

 Copyright © 2017 by Syncfusion Inc.

 2501 Aerial Center Parkway

 Suite 200

 Morrisville, NC 27560

 USA

 All rights reserved.

 Important licensing information. Please read.

 This book is available for free download fromwww.syncfusion.comon completion of a registration form.

 If you obtained this book from any other source, please register and download a free copy from www.syncfusion.com.

 This book is licensed for reading only if obtained from www.syncfusion.com.

 This book is licensed strictly for personal, educational use.

 Redistribution in any form is prohibited.

 The authors and copyright holders provide absolutely no warranty for any information provided.

 The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from, out of, or in connection with the information in this book.

 Please do not use this book if the listed terms are unacceptable.

 Use shall constitute acceptance of the terms listed.

 SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the registered trademarks of Syncfusion, Inc.

 Technical Reviewer: James McCaffery

 Copy Editor: John Elderkin

 Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

 Proofreader: Darren West, content producer, Syncfusion, Inc.

 Table of Contents

 The Story behind the Succinctly Series of Books

 About the Author

 Chapter 1 Introduction

 Chapter 2 Variables and Values

 Chapter 3 Expressions and
Functions

 Chapter 4 Control Structures

 Chapter 5 Arrays and Lists

 Chapter 6 Other Collection Types

 Chapter 7 Classes and Objects

 Chapter 8 Pattern Matching

 Chapter 9 Closures

 Chapter 10 Conclusion

 Detailed Table of Contents

The Story behind the Succinctly Series of Books

 Daniel Jebaraj, Vice President

 Syncfusion, Inc.

 Staying on the cutting edge

 As many of you may know, Syncfusion is a provider of software components for the Microsoft platform. This puts us in the exciting but challenging position of always being on the cutting edge.

 Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other week these days, we have to educate ourselves, quickly.

 Information is plentiful but harder to digest

 In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

 While more information is becoming available on the Internet and more and more books are being published, even on topics that are relatively new, one aspect that continues to inhibit us is the inability to find concise technology overview books.

 We are usually faced with two options: read several 500+ page books or scour the web for relevant blog posts and other articles. Just as everyone else who has a job to do and customers to serve, we find this quite frustrating.

 The Succinctly series

 This frustration translated into a deep desire to produce a series of concise technical books that would be targeted at developers working on the Microsoft platform.

 We firmly believe, given the background knowledge such developers have, that most topics can be translated into books that are between 50 and 100 pages.

 This is exactly what we resolved to accomplish with the Succinctly series. Isn't everything wonderful born out of a deep desire to change things for the better?

 The best authors, the best content

 Each author was carefully chosen from a pool of talented experts who shared our vision. The book you now hold in your hands, and the others available in this series, are a result of the authors' tireless work. You will find original content that is guaranteed to get you up and running in about the time it takes to drink a few cups of coffee.

 Free forever

 Syncfusion will be working to produce books on several topics. The books will always be free. Any updates we publish will also be free.

 Free? What is the catch?

 There is no catch here. Syncfusion has a vested interest in this effort.

 As a component vendor, our unique claim has always been that we offer deeper and broader frameworks than anyone else on the market. Developer education greatly helps us market and sell against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon to cheese!”

 Let us know what you think

 If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at succinctly-series@syncfusion.com.

 We sincerely hope you enjoy reading this book and that it helps you better understand the topic of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the word about the Succinctly series!

 [image: Twitter Icon] [image: Facebook Icon]

[bookmark: _Toc470870161][bookmark: _Toc457569328]About the Author

Christopher Rose is an Australian software engineer. His
background is mainly in data mining and charting software for medical research.
He has also developed desktop and mobile apps and a series of programming
videos for an educational channel on YouTube. He is a musician and can often be
found accompanying silent films at the Majestic Theatre in Pomona, Queensland.

[bookmark: _Toc470870162]Chapter 1 Introduction

Scala is a general-purpose language designed with both object-oriented
and functional mechanisms. Scala can be used as a standalone application
language, but it can also be used to develop modules for Java-based programs.
The language was developed to express paradigms that are difficult to express
in Java. The Scala compiler (a program called scalac.exe) uses the Java Virtual
Machine (JVM) in order to compile source code to Java bytecode for execution.

If you are not already familiar with Scala, I recommend you first
learn the basics of the Java language. The two languages share strong links—all
of the Java libraries are available in Scala, and Scala integrates seamlessly
into existing Java applications. Figure 1 depicts the close relationship
between Java and Scala.

Figure 1: The Relationship between
Scala and Java

[bookmark: _Toc470870163]Installation

Scala can be programmed using the console, but this is not a practical
method for programming large-scale projects. The best method for programming
useful modules is to install the Eclipse Scala Integrated Development Environment
(IDE), which is a set of tools designed to assist development in one or more
programming languages.

The Eclipse Scala IDE is available from http://scala-ide.org/. Visit and download the
latest version.

 	
 [image:]

 	
 Note: In this e-book,
I will use the Scala Eclipse IDE exclusively, but there are other options
available for developing the Scala application and integrating with existing
Java applications. IntelliJ IDEA is another popular Java IDE that can be used
to develop Scala modules and projects. You can also use the command line and
develop Scala modules without an IDE.

When your download is complete, create or locate the folder in
which you would like to store the application—for instance, in C:\Program
Files\. Create a new folder called Scala Eclipse, copy the downloaded file to
this new folder, and extract the archive’s contents. You should end up with a
folder filled with the files and folders depicted in Figure 2.

Figure 2: Installing Eclipse Scala IDE

Finally, in order to run the Scala Eclipse IDE conveniently, you
might want to create a shortcut. Right-click the file called eclipse.exe
and select Create Shortcut. Eclipse.exe is the main executable file for
the IDE. Create a shortcut on your desktop or in some other convenient
location. In order to run the IDE, double-click clipse.exe (or your
newly created shortcut).

[bookmark: _Toc470870164]Selecting a workspace

When you run Eclipse, the Workspace selection dialog box opens
(as per Figure 3). This allows you to specify which workspace you want to work
with. A workspace is simply a folder that holds a collection of projects, and you
can create a new workspace folder by clicking Browse... For instance,
you can place your projects into your Documents folder in a subfolder called
Scala Workspace. When you have selected a workspace or decided to use the
default, click OK.

Figure 3: Selecting a Workspace

[bookmark: _Toc470870165]Hello World

For our first project, we will make a simple Hello World program
in order to test that everything has been set up correctly. In order to begin a
new project, start the Eclipse Scala IDE. Click File → New in the
file menu of Scala Eclipse and select Scala Project from the submenu (as
per Figure 4).

 	
 [image:]

 	
 Note: Scala requires the Java Runtime Environment to be
set up on the machine (JRE for short). This will probably be installed already.
The latest version of the machine can be downloaded from Oracle at http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html.
It is best to maintain an up-to-date JRE on your development machine(s) so that
your Scala applications gain all of the benefits and optimizations of the
latest JVM. Scala also requires the Java SE development kit, which can be
downloaded from http://www.oracle.com/technetwork/pt/java/javase/downloads/jdk8-downloads-2133151.html.

Figure 4: Beginning a New Project

Eclipse will show the New Scala Project window. Type a name for
your project in the Project name box and click Finish. In Figure 5, I
have called my new project HelloWorld.

Figure 5: Creating a Project

A project is a collection of classes, objects, files, and
resources that will be compiled by the scalac.exe and executed by the JVM.
Project names must be unique within the workspace. They must also follow any
conventions defined by the operating system. For instance, we should avoid
using special symbols in our project names, such as & an $, and stick to
letters and digits.

After clicking Finish, the Eclipse Scala IDE will create a
simple project for you. Next, we need to add the main object, which will hold a
program entry point. Right-click the src folder in the package explorer
window. If that window is not visible on the file menu, click Window>Show
View>Other>Java>Package Explorer. Next, select New>Scala
Object (see Figure 6). Eclipse will open the New File Wizard window, as in Figure
7.

 	
 [image:]

 	
 Note: The layout of the windows and panels and the
debugging options are all the same between the Scale Eclipse IDE and the Java
Eclipse IDE. Read Java Succinctly 1 for an introduction to the basic panels,
windows, and debugging tools available in Eclipse.

Figure 6:
Creating a New Scala Object

Figure 7: Opening the New File Wizard Window

In the New File Wizard window, give your object a name (I have
called mine MainObject) and click Finish.
Eclipse will create a new file for you with the code presented in Code Listing
1.

Code Listing 1: MainObject

 object MainObject {

 }

Scala is an object-oriented language with features similar to
C++, C#, and Java. It operates a collection of objects built from classes. But
Scala also allows us to define singleton objects. Singleton objects are the
only instance built from a class. The object called MainObject
in Code Listing 1 is actually a singleton. Instead of defining a blueprint with
the keyword class, we define a singleton by
using the keyword object.

In order for the JVM to know where to begin executing our new
application, we must create an entry point—a main method. The JVM will call our
main method once. It will never create more than one object of type MainObject, and this is why we can create the class as
a singleton object rather than an inheritable or instantiable class. Code Listing
2 shows the completed code for the HelloWorld application.

 	
 [image:]

 	
 Note: We do not have to specify a main method. We can
create usable modules without a main method. The main method is only used when we
intend to create an executable application.

Code Listing 2: HelloWorld Application

 // Main
 object definition

 object MainObject {

 // Main method definition

 def main(args: Array[String]): Unit = {

 // Print greeting:

 println("Hello world!")

 } // Close main method

 } // Close MainObject

If you know Java programming, Code Listing 2 might look familiar.
For one thing, Scala is a curly-brace language. This means it uses { and } to designate
code blocks. Note how each { has a matching }. Also, be aware that there are several conventions
used for tabbing that are intended to make reading code easier.

 	
 [image:]

 	
 Note: Scala may be a curly-brace language, but it is quite
different from other C-family languages. You might notice that there are no
semicolons at the ends of the statements. You can put in the semicolons, but
they are almost never necessary in Scala. Mostly, we use semicolons when we
need to place multiple statements on a single line; in this case the semicolon
is used to delimit statements.

In Code Listing 2, we defined a method called main. The method begins with the def keyword and is followed by the name
of the method (main in this case). Here the name
main is a reserved word, and note that Scala is
case sensitive. The inputs to the method are specified in brackets: (args: Array[String]). This particular method expects
an Array of type String
to be passed as a parameter, while args is the
variable name or identifier (we will look at in detail for defining variables
and passing arguments). We will ignore the args
array in this e-book, but it is actually the optional command-line arguments;
we could read the elements of args and respond
to any command-line arguments the user passes when running our application from
the console, a batch file, or shortcut that supplied arguments.

After we define a function’s parameter list, we place a colon
followed by the output type of the function—in this case : Unit. Note that I use the words “function” and “method”
more or less interchangeably. The technical differences between a Scala
function and a Scala method are quite subtle but, with regards to the examples
in this e-book, those differences are important. See the Scala documentation
for the gory details. The main method does not
return anything to the caller, so we place the keyword Unit
as the output (which is equivalent to the void return type in other languages).
We then use an equals operator (=) and open the code block for the specification of the
method’s body.

 	
 [image:]

 	
 Tip: There are often many optional elements in Scala’s syntax. For
instance, if a function does not return anything, the “: Unit” is optional. So
is the “=” sign. In Code Listing 1 we could have used the line “def main(args: Array[String]) {” to
define our main method. Scala is very good at inferring information such as
data types.

Inside the method body, we use the println built-in function to print a string of text to the
screen. And we close the code blocks for the main
method and the MainObject.

[bookmark: _Toc470870166]Running the application

When we have a Scala project with a main entry point, we can run the
application by clicking Scala Application in the file menu, under
Run>Debug As—as in Figure 8. You’ll be presented with a Select Preferred Launcher dialog
window. Check the Use configuration specific settings option,
then select either the JVM or New Debugger option and click OK.
You can change this selection later with Run > Debug Configurations >
Common > Select Other > (option).

