEBPS/Images/image00289.jpeg
Resource name: | label_amount

Resource value: | Amount

OEBPS/Images/image00290.jpeg
<«

maich_constraint

2 Textiew
et | |

= contentDescription

OEBPS/Images/image00293.jpeg
Attributes

m
o il et ey
(]
layout widh

layout_height

TextView

text

OEBPS/Images/image00294.jpeg
escription

Amaunt *

)Texlvlzw

OEBPS/Images/image00295.jpeg
=S

» Constraints.

scrollbarStyle