The first time you use Scala Eclipse, you might get a firewall
warning. If so, select the option that allows eclipse.exe to run on your
network.

Figure 8: Debugging a Scala Application

When you run the application, it will print the line “Hello
world!” to the Console. In Scala Eclipse, the Console is represented by a small
window at the lower end of the screen—see Figure 9.

Figure 9: A Console

 	
 [image:]

 	
 Note: We will be working entirely with the Console in this
e-book, but Scala has the complete Java Library available to it. You can create
applications in Java with a Graphical User Interface (GUI), or you can use the
Java GUI library of classes to build a GUI in Scala. I will not go into the
details of building a GUI here, but I refer you to Java Succinctly 2, in which we look at how to build a GUI using
Java.

After you have run your Scala application once using the method
described here, Scala Eclipse will create Run Configuration for you. When your
project has a run configuration, you can run and debug the application by
clicking Debug or Run, as shown in Figure 10.

Figure 10: Debug and Run Buttons

[bookmark: _Toc470870167]Debug and run configurations

The debug and run configurations can be changed by clicking Run
→ Debug Configurations or Run → Run Configurations.
Clicking these options will open up the Debug Configurations box, as per Figure
11. If you need to supply command-line arguments to your programs (which will
be passed as the args Array
parameter to the main method) or test the
project using a different JRE, you can do so with this box. We will use the
default configuration throughout this e-book.

Figure 11: Run and Debug Configurations Box

[bookmark: _Toc470870168]Problems and errors

Finally, if your project does not run and print “Hello world!” to
the console, Eclipse may show an error box. If so, it will ask if you want to
Continue with Launch. You should answer No. If you answer Yes, Eclipse
will run the last version of the program known to work, and this is not useful
for debugging.

When you select No, the error list can be found by clicking
the Problems tab at the lower end of the screen, as in Figure 12.

Figure 12: Problems Tab

 	
 [image:]

 	
 Note: Many of the debugging techniques in Eclipse Java are
also available in Eclipse Scala. I will focus on the main differences between
Java and Scala, which means I will not be going into the details of debugging.
If you wish to know more about debugging mechanisms and tools, consult Java Succinctly 1.

[bookmark: _Toc470870169]Chapter 2 Variables and Values

A variable is a name used to point to different
values. For instance, we might create an integer variable called personAge and point it to 35. We can point a variable to a
different value, which means we can later change personAge and point it to 36. In this sense, Scala variables
are similar to references in other languages. In Scala, we define variables by
using the var keyword.

A value is a fixed quantity or object. Values do
not change, and they are pointed to by variables. In other languages, values
are called constants, and we might define a value called PI and set it to 3.14159. In Scala, we define values
by using the val
keyword.

Code Listing 3: Setting and Changing Vars
and Vals

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create a variable called
 myVariable.

 var myVariable = 0

 // Create a value called myValue.

 val myValue = 0

 // We can change the value that
 myVariable points to:

 myVariable = 10

 // But we can't change a val!
 The following line is an error!

 myValue = 10

 }

 }

In Code Listing 3, we create a variable called myVariable
and set it to 10. We also create a value called myValue, again set to 0. Next, we
change the setting of myVariable to 10. This is fine because variables can be set to many different
settings throughout a program. But in the next line we try to set myValue to 10—this
line is an error, and I have highlighted it in red. Note that we cannot
reassign a value. In order to reassign a val would be something
like reassigning a meaning to the number 3 or to Pi—the operation makes no
sense and is not legal.

The syntax for defining a variable begins with
the var or val keyword, followed by the identifier name, such as myVariable
or myValue. We follow this with the assignment operator “=” and supply
a value, variable, or literal. This method, used in Code Listing 3, is a
shorthand syntax. Scala will infer the data type for the variable from the
initial assignment.

We can also explicitly state the data type for
the variable by including a colon and the name of the data type (we will look
at all the available data types shortly). Code Listing 4 shows some examples of
using this longer syntax to define Int, String, and
Double variables by
specifying the data types.

Code Listing 4: Specifying Data Types

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create an Int variable
 called myInt

 var myInt: Int = 0

 // Create a String variable called
 personName

 var personName: String = "Thomas"

 // Create a double val set
 to the Golden Ratio

 val goldenRatio: Double = 1.61803398875

 }

 }

Identifier names

An identifier is a name we use to stand for
something in our program. Identifiers are used to name val and var, as well functions, classes, and
objects. Scala is flexible when it comes to naming identifiers. There are
almost no restrictions at all, unlike languages such as Java, which do not
allow arbitrary symbols. By contrast, Scala allows all types of string to be
identifiers, including options like “&”, and “Days of the week!”.

Simple identifiers can be made in Scala much the
same as with other languages. These identifiers consist of a string of
characters that begin with a letter or underscore. The string can contain
digits, but it cannot begin with a digit. For example: userName, _height, record56, Square_Root.

We can also use operator symbols as identifiers.
This is often the case when we name member methods that are to act as operators
for our objects in object-oriented programming. We will look at naming member
methods when we look at classes. For example: +, ++, :::. Generally, naming our regular
variables with these symbols or strings of these symbols is not a good idea because
doing so can make the code difficult to read.

Finally, we can use back quotes to delimit
arbitrary strings. These strings can contain spaces, symbols, digits, anything
at all. The identifier name is the string without the back quotes. We can use
the identifier name by itself, but only in certain circumstances because the
compiler sometimes needs the back quotes in order to understand where our
variable names begin and end. Code Listing 5 shows some examples of Scala
identifiers with simple and complex names.

Code Listing 5: Identifier Examples

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Identifiers for variables are
 usually descriptive strings

 // of letters and digits:

 var root2 = Math.sqrt(2)

 // We can also define identifiers
 beginning with underscore:

 val _someVar = 23

 // But, we can define an
 identifier as a series of operators.

 // Note that this doesn’t make
 sense in the current context, and

 // this type of identifier is much
 more useful when we are

 // defining classes in Object-Oriented
 programming!

 def +&^%(i: Int, y: Int): Int = 42

 // We can name a variable an
 arbitrary string of characters, but

 // sometimes we have to use back quotes
 to delimit the name:

 val `#*^`: Int = 623

 // And we can use back quotes to
 define arbitrary identifiers:

 val `my identifier has 4's in its name,
 and $ as well!` = 9

 // If it can, Scala will recognize
 the identifiers without quotes

 // even their name consists of
 arbitrary operator symbols:

 println("The value of #*^ is " +
 #*^)

 // We can include the back quotes
 if our names are confusing:

 println("The value of #*^ is " +
 `#*^`)

 // If the names of the variable
 have spaces, we need to use

 // back quotes because the Scala
 compiler

 // will split the name into tokens
 unless it is delimited

 // with back-quotes:

 println("The value of my silly val is: " +

 `my
 identifier a 4 in its name, and $ as well!`)

 // The following is indecipherable
 and will generate an error!

 //println("The value of my
 silly val is: " +

 // my identifier has 4's in
 its name, and $ as well!)

 }

 }

 	
 [image:]

 	
 Note: Although
we are able to name our identifier’s keywords like def, this is not a good idea (in fact
you would have to use back quotes to do this). We should always try to name
identifiers in a descriptive way, and we should never try to redefine keywords
by creating identifiers with the same name.

 	
 [image:]

 	
 Tip: It is conventional to use Camel Case to name Scala identifiers. Identifiers
begin with a lowercase letter, and every following word within the identifier
begins with an uppercase letter, such as averageIncome
and computePerimiter. This is just a
convention, and when we name classes, we typically use an uppercase letter to
begin each word within the same name, such as MyClass. This makes it easy to differentiate between
variables and classes.

Scala is case sensitive, which means the
identifiers MYID and myID are completely different
identifiers, and def is
a keyword, but DEF is
not.

[bookmark: _Toc470870170]Data Types

Figure 13: Data Types

The fundamental data types are the same as in
Java, except they begin with an uppercase letter. The Scala compiler is often
clever enough to deduce the data type from the context, so the data type can
often be left out when we are defining variables and values, but, if we want to
explicitly state the data types for our variables, we use the names in the
first column of Figure 13. Figure 14 depicts an overview of some of the
characteristics of the fundamental data types in Scala.

Figure 14: Overview of Fundamental Data
Types

Code Listing 6 shows some examples of declaring
and defining variables and values (note this listing has no main method and
cannot be run).

Code Listing 6: Defining Variables and
Values

 var someInteger: Int = 190 // Declare and define an integer.

 val someChar: Char = 'A' // Declare and define a character.

 var someBool: Boolean = false
 // Declare and define
 a Boolean.

 var someFloat = 3.14f // Declare and define a float.

 var someDouble = Math.sqrt(2)
 // Declare and define
 a double.

In the the final two examples, I have not used a
data type, but Scala knows that someFloat is supposed to be a floating-point
number because the literal 3.14f is a float (it ends with f, which is the suffix
for a float). Likewise, someDouble will have the type of Double because Math.sqrt(2) is a function that returns Double.

The integers are whole numbers. For instance, an
integer could be set to 178 or -59. The different integer types (Byte, Short, Int, and Long) are
used when we need more or less range for our numbers. Bytes can only store
between -128 and 127 inclusive, so if you have a variable you know will fall only
between these values, you can save RAM and store the variable as a Byte.
Otherwise, if your variable needs a lot of range, you might use a Long, because
it has a range of -263 up to 263-1. We usually use Int for
whole numbers and only use Byte or Short when we know the range is small and we want to conserve RAM, or when
we need to interoperate with a system that uses one of these smaller data types.
Likewise, it’s rare to use a Long unless we know that the particular
variables need the range.

Scala uses the same integer arithmetic as other
languages. This means that operations result in truncation rather than
rounding. For instance, 10/6 will give the result 1, even though the actual
value, 1.66666, is nearer to 2. Integer arithmetic always truncates the
fractional part of the answer and returns the remaining integer part as the
result. If you need to know the remainder after division, this can be returned
with % operator. So, 10/6 in terms of integer operations is 10/6, which equals
1 with the remainder returned 10%6, which equals 4; in other words, 10/6 equals
1 with remainder 4.

Floating-point numbers (Float and Double) are
able to express fractional values such as 67.8 and -99.24.
Floating-point arithmetic often incurs error, and there are many fractions that
floating point cannot represent exactly. For instance, 1/3 is impossible for
floating point to represent because Scala uses IEEE 754 standard, and this
standard only allows exact representations of sums of perfect powers of 2. When
we set a Double variable to 1/3, the number stored is very close 1/3, but not
exact. This is sometimes important—for instance, when checking if two doubles
are equal, we sometimes must consider a small amount of error, such that
0.333333333 would be equal to 0.333333332, because the 2 on the end is possibly
a rounding error. Code Listing 7 shows an example of using Math.abs to test equality of doubles.

Code Listing 7: Testing Equality Between
Doubles

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define two variables which are
 mathematically

 // equal:

 var a = (10.0 / 3.0)

 var b = (1.0/3.0) * 2.0 * 5.0

 // This will not work! Testing the
 exact

 // values of doubles for equality
 is often

 // a waste of time!

 if(a
 == b)

 println("The two are equal!")

 else

 println("The two are not equal...")

 // Allowing some small error using
 Math.abs

 // makes more sense. The following
 report

 // that a and b are equal:

 if(Math.abs(a -
 b) < 0.0001)

 println("The two are equal!")

 else

 println("The two are not equal...")

 }

 }

In Code Listing 7, we create two variables, a and b, which should theoretically be set to exactly the same value;—10/3
is mathematically identical to (1/3)*2*5. But in IEEE 754, we will get two
different values for these expressions, so we should use Math.abs when we compare them, and we
should allow for a small degree of error (0.0001 in the example will report equal value as long as the doubles are
similar to within 1/10000). The small value used for the comparison of floating-point
types is usually called the epsilon value. We can use exactly the same
technique when comparing Float values because Floats suffer from the same rounding errors.

Boolean variables are used in logical
expressions in order to make decisions and for filtering. They have only two
values: true or false.

The Char data type is used for characters and
for Strings. It represents Unicode characters, such as 'A' or '@'.

[bookmark: _Toc470870171]Literals

A literal is a value that appears in the code,
such as 190 or 'A'. They are used to set variables and values and also to form
expressions. All of the literals are values, and like val, they
cannot be redefined. We can, however, point variables to them.

Integer literals

Integer literals appear as whole numbers, such
as 899 or -77162. They can have a negative sign
to indicate values less than 0. Integer literals without a suffix are read as base 10 or decimal
literals, so that 899 means “eight hundred and ninety-nine.” Integer literals
with the 0x suffix are
read as hexadecimal, or base 16 numbers. For instance, 0xff0a and 0x772e (hexadecimal is a positional
notation, the same as decimal, except that there are 16 digits, 0 through to 9,
A, B, C, D, E and F—for more information on hexadecimal, visit Wikipedia: https://en.wikipedia.org/wiki/Hexadecimal). Long integer literals end with L, such as 789827L or -898827L.
Long integer literals have a range of -263 to 263-1.

 	
 [image:]

 	
 Note: In previous versions of Scala, we could use a
leading '0' to denote an octal number. For instance, 037 would mean the decimal
value 31. Octal literals are now obsolete, and placing a leading 0 at the
beginning of an integer literal will cause an error.

Floating-point literals

Type Double literals contain a decimal point—for example, 90.7 or -178.5. Type
Float literals can
contain a decimal point, too, and they end with an 'f'. For instance, 271f or -90.872f.
You can also use scientific notation for the Float and Double
literals—for example, 54.9e2, which is the same as 5490.0 (or
54.9 multiplied by 10 to the power of 2). You can use the 'f' suffix along with scientific notation to
create a Float literal too, e.g., 16e-1f would mean 1.6 or 16 by 10 to the power of
negative 1.

Other literals

Character literals are surrounded with single
quotes, such as 'A', '%', or '6'. Note that '6' is very different from the integer 6. '6' is a Unicode character with the Int value of 54. For a complete table of the
Unicode characters, visit http://unicode-table.com/en/. There are
also some escape sequences available as character literals: '\n' for
new line, '\r' for carriage return, '\t' for tab, '\"' for double quotes. In
order to use a Unicode code directly, we place the '\u suffix followed by
the number, so that '\u0065' is the same as 'A', because '6' has a Unicode value of 65.

The Boolean literals are true and false. Code
Listing 8 shows some Boolean literals. We can use the true and false
keywords, and we can also use other literals along with logical operators such
as '>' (which means greater than) in order to form logical expressions.
In Code Listing 8, 2 is not greater than 5, which means the Boolean called twoGreaterThanFive will be set to false.

Code Listing 8: Boolean Literals

 val myBoolean = true

 var myOtherBoolean = false

 val twoGreaterThanFive = 2 > 5

String is not a fundamental data type, but strings are so commonly used
that we can introduce them with the other fundamental data types. String
literals are formed by surrounding text with double quotes. We can also use
triple-double quotes to denote multiline string literals. Multiline literals
can include new line characters. Code Listing 9 shows two examples of string
literals—a single line literal and a multiline literal.

Code Listing 9: String Literals and Multiline
String Literals

 var str = "This
 is a string!"

 var multiLineString = """

 This is
 also a string, only this one

 can
 span many lines because it is delimited with

 triple
 quotes! It can also contain single quotes,

 like
 ".

 """

[bookmark: _Toc470870172]Comments

Comments are notes programmers place in the code
for themselves and other programmers. Comments are ignored by the Scala
compiler. Scala allows the same commenting as Java. We use // to specify a
single line comment or to comment on the remaining text on a line, and we use
/* and */ to include block comments (see Code Listing 10 for an example using
single and multiline comments).

Code Listing 10: Comment Example

 /*
 HelloWorld

 *
 Displays the text 'Hello world' to the user

 *
 CommandLine Args: None

 *
 Returns: None

 * */

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Print 'Hello world!' to the
 console:

 println("Hello world!") // Single line comment!

 }

 }

 	
 [image:]

 	
 Note: Scala
also allows special comments called ScalaDoc comments. These comments begin
with /** and end with */. They are used to generate documentation for our code.
For more information on the syntax and use of ScalaDoc comments, visit: http://docs.scala-lang.org/style/scaladoc.html.

[bookmark: _Toc470870173]Casting

To cast is to change the data type of a variable, value, or
literal. Casting in Scala is achieved by calling functions that each of the
data types supply. For instance, to cast an Int
to a String, we would use someInt.toString. To cast a Double
to a Float, we would use someDouble.toFloat. Code Listing 11 shows examples of
casting between the various types.

Code Listing 11: Casting

 object MainObject {

 def main(args: Array[String]) {

 // Casting numerical types to other
 types and strings:

 var someDouble = 1.3

 println("As a float: " +
 someDouble.toFloat)

 println("As a char: " + someDouble.toChar)

 println("As an Int: " + someDouble.toInt)

 println("As a String: " +
 someDouble.toString)

 // Casting strings to numerical
 types:

 val myInt = "192".toInt

 val myFloat = "192.2".toFloat

 }

 }

 	
 [image:]

 	
 Note: The toInt method is a digit parsing method, which means if we
use any symbols not available to the integers, we will cause an error. In order
to cast the string “72.5”
to an integer, we first need to convert it to a Double or Float, then cast it to an Int.

 	
 [image:]

 	
 Note: Casting a Float or Double to Int uses truncation. This is true when
we change a Float
type to a Short,
Int, or Long. Numbers
are not rounded—they are truncated to the nearest whole value towards Zero.

[bookmark: _Toc470870174]Chapter 3 Expressions and
Functions

[bookmark: _Toc470870175]Expressions

An expression is a series of variables, values, operators, and
literals we use to compute. For instance, a mathematical expression such as 100+1, or 99*(89+3). There are several different types of expressions
in Scala—arithmetic expressions, Boolean or logical expressions, and string
expressions. Code Listing 12 shows some examples of using different types of
expression.

Code Listing 12: Basic Expressions

 object MainObject {

 def main(args: Array[String]): Unit = {

 78 * 9
 // Integer expression

 41.3 + 99.7 //
 Double expression

 78.5f *
 (2.1f -
 7.9) // Float expression

 89 < 78 || ((29 & 1)
 == 0)
 // Boolean expression

 ("Hello" +
 " " +
 "world") *
 3 // String expression

 }

 }

In Code Listing 12, the expressions are not used for anything—they
evaluate to some value, but we are not using the value, so the Scala IDE will
give us warnings such as: “A pure expression does nothing...” Notice that we
can use many of the common arithmetic operators, such as +, -, *, and /, for
working with numerical values Int,
Double, and Float.

Table 1 lists many of the available operators in Scala and
provides some details as to how they are used. Many will look familiar if you
are familiar with Java or other C-based languages, but Scala allows us to
define arbitrary meanings to operator symbols, so that when we look into
classes—and particularly lists and other collections—we will see that there are
many more operators defined in Scala.

Table 1:
Operators in Scala

 	
 Op

 	
 Name

 	
 Type

 	
 Example

 	
 Description

 	
 +

 	
 Addition

 	
 Arithmetic

 	
 someVar+3

 	
 Adds numerical values and concatenates strings

 	
 +

 	
 Unary positive

 	
 Arithmetic

 	
 +someVariable

 	
 Unary positive is useless, use 3 instead of +3

 	
 -

 	
 Subtraction

 	
 Arithmetic

 	
 someVar-10

 	
 Subtracts the second operand from the first

 	
 -

 	
 Unary Negative

 	
 Arithmetic

 	
 -myVariable

 	
 Negates numerical values: for int this means 2’s complement,
 for floats it flips the sign bit

 	
 *

 	
 Multiplication

 	
 Arithmetic

 	
 28.3*45.67

 	
 Multiplies two numerical values

 	
 /

 	
 Division

 	
 Arithmetic

 	
 28.3/45.67

 	
 Divides the first operand by the second, returns the quotient

 	
 %

 	
 Modulus

 	
 Arithmetic

 	
 45%3

 	
 Divides the first operand by the second, returns the remainder
 after division

 	
 ==

 	
 Equal to

 	
 Relational

 	
 myVar==100

 	
 Determines if two operands are equal

 	
 !=

 	
 Not Equal to

 	
 Relational

 	
 myVar != 100

 	
 Determines if two operands are not equal

 	
 >

 	
 Greater than

 	
 Relational

 	
 someVar > 90

 	
 Determines if the first operand is greater than the second

 	
 <

 	
 Less than

 	
 Relational

 	
 someVar < 90

 	
 Determines if the first operand is less than the second

 	
 >=

 	
 Greater or Equal to

 	
 Relational

 	
 100.5 >= 90.3

 	
 Determines if the first operand is greater than or equal to the
 second

 	
 <=

 	
 Less or Equal to

 	
 Relational

 	
 100.05 <= 90.3

 	
 Determines if the first operand is less than or equal to the
 second

 	
 &

 	
 Bitwise AND

 	
 Bitwise

 	
 someVar & someMask

 	
 Performs the bitwise AND operation between corresponding bits
 of two operands

 	
 |

 	
 Bitwise OR

 	
 Bitwise

 	
 someVar | someOtherVar

 	
 Performs the bitwise OR operation between corresponding bits of
 two operands

 	
 ^

 	
 Bitwise XOR

 	
 Bitwise

 	
 someVar ^ -1

 	
 Performs the bitwise exclusive OR between corresponding bits of
 two operands

 	
 ~

 	
 Bitwise complement

 	
 Bitwise

 	
 ~someVariable

 	
 Flips all the bits of the operand so 0’s become 1’s and vice versa

 	
 >>

 	
 Arithmetic Shift right

 	
 Bitwise

 	
 someInt>>2

 	
 Shifts all the bits of the input right by the amount specified
 in the second operand (i.e. divides the operand by 2 to the power of the
 second operand)

 	
 <<

 	
 Bitwise shift left

 	
 Bitwise

 	
 SomeInt<<2

 	
 Shifts all the bits of the left by the amount specified in the
 second operand (i.e. multiplies the operand by 2 to the power of the second
 operand)

 	
 >>>

 	
 Bitwise Shift Right

 	
 Bitwise

 	
 someInt>>>2

 	
 Same as shift right, except 0’s come in on the left instead of
 1’s. Use >> for quick division of signed integers, and >>> for
 shifting nonsign values or bit fields

 	
 &&

 	
 Logical AND

 	
 Logical

 	
 (someExpression)&&(someOtherExpression)

 	
 Performs a logical AND between two Boolean expressions, used to
 form logical expressions

 	
 ||

 	
 Logical OR

 	
 Logical

 	
 (someExpression)||(someOtherExpression)

 	
 Performs a logical OR between two Boolean expressions, used to
 form logical expressions

 	
 !

 	
 Logical NOT

 	
 Logical

 	
 !someBoolExpression

 	
 Complements a Boolean value, used to form logical expressions

 	
 =

 	
 Assignment Equals

 	
 Assignment

 	
 someVar = 100

 	
 Used to assign a value to a variable

 	
 +=

 	
 Addition Assignment

 	
 Assignment

 	
 someVar += 10

 	
 Used to add, then assign a value, someVar+=10 means add 10 to
 someVar

 	
 -=

 	
 Subtraction Assignment

 	
 Assignment

 	
 someVar -= 10

 	
 Used to subtract, then assign a value, someVar -= 10 means
 subtract 10 from someVar

 	
 *=

 	
 Multiplication Assignment

 	
 Assignment

 	
 someVar *= 10

 	
 Used to multiply, then assign a value, someVar *= 10 means
 multiply someVar by 10

 	
 /=

 	
 Division Assignment

 	
 Assignment

 	
 someVar /= 10

 	
 Used to divide, then assign a value, someVar /= 10 means divide
 someVar by 10

 	
 %=

 	
 Modulus Assignment

 	
 Assignment

 	
 someVar %= 10

 	
 Used to get the remainder after division of someVar and 10

 	
 >>=

 	
 Shift Right Assignment

 	
 Assignment

 	
 someVar >>= 2

 	
 Used to shift then assign a value, someVar >>= 2 means
 shift someVar right two bits

 	
 <<=

 	
 Shift Left Assignment

 	
 Assignment

 	
 someVar <<= 2

 	
 Used to shift then assign a value, someVar <<= 2 means
 shift someVar left by two bits

 	
 >>>=

 	
 Shift Right Zero Fill Assignment

 	
 Assignment

 	
 someVar >>>2

 	
 Same as >>, only fills the high-order bits with zeros

 	
 &=

 	
 AND Assignment

 	
 Assignment

 	
 myVariable &= 7

 	
 Used to perform bitwise AND then assign a value, someVar &=
 7 means AND the bits of someVar with 7

 	
 |=

 	
 OR Assignment

 	
 Assignment

 	
 myVariable |= 7

 	
 Used to perform bitwise OR then assign a value, someVar |= 7
 means OR the bits of someVar with 7

 	
 ^=

 	
 XOR Assignment

 	
 Assignment

 	
 myVariable ^= 7

 	
 Used to perform exclusive OR then assign a value, myVariable |=
 7 means XOR the bits of myVariable with 7

When we form expressions, we can do so using parentheses to
override the precedence of the operators. Scala is aware of the normal
precedence of arithmetic operators, and employing parentheses is often
necessary, especially when we are not sure of the exact precedence or when we
want to write clear code. All expressions within parentheses are evaluated
first. Brackets can be used in any type of expression, which means we can use
them when concatenating strings and when joining Boolean expressions, logical
statements, and arithmetic expressions.

The arithmetic that computers perform is always finite. That
means addition will only give the correct answer so long as there is no
overflow. For example, a byte storing 127+1 does not equal 128 because 128 is
outside the range of a byte—it actually wraps around to -128. And, as we’ve
seen, floating-point values are not able to store many exact fractions. They
often rely on rounding.

Boolean operators are things like <, >, ||, and ==. They
allow us to form logical statements. The example of a Boolean expression in Code
Listing 12 means “89 is less than 78 OR 29 ends in a 0.” Neither of these
statements is true, which means this line will evaluate to false.

The final example in Code Listing 12 is a string expression. We
can add strings together using the + operator. We can also use the
multiplication operation *, which will add the same string multiple times. The
line “("Hello" + "
" + "world") * 3” will evaluate to
“Hello worldHello worldHello world,” because we multiply the string “Hello”+ “
” + “world” by three.

[bookmark: _Toc470870176]Creating and calling functions

Functions begin with the def keyword,
which is short for define. A function is similar to any other data type, except
that it is evaluated when it is used rather than when it is defined. Functions
return values and take parameters, and we can use them to enable code reuse
when we have some expression of sequence of statements that we need to execute
many times.

After the def keyword, we supply
an identifier for the function followed by the parameter list in brackets—for
example, def someFunction(parameters). The
parameter list consists of a comma-separated list of variables that are to be
passed to the function in order for it to compute. For instance, def someFunction(myInt: Int) and def someTwoParameterFunction(a: Float, b: Double). If
there are no parameters, we use () as the parameter list or leave the
parameters off, such as with def someFunction()
and def someFunction. Code Listing 13 shows a
simple Hello World function that takes no parameters and returns nothing.

Code Listing 13: Function with No Params or Return

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a function with no
 parameters:

 def helloFunction {

 println("Hello world!")

 }

 // Calling a function with no
 parameters:

 helloFunction

 }

 }

After the parameter list (if there is one), we specify the return
type. The return type begins with a colon and, if we are using object-oriented
programming, is followed by a data type such as Int
or Double or some class. This is the value that the
function computes and returns to the caller.

In Scala, we can nest functions. In Code Listing 13, the function
called helloFunction is actually nested inside
the body of the main method. This means that it
is local to the main method and cannot be called outside of main.

Finally, we can supply an assignment operator, =, and specify the body of the function. If the body
of the function is only a single statement, we do not need to enclose the body
of the function with { and }. Code Listing 14 shows a complete example of
defining and calling a function that takes parameters and returns a value.

Code Listing 14: Creating and Calling a Function

 object MainObject {

 // Compute the square root of x
 using

 // the Babylonian method:

 def sqrt(x: Double): Double = {

 if(x
 < 0)

 -1 //
 Return -1 as an error value if x < 0

 var q:
 Double = x /
 2

 for(i
 <- 1 to 20) {

 q = (q + x /
 q) /
 2

 }

 // return q // We can
 return using the 'return' keyword

 q // Placing q by itself is the same as return q.

 }

 def main(args: Array[String]): Unit = {

 println("Square root of 61 is " +
 sqrt(61))

 }

 }

Code Listing 14 shows the code used to compute the square root of
a Double using the Babylonian method. There is a
built-in square root function that will compute the root much faster, but Code Listing
14 illustrates of how to create and call a simple function. The code also uses
a for loop, which is a control structure, and we
will look at control structures in a moment.

 	
 [image:]

 	
 Note: When we return from a function, Scala will assume
that the final evaluated statement is meant to be returned. Code Listing 14
shows that the final statement to be evaluated is “q,” therefore q will be returned from sqrt. If you prefer,
you can supply a return
statement to explicitly return q, but there is often no requirement for the return
keyword.

 	
 [image:]

 	
 Note: The return type of Unit means the same as void in other
languages. It means that the function does not return a value.

Calling a function in Scala is similar to doing so in other
languages. We supply the name of the function followed by the parameters
enclosed in brackets, such as sqrt(56).

Named arguments

We can use named arguments as well. Named arguments allow us to
supply the arguments in a different order than the function specifies, or we
can specify the arguments by name if that makes the code clearer. Code Listing 15
shows an example of using named arguments. Notice that in the final example, printInfo(age = 51, name = “Claire”), the arguments do
not appear in the same order as they appear in the definition of the function printInfo. If you name one argument when calling, you
must name them all.

Code Listing 15: Named Arguments

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Specify a function which takes
 several parameters:

 def printInfo(name: String, age: Int) {

 println("Patient Name: " +
 name +
 " Age: " +
 age)

 }

 // Call function without named
 arguments:

 printInfo("Chris", 35)

 // Some examples using named
 arguments:

 printInfo(name = "Dennis", age = 190)

 printInfo(age = 51, name = "Claire")

 }

 }

Default parameters

We can specify default parameters in our function definitions, which
means that if the caller does not supply a value for the parameter, it will be
set to the default value.

Code Listing 16: Default Values

 object MainObject {

 def main(args: Array[String]): Unit = {

 def printInfo(name: String = "No
 name", age: Int = 0) {

 println("Patient Name: " +
 name +
 " Age: " +
 age)

 }

 // Both parameters will take
 default values:

 printInfo()

 // Age will take default value:

 printInfo("Simpson")

 // Name will take default value:

 printInfo(age = 65)

 }

 }

Code Listing 16 shows some examples of using default values for
function parameters. First, in the function’s parameters list, we supply the
default values for any or all of the parameters by specifying some literal
after an equals. Then, when we call the function, we can supply any or all of
the default values of some specific value or we can leave them to default.
Notice that we can use named arguments in conjunction with default values, as
in the function call printInfo(age=65), which
will call the function with the name argument
defaulting to “No name”.

Functions as data

Functions are just data, too. This point is not
often clear when programming high-level languages, but it is literally true—everything
the computer does is just a bunch of 1’s and 0’s. We can easily create a
variable, point it to a function, then call that function by using our variable
(see Code Listing 17). This is something like a function pointer, but the
syntax in Scala is intuitive and easy to read.

Code Listing 17: Functions as Data

 object MainObject {

 // Simple function that doubles
 the input:

 def doubleInput(i: Int): Int = {

 i + i

 }

 def main(args: Array[String]) {

 // Point val c to
 doubleInput, the _ means any

 val c
 = doubleInput _

 // Call the function doubleInput:

 println("Double 6 is " +
 c(6))

 }

 }

In Code Listing 17, note the assignation of the
function doubleInput to
the val called c. We use the name of the function
followed by the underscore. The underscore means all inputs; it is a wild card
symbol. Normally, when we assign a value, we would need to specify something
like doubleInput(8), but
if we use the underscore to mean any input, we’ll get the variable c pointing to the function itself,
and we can call c using
the standard syntax for calling doubleInput.

[bookmark: _Toc470870177]Variable parameters

With the final parameter to a function, we can
indicate that there might be a variable number of arguments. This is useful
when we want to sum a number of values and we do not necessarily know how many
there will be. When we use a variable number of arguments, the argument must be
the final value in the parameter list.

Code Listing 18: Variable Arguments

 object MainObject {

 def main(args: Array[String]) {

 // Function with variable argument
 list:

 def minimum(args: Int*): Int = {

 // Base case, return 0 if there's
 no

 // arguments:

 if(args.length == 0)

 return 0

 // Otherwise, find the minimum:

 var min = args(0)

 for(i
 <- args) {

 if(i
 < min)

 min = i

 }

 // Return the smallest number from
 the list:

 min

 }

 // Call minimum

 println("Minimum: " + minimum(13, -30, 2, -17, 37))

 }

 }

In Code Listing 18, the function called minimum can
take any number of Int parameters.
The syntax used for this mechanism defines the final parameter of the
function’s parameter list with a *, such as (args: Int*). Notice we call the function in the usual way, but the number of Int parameters can be anything at
all. Code Listing 18 uses if statements. For loops, we’ll look at control
structures in the next section.

The args parameter becomes an Array. We will look at arrays later. Note also that there is a built-in
function for lists called min that we could have called to get the minimum with less code.

[bookmark: _Toc470870178]Evaluation of functions

Another way to think about functions in Scala is
to consider that a function is an expression that is evaluated when it is used
rather than when it is initially set. Imagine we have a variable called n set to some number. If we define a
second variable, x, and
we point it to n, the
value of x will be
determined when the assignment occurs.

But, imagine if we have another variable, y. In that case, we can use def to assign the value of n to the variable y. The difference is that the value
of y will be evaluated
when it is used rather than when y is defined. So, if the value of n
changes, the value of y will also change. See Code Listing 19 for a basic example of this
mechanism.

Code Listing 19: Def Evaluation

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a variable n:

 var n = 90

 // Assign the value of n to a new
 variable, x

 var x
 = n

 // Assign the expression 'n' to a
 function, y

 def y
 = n

 // Print out the values of our
 variables:

 println("Before changing 'n':")

 println("The value of e is " +
 n)

 println("The value of x is " +
 x)

 println("The value of y is " +
 y)

 // Change the value of the 'n' variable:

 n += 1

 // Print out the values of our
 variables again:

 println("After changing 'n':")

 println("The value of e is " +
 n)

 println("The value of x is " +
 x)

 println("The value of y is " +
 y)

 }

 }

In Code Listing 19, the output shows that after
the variable e has
changed, the value that x points to is still the original value of e, even though x is a var and e has changed. This means that the
value of a variable is evaluated when the variable is defined—x points to the val of e when it is defined, and changing e has no effect on x after x’s definition. However, the value of
y changes when we change
the value of e because we used def to define y as a
function. This means that the value of a function is evaluated
when we use the function. The output from running the program from Code Listing
19 is presented in Code Listing 20.

Code Listing 20: Def Evaluation Output

 Before
 changing 'e':

 The value
 of e is 90

 The value
 of x is 90

 The value
 of y is 90

 After
 changing 'e':

 The value
 of e is 91

 The value
 of x is 90

 The value
 of y is 91

Code Listing 20 shows only a very basic use of a
function, and in this example our variable (or function) called y is little more than pointer to the
value of e. But we can also
define our function, y,
to include a complex expression or even a code block with many lines of code.

[bookmark: _Toc470870179]Chapter 4 Control Structures

Control structures are used to allow certain
sections of code to loop or to be executed based on a condition. Programs are
normally executed one line at a time from top to bottom. Control structures
allow us to change this execution order.

Looking at control structures requires us to
first consider arrays, lists, and other data types where control structures are
used. I will present control structures first, then collections, but I will be
using collections in the code for both chapters.

[bookmark: _Toc470870180]“If” statements

“If” statements in Scala are similar to those of
other C-based languages. We can use “if, else-if, and else” blocks in order to
route our code execution based on conditions. One interesting point about Scala
“if” statements is that they evaluate to something; in other words, they return
a value. We will see this mechanism in a moment, but for now, Code Listing 21
shows a basic example of an If/Else If/Else block.

Code Listing 21: Basic If Blocks

 object MainObject {

 def main(args: Array[String]): Unit = {

 def x
 = 100

 def y
 = 200

 if(x
 < y)

 println(x
 + " is smaller than " +
 y)

 else if(x > y) { // Can use { } for multiple lines of code!

 println(x
 + " is greater than " +
 y)

 }

 else // Can finish if/else if with a final else:

 println(x
 + " is equal to " +
 y)

 }

 }

“If” conditions work the same way as Java. We
begin with an “if,” followed by any number of “else-if” conditions, and end
with an optional “else” block. Only a single “if” or “else-if” code block will
execute, and if none of the previous “if” or “else-if” blocks execute, the
“else” block (if supplied) will execute. We supply a condition after the
keyword “if,” then supply a code block for the program to execute when the
condition is true. After the “if,” we can supply any number of “else-if”
blocks, each with its own condition and code block. Finally, we supply an
“else” block at the end.

Code Listing 22 shows an interesting difference
between Scala and Java—“if” statements, and indeed the entire If/Else block,
actually evaluate to a val. This is particularly important when we are filtering lists using foreach (which we will look at shortly).
In Code Listing 22, 100 is less than 200, so the val called resultFromIf will be set to -1.

Code Listing 22: If Blocks Evaluate to
Values

 object MainObject {

 def main(args: Array[String]): Unit = {

 def x
 = 100

 def y
 = 200

 // Creating a val from an
 if block return:

 val resultFromIf = {

 if(x
 < y)
 -1

 else if(x > y) 1

 else 0

 }

 println("The result is: " +
 resultFromIf)

 }

 }

[bookmark: _Toc470870181]For loops

For loops are used to execute a section of code for
some specified number of times. Code Listing 23 counts to 10 using a for loop.

Code Listing 23: Counting with a For Loop

 object MainObject {

 def main(args: Array[String]) {

 for(i
 <- 1 to 10) {

 println(i)

 }

 }

 }

The basic syntax for a for loop is for(variable <- range), where
range specifies the range over which the for loop iterates. The variable, i in Code Listing
23, is set to 1 first, then the body of the for loop executes. Next, the variable
is set to 2, then 3, etc. Each time the variable is incremented, the loop body
runs and a new number is printed to the console using println.

The range of the loop is specified as (i <- 1 to 10), which means
the variable i will
become consecutive whole numbers (Int) from 1 all
the way up to and including 10.

We can also iterate through collections using
for loops. We will look at this when we cover collection types.

It is important to note that Scala uses
different scoping rules than C++ and other languages. If we have a variable
called myVariable and we
implement a for loop with a counter with the same name, the counter variable
will not be the same as the variable defined outside the for loop. Code Listing
24 shows an example of this behavior. The outer myVariable in Code Listing 24 will not change, and the variable that iterates
through the loop has the same name, but otherwise it is completely distinct.

Code Listing 24: Variable Scope in For
Loops

 object MainObject {

 def main(args: Array[String]): Unit = {

 var myVariable: Int = 0

 // For loop with counter:

 for(myVariable <- 1 to 10) {

 // Output the for loop's
 myVariable:

 println("Value of counter: " +
 myVariable)

 }

 // Output the value of the
 original myVariable.

 println("Value of local myVariable: " +
 myVariable)

 }

 }

until vs. to

In a for loop, if we use the until keyword when specifying our
range, Scala will count up to, but not include, the second number. If we use
the to keyword, the
second number will be included. For example, Code Listing 25 shows exactly the
same example as Code Listing 24, except that we have used until in place of to. In Code Listing 24, the loop
counts to and includes 10, but when we use until, the program counts up to but does not include the 10. The use of until rather than to is
common for iterating through Array and other collection elements because the indices of these
collection types are 0-based
and a collection with five items would have items numbered 0 until 5 or (0, 1, 2, 3 and 4).

Code Listing 25: Counting to (but Not Including)
10

 object MainObject {

 def main(args: Array[String]) {

 // Counts: 1, 2, 3, 4, 5, 6, 7, 8,
 9

 for(i
 <- 1 until 10) {

 println(i)

 }

 }

 }

Multiple range for loops

We can supply multiple ranges for a for loop by separating each range in
the for loop with a semicolon. In this case, the right-most variable counts up
first, then the next to the left increments, and the right-most counts up
again. In this way, the program will iterate through all permutations of the
ranges. Code Listing 26 shows a simple example of using two ranges.

Code Listing 26: Using Multiple Ranges

 object MainObject {

 def main(args: Array[String]) {

 // Two ranges for loop:

 // variable called num will
 count 1 to 10,

 // while den is set to 1. Then
 den will

 // increment, and num will
 count 1 to 10

 // again, etc.

 for(den <- 1 to 10; num <- 1 to 10){

 println(num + " divided by " +
 den +
 " is " +

 (num.toDouble /
 den.toDouble));

 }

 }

 }

Code Listing 26 sets the variable den to 1, then it also sets the
variable num to 1. It next
executes the loop body 10 times, incrementing num each time and printing the results of num/den. When num
has reached 10, the loop starts again, but den is incremented. The program will print 100 lines of output to the
screen, and it will divide all combinations of the numbers from 1 to 10,
starting from 1/1 and working all the way to 10/10.

 	
 [image:]

 	
 Tip: Multiple range for loops are particularly
important for iterating through multidimensional arrays. (We will look at
multidimensional arrays later.) But the method for iterating through a
multidimensional array is to set each range of a multiple range for loop to
count through a dimension of the array. So, if we have an array with three
dimensions with the sizes of the dimensions being 7, 8, and 9, we could use for
(x <- 0 until 7; y <- 0 until 8; z <- 0 until 9).

For loop filters

We can add a condition to the ranges we count in
a for loop. This will cause the body of the loop to be executed only when the
condition is true. Code Listing 27 shows an example of a for loop with a
condition—that the program prints out the even numbers between 1 and 100. Using
the output from an “if” statement leads to this example.

Code Listing 27:
For Loop Conditions

 object MainObject {

 def main(args: Array[String]) {

 // Print the even numbers using a
 filter:

 for(i
 <- 1 to 100 if i %
 2 == 0) {

 println(i)

 }

 // Print even numbers without
 using a filter:

 for(i
 <- 1 to 50) {

 println(i
 * 2)

 }

 }

 }

Code Listing 27 contains two examples of how to
print the even numbers from 1 to 100. Notice the “if” statement in the
middle of the first for loop. If i % 2 == 0, then i is even, and
therefore this loop will filter out all the odd numbers. In the second example, we count from 1 to 50 and double the result.
This will give the same output and will probably be faster to execute. In this
particular example, the second method is preferable because we are iterating
through the loop half as many times but we can also use for loop filters when
iterating through lists of elements. In the case of iterating through list
elements, we would not be able to use the second method to print only the even
numbers from the list. We will look at lists again later, but Code Listing 28
shows an example of iterating through a list and filtering out the even
numbers.

Code Listing 28: For Loop Filtering List
Elements

 object MainObject {

 def main(args: Array[String]) {

 // Define a list:

 val myNumbers: List[Int] = List(

 2, 6, 1,
 7, 4

)

 // Filter the even numbers:

 for(i
 <- myNumbers if(i %
 2 == 0)) {

 println(i
 + " is even!")

 }

 }

 }

[bookmark: _Toc470870182]While loops

While loops are used to execute a block of code
repeatedly until a certain Boolean condition is false. The syntax for a while loop in Scala is while(condition), where condition is anything that evaluates to true or false, i.e.
Boolean. Each time the program encounters the while loop it will evaluate
the condition. If the condition evaluates to true, the program will
execute the loop body and repeat the while loop's condition check. If the condition evaluates to false, the program will skip the loop
body and continue execution after the while loop. Code Listing 29 is a simple number-guessing game that uses a
while loop to repeatedly ask the user for a number until the hidden number is
guessed.

 	
 [image:]

 	
 Note: We use
the import
to import the scala.io.StdIn.readInt
function, which is supplied as a standard part of Scala’s libraries. In the
code, we do not actually use the readLine function, which means the
import could have read import scala.io.StdIn.readInt, but I left the readLine as an
example of importing multiple functions from the same class.

 	
 [image:]

 	
 Tip: The Math.random
function generates a pseudorandom Double in the range from 0.0 to 1.0.
It never generates the number 1.0 itself, but rather all numbers from 0.0 up to
1.0. In order to generate a random Int in the range from 0 to X (not
including X), we can use (Math.random
* x).toInt. In order to generate a random number from 1 to X
(including X), we can use (Math.random * x).toInt + 1.

Code Listing 29: Guess-the-Number Game

 import scala.io.StdIn.{readLine, readInt}

 object MainObject {

 def main(args: Array[String]): Unit = {

 var userAnswer = 0

 var hiddenNumber = (Math.random *
 1000).toInt + 1

 println("""I'm thinking of a random

 number
 between 1 and 1000, inclusive.""")

 // Repeat the game while the user
 has not

 // guessed the number:

 while(userAnswer != hiddenNumber) {

 print("Enter a number: ")

 userAnswer = readInt // Read an int from the user

 // Give the user a hint:

 if(hiddenNumber < userAnswer)

 println("Lower")

 else if(hiddenNumber > userAnswer)

 println("Higher")

 }

 // The user won, print a
 message and quit.

 println("Yes, you got it, the hidden number was " +

 hiddenNumber +
 "!")

 }

 }

The program in Code Listing 29 generates a
random number from 1 to 1000, and the user must guess the number. Notice the
user of the while loop—we are saying that while the user's number is not identical to
the hiddenNumber, the program should loop. When the user guesses the hiddenNumber, the variable userAnswer will equal hiddenNumber and the condition of the while loop (userAnswer != hiddenNumber) will be false. The program will stop executing the loop and begin execution after
the body of the loop.

[bookmark: _Toc470870183]Do while loops

Do while loops are similar to while loops,
except that the condition is checked at the end, after the loop’s body. This
means that do while loops are guaranteed to execute at least once. Code Listing
30 shows the same game as the while loop example, except that here the hidden
number can be negative.

Code Listing 30: More Difficult Version of
Guess the Number

 import scala.io.StdIn.readInt

 object MainObject {

 def main(args: Array[String]) {

 var userAnswer = 0

 // Select a random number from
 -1000 to 1000

 var hiddenNumber = (Math.random *
 2001).toInt -1000

 println("""I'm thinking of a random

 number
 between -1000 and 1000, inclusive.""")

 // Do while loops guaranteed to
 execute at least once!

 do {

 print("Enter a number: ")

 userAnswer = readInt //
 Read the user's answer

 // Give the user a hint:

 if(hiddenNumber < userAnswer)

 println("Lower")

 else if(hiddenNumber > userAnswer)

 println("Higher")

 }
 while(userAnswer != hiddenNumber)

 println("Umm... no. Anyway, I'm tired of playing. See
 ya!")

 }

 }

The basic syntax for a do while loop is do
{ body } while(condition), where body is the body of the loop and where the
condition is some value that evaluates to a Boolean.
As with the while loop, the do while will continue to execute until the
condition becomes false.
Then it will drop below the do while and continue execution after the loop.

The reason a do while loop is better suited to this game is
because the program initially sets the userAnswer
variable to 0. If we use a while loop for the
game’s body and the program happens to randomly select the number 0, the
program will assume this 0 is the user’s guess and the user will win the game
immediately. With a do while, we are guaranteed that the first value we check
against our hidden number is actually the user’s input, not just the default
value.

[bookmark: _Toc470870184]Example programs

For the final part of this chapter, we will
examine some slightly longer and more complex programs. While we learn the
Scala language, we should note that we can already use the basics of the
language to create important and interesting programs. The following programs
are intended for use in the study of number theory, a field that deals
primarily with the characteristics and patterns of whole numbers. These
programs are definitely not designed optimally, and there are well-known
algorithms that work much faster than those presented here, but these programs
are useful for studying prime numbers and patterns with small integers.

Testing if a number is prime

The example in Code Listing 31 contains a simple,
brute-force method for testing if a number is prime. The program runs through
the integers 1 to 100 using a for loop and prints to the console true or false
depending on whether or not the number is prime.

Code Listing 31: Testing Primality

 object MainObject {

 def isPrime(j: Int): Boolean = {

 // Base cases:

 if(j
 < 2)
 return false

 else if(j == 2 || j == 3) return true

 else if(j %
 2 == 0) return false

 // Find the highest number we need
 to check

 var sqrt = Math.sqrt(j)

 // First composite to test

 var factor = 3

 while(factor <= sqrt) {

 // If j is divisible by the factor

 if(j
 % factor == 0)

 // Return false

 return false

 // Move factor up to the next odd
 number

 factor += 2

 }

 // If j is not divisible by any
 factor up to

 // the square root of j, then j is
 prime!

 return true

 }

 def main(args: Array[String]): Unit = {

 var i
 = 0

 for(i
 <- 1 to 100) {

 println(i
 + ": " + isPrime(i))

 }

 }

 }

The Goldbach conjecture

The second sample program is designed for use in
the study of a famous statement made by Christian Goldbach. Goldbach proposed that every even number greater than 2 could be
written as the sum of two primes. Although it appears to be a perfectly
simple statement, it has never been proven or disproven, and a proof either way
would be an extraordinary event in mathematics and computer science.

A Goldbach partition is two primes that sum to a
given integer. For instance, for the number 18 (which is even), a Goldbach
partition might be 7 and 11—because 7 and 11 are both primes and they sum to 18.
If you are able to find an even number greater than 2 that does not have any
Goldbach partitions, you have managed to solve the problem and proven Goldbach
was incorrect. Likewise, if you are able to discern some infallible reason that
Goldbach’s statement is true for all even numbers greater than 2, you have
managed to prove Goldbach correct. At this point, even numbers with hundreds of
digits have been checked, and every even number has been found to have one or
more Goldbach partitions. Most mathematicians believe the conjecture to be
true, but nobody has managed to prove without doubt that Goldbach's conjecture
is a fact. The following program outputs all of the Goldbach Partitions for a
given number. The user can use the input 0 to exit the program.

Code Listing 32: Goldbach Conjecture
Partitions

 import scala.io.StdIn.{readLine,readInt}

 object MainObject {

 def isPrime(j: Int): Boolean = {

 // Base cases:

 if(j
 < 2)
 return false

 else if(j == 2 || j == 3) return true

 else if(j %
 2 == 0) return false

 // Find the highest number we need
 to check

 var sqrt = Math.sqrt(j)

 // First composite to test

 var factor = 3

 while(factor <= sqrt) {

 // If j is divisible by the factor

 if(j
 % factor == 0)

 // Return false

 return false

 // Move factor up to the next odd
 number

 factor += 2

 }

 // If j is not divisible by any
 factor up to

 // the square root of j, then j is
 prime!

 return true

 }

 // Function prints the Goldbach
 partitions of

 // a given Int

 def goldbachPartitions(j: Int): Unit = {

 println("Goldbach Partitions for " +
 j)

 var currentPartition = 2

 while(currentPartition <= j/2) {

 if(isPrime(currentPartition)

 && isPrime(j -
 currentPartition))

 println("Partition: " + currentPartition + " and " +

 (j - currentPartition))

 currentPartition += 1

 }

 }

 // Main loops until the user
 inputs 0

 def main(args: Array[String]): Unit = {

 var input = -1

 while(input != 0)
 {

 input = scala.io.StdIn.readLine("Input
 Int (use 0 to exit): ").toInt;

 if(input != 0)

 goldbachPartitions(input)

 else

 println("Bye!")

 }

 }

 }

 	
 [image:]

 	
 Note: The Goldbach conjecture is just one example of a
mathematical problem that we can already explore using the basics of Scala.
There are many such problems and questions in mathematics, and the interested
reader should look up the list of unsolved problems in mathematics on
Wikipedia: https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics.

[bookmark: _Toc470870185]Chapter 5 Arrays and Lists

Storing objects in collections is a common
practice is Scala. Two of the most basic and fundamental collection types are
the array and the list. In this section, we will examine how to store data in
these simple collections, and we’ll look at some of the rich collection
features that Scala offers for manipulating these collections.

[bookmark: _Toc470870186]Arrays

Arrays store a collection of objects with the
same data type in contiguous RAM. Arrays are of a fixed size, so that after the
array is defined, we cannot add and remove items. If you want to add and remove
items from an array-like structure, see the next section on lists.

Code Listing 33: Defining Arrays

 // Array
 of 5 Ints

 var myIntArray: Array[Int] = new Array[Int](5)

 // Array
 of 10 Doubles

 var myDoubleArray = new Array[Double](10)

 // Array
 of 3 Strings

 val myStringArray = new Array[String](3)

 >

Code Listing 33 shows the definition of three
arrays. In order to define an array, we use the var or val keyword, followed by an
identifier name. We follow this with Array[dataType], where
dataType is whatever type we want the array to store. Then we use = new Array[dataType](count), where count is the number of elements in the array. Alternatively, we can skip
the redundant declaration part of the definition and use a shortcut notation,
as in myDoubleArray.

[bookmark: _Toc470870187]Accessing and setting elements

In order to access elements of an array, either
for setting or for reading, we use parentheses (normal brackets are used, as
opposed to other C-based languages that use square brackets). It is very
important to note that array access is 0-based. This means that when we create an
array of n elements, the first element has an index of 0 and the final element
has an index of n-1. Code Listing 34 shows several
examples of setting elements of arrays manually, one at a time.

Code Listing 34: Setting and Accessing
Elements

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a double array with 5
 elements:

 val doubleArray: Array[Double] = new
 Array[Double](5)

 // Set the values of the array

 doubleArray(0)
 = 99.0

 doubleArray(1)
 = 25.5 /
 100.0

 doubleArray(2)
 = Math.sqrt(10)

 doubleArray((7
 >> 2)
 + 2)
 = 4.0

 doubleArray(4)
 = 3.14

 // doubleArray(5) = 100 //
 Illegal!

 // Access elements and output.

 println("doubleArray(0) = " +
 doubleArray(0))

 println("doubleArray(1) = " +
 doubleArray(1))

 println("doubleArray(2) = " +
 doubleArray(2))

 println("doubleArray(3) = " +
 doubleArray(3))

 println("doubleArray(4) = " +
 doubleArray(4))

 // println("doubleArray(5) =
 " + doubleArray(5))// Illegal!

 }

 }

Code Listing 34 shows a basic example of a Double
array with five elements. We can set the values of the elements by employing
the array identifier followed by the index in brackets. Note that doubleArray(0) means the first element and doubleArray(4) means
the final element. And there is no element (5)—elements are numbered 0 to n-1.

When we set the value of an array element, we
can use any expression we like because each element is a perfectly normal
double var. Note also that we can access elements with expressions. In Code Listing
34, the value of doubleArray(3) is set using an expression for the index: ((7>>2)+2). This expression evaluates to 3. The expressions
must evaluate to a positive integer when we use them to access array elements—there
is no element 3.5 or -6 of an array.

Figure 15 shows an illustration of the double
array from Code Listing 34 before and after the values of the elements are set.

Figure 15: Array before and after Settings
Elements

Val vs. var arrays

Code Listing 35 illustrates the difference
between a val and a var array. If we define a val array, we are not able to point the
array identifier to someOtherArray because it is a val. However, we can change the elements of a val array.
The elements of a val array are var and can be changed as needed.

Code Listing 35: Val vs. Var Arrays

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a val and var array:

 val myValArray = new Array[Int](10)

 var myVarArray = new Array[Int](10)

 // Define some other array:

 var someOtherArray = new Array[Int](10)

 // Set the var array to point to
 someOtherArray

 myVarArray = someOtherArray

 // myValArray = someOtherArray //
 Illegal!

 // However, we can change the
 elements of a val array!

 myValArray(0)
 = 100

 }

 }

A var array can point to a new array, and in
Code Listing 35 we create a var array, then we point it to someOtherArray. As
with a val array, the elements of a var array are
themselves var and we are free to change them to whatever values we need.

[bookmark: _Toc470870188]Multidimensional arrays

Multidimensional arrays are useful for storing
objects in grids, box-like arrangements, or higher dimensions, and they are
often very large in terms of how many elements they have and the amount of RAM
they require. It is common to process them using nested loops or for loops with
multiple iterators.

Code Listing 36: 2D Array

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Declare a 2D array of Int

 val array2D = Array.ofDim[Int](5, 5)

 // Set elements in the array:

 array2D(2)(0) = 100

 array2D(3)(4) = 99

 // Read elements:

 println("Element(0)(0): " +
 array2D(0)(0))

 println("Element(2)(0): " +
 array2D(2)(0))

 println("Element(3)(4): " +
 array2D(3)(4))

 }

 }

Code Listing 36 shows how to create a
multidimensional array. We use the syntax val name =, where name is the
identifier for the array. We set this to Array.ofDim[dataType],
where dataType is the type for the elements of our array. Then we specify the size
of the dimensions, which is (5,
5) in this example. This will create a 2D matrix of
Int, and each element will be initialized to 0. Figure
16 shows an illustration of the array from Code Listing 36 after the elements
are set to 100 and 99, as in the Code Listing.

Figure 16: 2D Array

Figure 16 shows the array2D array drawn
out with the first index representing the row and the second representing the
column. This decision is arbitrary, and we could easily draw the array in other
orientations.

The line in Code Listing 36 that reads array2D(2)(0) = 100 sets the value of the array at row 2, column 0 to 100. And the line
that reads array2D(3)(4)
= 99 sets the value of the array at row 3, column 4
to 99.

Higher dimensional arrays are also possible. We
could define a 3D array with something like var my3DArray = Array.ofDim[Int](10, 10, 10). As with 2D arrays, the orientation of the elements in a 3D array
is purely conceptual, what matters is that we envisage and illustrate the array
in the same way every time we access elements.

 	
 [image:]

 	
 Note: Higher
dimensional arrays can quickly consume massive amounts of memory. The total
number of elements in an array is the product of the dimension sizes. So, if we
have an Int array with three dimensions and each dimension has 100 elements,
the total number of Int variables in our array is 100*100*100, which is one
million. Each Int variable consumes four bytes of memory to store in the
system, therefore a 100x100x100 Int array will require approximately four
megabytes of memory.

 	
 [image:]

 	
 Tip: If you have many arrays, or if you would
like to use several of the helpful functions provided in Scala for use with
arrays, you can import Array at the top of your program. When you import Array,
you can define a new array using the shorthand var someArray = ofDim[Int](10,
10) rather than var someArray = Array.ofDim[Int](10, 10).

[bookmark: _Toc470870189]ArrayBuffer

An ArrayBuffer is similar to an array, except
that we can add and remove items. Code Listing 37 shows a basic example of an ArrayBuffer.
The program reads a list of doubles from the user, stores them in an
ArrayBuffer, and computes the sum. Note that to use an ArrayBuffer, we import scala.collection.mutable.ArrayBuffer.

Code Listing 37: ArrayBuffer Basics

 import scala.io.StdIn._

 import
 scala.collection.mutable.ArrayBuffer

 object MainObject {

 def main(args: Array[String]) {

 val userInput = ArrayBuffer[Double]()

 while(true) {

 // Output a prompt:

 print("Input a number (use -1.0 to continue): ")

 // Read some input:

 val x
 = readDouble

 // If the user inputs something
 other than -1

 // add it to the array buffer:

 if(x
 != -1)

 userInput += x // += adds the item to the end end

 //userInput.insert(0, x)// We can
 also insert items at the start

 // When the user inputs -1:

 else {

 // Init a summation
 variable

 var sum = 0.0

 // Use a for loop to add the items
 together

 for(y
 <- userInput) {

 print("Adding " + y
 + " ")

 sum += y

 }

 // Output the sum of items:

 println("Sum is " + sum)

 return // Return from main

 }

 }

 }

 >}

We can add multiple items at once to an array by
using the ++= operator. We can also add multiple items at once to any
position of the ArrayBuffer by supplying multiple values to the insert method. Code
Listing 38 shows several examples of adding and removing single and multiple
items from an ArrayBuffer.

Code Listing 38: Adding and Removing Items
from ArrayBuffers

 import scala.io.StdIn._

 import
 scala.collection.mutable.ArrayBuffer

 object MainObject {

 def printArrayBuffer(arr: ArrayBuffer[Int]) {

 print("Array Buffer: ")

 // Print out the values in the array
 buffer

 for(x
 <- arr)

 print(x
 + " ")

 // Print a new line:

 println

 }

 def main(args: Array[String]) {

 // Create a new ArrayBuffer

 val nums = new ArrayBuffer[Int]()

 // Add a 1 to end of the array
 buffer:

 nums += 1

 printArrayBuffer(nums)

 // Add multiple items at once to
 the end:

 nums ++= Array(2, 5)

 printArrayBuffer(nums)

 // Add a 3 and a 4 after position
 2:

 nums.insert(2,
 3, 4)

 printArrayBuffer(nums)

 // To remove an item by its index:

 nums.remove(3)

 printArrayBuffer(nums)

 // Remove 2 items beginning at
 index 1:

 nums.remove(1,
 2)

 printArrayBuffer(nums)

 }

 }

 >

Note that iterating through an ArrayBuffer is similar to an Array. We can use a simple for loop
as per Code Listing 38. We can also use the property called ArrayBuffer.length and loop through
the items.

[bookmark: _Toc470870190]Lists

Lists are similar to arrays, except instead of
being stored in contiguous memory, the elements are stored as a linked list.
Lists are quick to traverse from start to finish, but they are slow to look up
items in the middle. Also, we cannot change the items in a list, they are
immutable. Code Listing 39 shows some examples of defining and traversing
simple lists.

 	
 [image:]

 	
 Note: The
various collection types each have different implementations. This leads to
different performance for different tasks. For instance, we can add items to
the beginning or the end of a list in constant time; however, an ArrayBuffer
adds elements to the end in constant time, but adding an element to the start
takes linear time. For a complete comparison of the performance of certain
tasks, see http://docs.scala-lang.org/overviews/collections/performance-characteristics.html.

 	
 [image:]

 	
 Tip: When selecting a collection for an
algorithm, we typically minimize the amount of time taken to perform the
operations on the collection. If you frequently need to add items to the start
of the collection, you should use a collection that is implemented as a linked
list, such as a list. If you need to reference or index elements at arbitrary
positions (such element number 1000 or element number 789), you should use a
collection stored in contiguous memory, such as an Array.

Code Listing 39: Lists

 object MainObject {

 def main(args: Array[String]) {

 // List of 3 integers:

 var integerList: List[Int] = List(100, 101, 102)

 // List of strings:

 var capitalCities: List[String] = List(

 "Melbourne",

 "Hobart",

 "Brisbane",

 "Sydney")

 // Concatenate items to a list:

 capitalCities = capitalCities.:::(List[String]("Darwin"))

 // Print out the items of a list:

 println(capitalCities)

 // Traverse a list:

 for(i
 <- integerList)

 println("Element: " + i)

 }

 }

We can also define lists using ::, which
is called cons and which is short for construct, and we can use Nil, which acts as the tail of the
list. When you create lists in this way, you should always use Nil at the end to finish the list
(see Code Listing 40, and note this is not a complete Code Listing and cannot
be run as a program).

Code Listing 40: Lists with Cons and Nil

 //
 Empty list:

 var anEmptyList = Nil

 // List
 with cons and Nil

 var directions = "North" :: "South" :: "East" ::

 "West" :: Nil

There are other ways to create simple lists in
Scala. For example, we can also use the List.range method, which allows us to quickly create a list of items in
numerical order. There is also the List.fill method, which allows us to create a list of items all set to the
same value, as in Code Listing 41.

Code Listing 41: Creating Lists with Range
and Fill

 // Create
 a list of 100 integers from 1 to 100:

 var rangeList = List.range(1, 100)

 // List
 filled with 10 copies of String 'Empty'

 var filledList = List.fill(10)("Empty")

Lists have three very important methods: head, tail, and isEmpty.
Method head points to the first element of
the list, method tail
points to all elements after the first. Method isEmpty is used to determine whether or not the list is empty. Code Listing
42 shows an example of using head, tail, and isEmpty

Code Listing 42: Head, Tail, and
IsEmpty

 //
 Empty list:

 var anEmptyList = Nil

 // List
 with cons and Nil

 var directions = "North" :: "South" :: "East" :: "West" :: Nil

 println("First element of directions: " +
 directions.head)

 println("Final element of directions: " +
 directions.tail)

 println("Directions is empty? " +
 directions.isEmpty)

 println("anEmptyList is empty? " +
 anEmptyList.isEmpty)

Multiple dimensional lists

We can also create lists of lists. These are
lists in which each element is itself a list. Conceptually, this is the same as
creating a multiple dimensional list. Code Listing 43 shows an example of
creating a simple 2D list of integers.

Code Listing 43: 2D Lists

 //
 Create a list of lists:

 var twoDList =

 List(

 List(1, 2,
 3),

 List(4, 5,
 6),

 List(7, 8,
 9)

)

 //
 Loop1:

 for(l1 <- twoDList) {

 println("Element: " + l1)

 }

 //
 Loop2:

 //
 Traverse using nested for loops

 for(l1 <- twoDList) {

 for(l2 <- l1) {

 println(l2)

 }

 }

Code Listing 43 creates a list called twoDList that
consists of three elements, each of which is a List itself. In order to traverse the list, we can use a simple for
loop, but this will only access each of the inner lists. In order to traverse
every element of the nested lists, we can nest for loops. The output of Code Listing
43 is shown in Code Listing 44.

Code Listing 44: Output from Code Listing 43

 Element:
 List(1, 2, 3)

 Element:
 List(4, 5, 6)

 Element:
 List(7, 8, 9)

 1

 2

 3

 4

 5

 6

 7

 8

 9

Useful methods on lists

There are many useful methods available for
lists and the other collections, such as List.length, which returns the numbers of elements in the list; List.last, which returns the final
element of the list; and List.first, which
returns the first element in the list. The following section provides a few
extra examples that use other operators and methods available to lists. The
interested reader should look up the documentation for each of the collection
types in order to gain a full appreciation of the diversity of these objects. The
documentation for the List class is available from http://www.scala-lang.org/api/2.7.7/scala/List.html.

Tabulate method

We can also create lists using tabulate. This
allows us to create complex patterns of items in our lists using expressions or
even “if” statements for each item in the list.

Code Listing 45: Tabulated List

 object MainObject {

 def main(args: Array[String]) {

 // Create a tabulated list:

 val tabulatedList = List.tabulate(10)(n
 =>

 if(n
 % 2
 == 0)
 "" +
 n +
 " is even"

 else "" + n
 + " is odd")

 // Print the items of the list:

 for(s
 <- tabulatedList)

 println(s)

 }

 }

Code Listing 45 shows an example of creating a
tabulated list. The Code Listing uses the tabulate method and the => operator in order to create a list of alternating n is even and n is odd elements. We will see more
of the => operator in
a moment; for now the important aspect of this Code Listing is the tabulate method. For each element in
the list, the “if” statement will be applied with the result, so that either n is even or n is odd will become the elements of
our list.

Concatenate operator

In order to join two lists together, we use the
concatenate operator, which is represented by three colons, :::. Code Listing
46 shows an example of using the concatenate operator to join two lists
together and produce a third.

Code Listing 46: Concatenate Operator

 object MainObject {

 def main(args: Array[String]) {

 // Create some lists

 var list1 = List(1,
 2, 3)

 var list2 = List(4,
 5, 6)

 // Concatenate list1 and list2

 var list3 = list1 ::: list2

 // Print 1, 2, 3, 4, 5, 6

 for(i
 <- list3)

 println(i)

 }

 }

Take, drop, and SplitAt

Code Listing 47: Take, Drop, and SplitAt

 object MainObject {

 def main(args: Array[String]) {

 // Create a list:

 var integerList = List(

 1, 2, 3,
 4, 5,
 6, 7,
 8, 9,
 10)

 // Take: Prints List(1, 2, 3, 4,
 5)

 println(integerList take 5)

 // Drop: Prints List(6, 7, 8, 9,
 10)

 println(integerList drop 5)

 // SplitAt: Prints (List(1, 2, 3,
 4, 5),List(6, 7, 8, 9, 10))

 println(integerList splitAt 5)

 }

 }

Code Listing 47 shows an example of using take, drop, and splitAt
operators on a list. The take method creates a list with a specified number of items. In the
example, the number supplied is 5, which means the first five items of integerList will be returned as a new
list.

The operator drop is the opposite of take—in fact, drop will remove x number of items from the list and return a new list.
In the example, the number supplied for the drop is 5, so the first five items
from the integerList
will be removed, leaving 6, 7, 8, 9, and 10.

The final example shows how to split a list into
smaller lists using the splitAt operator. The call to splitAt 5 will cause the list to be split into two smaller lists, the first
containing elements 0 to index 4 (i.e. five elements) and the second containing
elements from index 5 to tail.

[bookmark: _Toc470870191]Folding

Folding is a technique for working with lists. Imagine we want to
take some input, x, and perform an operation on x with each item in a list, then
return x. For instance, let’s say we want to begin with 0 and add each integer
from an Int list to compute the sum of the
elements of a list. We can do this with a for loop without too much trouble, as
per Code Listing 48.

Code Listing 48: Summing List Elements Using For Loop

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a list:

 val myList = List(1,
 2, 3,
 4, 5)

 // Define a summing variable:

 var sum = 0

 // Sum the elements using a for
 loop:

 for(listElement <- myList)

 sum += listElement

 // Output the total:

 println("Sum is: " + sum)

 }

 }

Scala also offers another interesting approach to this problem
called folding. Code Listing 49 shows the same example as Code Listing 48, only
this time we use foldLeft.

Code Listing 49: Summing List Elements Using foldLeft

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a list:

 val myList = List(1,
 2, 3,
 4, 5)

 // Define the sum, foldLeft using
 a closure:

 var sum = myList.foldLeft(0)((x,y) => x+y)

 // Output the total:

 println("Sum is: " + sum)

 }

 }

The foldLeft
function belongs to the List
class. It takes two parameters, the first, (0),
is an integer. The second is a function to perform (this function is actually a
closure—we will look at closures in more detail in a separate chapter). In the Code
Listing 49 example, we say that the value of x
starts at 0. Each
of the list items is then passed to the closure (x, y) => x+y. Each list element acts as the y variable in the closure, and the
value of x will sum the
elements one after the other. If this is confusing, Chapter 9 will focus on the
syntax of closures.

We can start the x
variable at values other than 0.
For instance, if we begin the x
variable at 10, then the sum
will be reported as 25 because
10+1+2+3+4+5 is 25.

 	
 [image:]

 	
 Tip: We can also use foldRight, which is the
same as foldLeft, except that the iteration through the list occurs in the
reverse order. When we use foldLeft, the list is iterated through from the
first element to the last. With foldRight, the list is iterated through from
the final item to the first.

This has been a very brief look at Scala’s folding function. The
operation is similar to reduce, and the interested reader can look up other
topics, such as foldRight and
reduce.

[bookmark: _Toc470870192]Chapter 6 Other Collection Types

Scala has many useful collection types. The most
fundamental are the array and the list, but if we want to quickly implement
various algorithms, we often use other data types, such as stacks, queues, and maps.
In this section, we will look at some of the other useful collection types.

[bookmark: _Toc470870193]Stacks and Queues

A Stack is a LIFO data structure. We add items to the Stack using the push function, and we remove items
using the pop function.
The order that items are popped is the opposite of the way they are pushed. For
instance, if we push the values 1, 2, and 3, the Stack will return 3, then 2, then 1
when we pop the items.

A Queue is similar to a Stack in that it also allows only two operations. For a Queue, the two operations are enqueue and dequeue. We use enqueue to add items to the Queue, and we use dequeue to remove items. A Queue returns items in the same order
they are enqueued. A Queue is sometimes called a FIFO data
structure, which is short for first-in-first-out. For instance, if we enqueue the items 1, 2, then 3, a Queue will dequeue them in the same order: 1, 2,
then 3.

Code Listing 50 shows some basic operations
using a Stack, and Code Listing
51 shows similar operations using a Queue. Note that when we use these data structures (and many others), we
need to include an import in order to import the class from the appropriate
library.

Code Listing 50: Basic Operations with Stacks

 import scala.collection.mutable.Stack

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a stack

 var myStack = new Stack[Int]

 // Push a new item to the stack:

 myStack.push(89)

 println("Number of items: " +
 myStack.length)

 println("Item at the top of the stack: " +
 myStack.top)

 // Push a new item to the stack:

 myStack.push(21)

 println("Number of items: " +
 myStack.length)

 println("Item at the top of the stack: " +
 myStack.top)

 // Pop off the newest item:

 var itemFromStack = myStack.pop

 println("Popped item: " +
 itemFromStack)

 println("Number of items: " +
 myStack.length)

 println("Item at the top of the stack: " +
 myStack.top)

 // Push a new item to the stack:

 myStack.push(44)

 println("Number of items: " +
 myStack.length)

 println("Item at the top of the stack: " +
 myStack.top)

 // Pop off all remaining items:

 // Note: This is a stack, so the
 items are popped

 // off in reverse order!

 while(myStack.length != 0)

 println("Popped item: " +
 myStack.pop)

 }

 >}

Code Listing 51: Basic Operations with
Queues

 import scala.collection.mutable.Queue

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a queue:

 var myQueue = new Queue[Int]

 // Add an item to the queue:

 myQueue.enqueue(47)

 println("Number of items: " +
 myQueue.length)

 println("Item at the front of the queue: " +
 myQueue.front)

 // Add another item to the queue:

 myQueue.enqueue(83)

 println("Number of items: " +
 myQueue.length)

 println("Item at the front of the queue: " +
 myQueue.front)

 // Remove the oldest item from the
 queue:

 var itemFromStack = myQueue.dequeue

 println("Dequeued item: " +
 itemFromStack)

 println("Number of items: " +
 myQueue.length)

 println("Item at the front of the queue: " +
 myQueue.front)

 // Add an item to the queue:

 myQueue.enqueue(23)

 println("Number of items: " +
 myQueue.length)

 println("Item at the front of the queue: " +
 myQueue.front)

 // Loop until the queue is empty:

 // Note this is a queue, so items
 will be dequeued

 // in the same order they were
 queued!

 while(myQueue.length != 0)

 println("Dequeued item: " +
 myQueue.dequeue)

 }

 }

[bookmark: _Toc470870194]Sets

Sets are a collection type that hold only
distinct elements. Sets are a representation of a mathematical entity with the
same name. They are designed to allow the same operations as mathematical sets—except
that a mathematical set can be defined as containing an infinite number of
items, whereas Scala sets contain a finite number of elements. Code Listing 52
shows some basic operations with sets.

Code Listing 52: Operations with Sets

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a Set

 val evenNumbers = Set(2,
 4, 6,
 8, 10, 12, 14)

 // Print out some properties:

 println("Head: " + evenNumbers.head)

 println("Tail: " + evenNumbers.tail)

 println("IsEmpty: " + evenNumbers.isEmpty)

 // Testing if the set contains 3:

 if(evenNumbers.contains(3))

 println("Set contains 3!")

 else

 println("Set does not contain 3...")

 // Test if the set contains 2:

 if(evenNumbers.contains(2))

 println("Set contains 2!")

 else

 println("Set does not contain 2...")

 }

 }

In order to join two sets together, we use the ++ operator
(the ++ operator forms the mathematical union of two sets). In Code Listing
52, we join a set containing (1, 2, 3) with another containing (3, 4, 5). When we run the program from Code Listing 52, notice that the
output shows set3 containing
(5, 1, 2, 3, 4). Notice
also that although set1 and
set2 both contain 3, the concatenated set contains only
one copy of 3. Code Listing
53 also shows that we can easily add and remove items using the + and – operators, respectively.

Code Listing 53: Adding and Removing Elements

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define some sets:

 var set1 = Set(1,
 2, 3)

 var set2 = Set(3,
 4, 5)

 // Concatenate with ++ operator:

 var set3 = set1 ++ set2

 // Output the concatenated set:

 println("Set3: " + set3)

 // Adding items to a set:

 println("Set containing an extra 10: " +

 (set3 + 10))

 // Removing items from a set:

 println("Joined set without the 3's: " +

 ((set1 ++ set2) - 3))

 }

 }

 >

Sets are designed to allow fast item lookups. But
the order of the elements in a set is meaningless—notice that when we run the
program from Code Listing 53, the final ordering of items, (5, 1, 2, 3, 4), is
not the same as the order we specified the items in the original sets (indeed,
depending on the implementation of the particular Java Runtime you have
installed, the order in my machine might be different than in yours). This is
because the implementation of sets employs hashing techniques. If the order of
elements in your collection is important, you should not use a set, or you
should use the Scala SortedSet collection. However, if you know that every element in your
collection will be unique and you want fast item lookups, a Set is perfect.

Mutable sets

By default, we cannot add and remove items from
a set—they are immutable (which means the elements are all fixed). Code Listing
53 showed how to add and remove items, but the example actually created a new
set, it did not add and remove items from the immutable set. If you want to add
and remove items from a set without creating a new set, use a mutable set (which
means the elements are not fixed and we are free to change them) by importing scala.collections.mutable.set. In order to add items to a mutable set, we can use the + operator,
and to remove items we can use the – operator. Also notice that when we
create a mutable set, we do so using var someName = Set[dataType](), where dataType is the type of data the set contains and someName is
the identifier we want to use for the set.

Code Listing 54: Adding and Removing Items
from a Set

 import scala.io.StdIn.readInt

 import scala.collection.mutable.Set

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create a mutable set:

 var setOfInts = Set[Int]()

 var newNumber = 0

 while(newNumber != -1)
 {

 // Print a prompt:

 print("Input a number (use -1 to quit): ")

 // Read a new number:

 newNumber = readInt

 // If the set contains the new
 number, remove it:

 if(setOfInts.contains(newNumber))

 setOfInts = setOfInts - newNumber

 // Otherwise, add it (if not -1):

 else if (newNumber != -1)

 setOfInts = setOfInts + newNumber

 // Print out the items in the set
 so far:

 println("Set contains: " +
 setOfInts)

 }

 }

 >}

Code Listing 54 shows a program that uses sets
to test an interesting phenomenon called “The Birthday Paradox.” The question used
to demonstrate the phenomenon is: How many people, on average, would you
need in a room before it is likely that at least two people share a birthday?
The program in Code Listing 54 uses a set of integers from which we repeatedly
generate random birthdays until there is a duplicate. At this point, we record
the number of birthdays generated so far, add this to a total, and repeat. The
experiment is repeated as many times as specified by the iterations variable—I
have set this variable to 1,000,000. The more iterations we repeat, the closer we
will get to finding the actual average number of people we would need in a room
before two or more of them share a birthday.

The Birthday Paradox is not actually a paradox,
but it is surprising how few people are needed in a room before two might share
a birthday. The program also demonstrates the speed of sets for looking up items.
There are a million trials, and the program will likely finish in a second or
two on any modern desktop PC. Each trial contains multiple lookups of a set
with many elements.

Code Listing 55: Birthday Paradox Tester

 import scala.collection.mutable.Set

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a mutable set:

 var birthdays = Set[Int]()

 // Define how many trials to run:

 var iterations = 1000000

 // Set total to 0 birthdays
 counted so far:

 var totalBirthdays = 0.0

 println("Beginning trials...")

 // Repeat the experiment up to
 iterations times:

 for(i
 <- 1 to iterations) {

 // Reset the birthdays:

 var duplicateDetected = false

 birthdays.clear

 while(!duplicateDetected) {

 // Generate a new random birthday:

 val newBirthday = (Math.random() *
 365.0).toInt

 // Check if the birthday exists in
 the set or not:

 if(birthdays.contains(newBirthday)) {

 totalBirthdays += birthdays.size.toDouble

 duplicateDetected = true

 }

 else {

 // Add the birthday to the set:

 birthdays += newBirthday

 }

 }

 }

 // Output the total and average
 number of days:

 println("Total birthays: " +
 totalBirthdays)

 println("Average birthdays before duplicate: " +
 (totalBirthdays /
 iterations))

 }

 }

As with mathematical sets, sets in Scala allow
us to form new sets by selecting the intersecting items from two sets or from
selecting the items that are not shared between sets. Also note that instead of
concatenating sets with the ++ operator, we can use the OR operator |. See Code Listing 56 for an example
of the &, |, and &~ operators.

Code Listing 56: Set-Like Operations on
Sets

 import scala.collection.mutable.Set

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define two sets:

 var set1 = Set(1,
 5, 4,
 6, 9)

 var set2 = Set(5,
 3, 7,
 1, 6)

 // Output the shared elements:

 // Note: & operator is the
 same as: set1.intersects(set2)

 println("Shared elements: " +
 (set1 & set2))

 // Using | combines all elements:

 println("All Elements: " +
 (set1 |
 set2))

 // Using &~ filters to items
 not shared between sets:

 // Note: &~ is the same as:
 set1.diff(set2)

 println("Elements in set1, not in set2: " +
 (set1 &~ set2))

 println("Elements in set2, not in set1: " +
 (set2 &~ set1))

 }

 }

We can also filter and count elements in sets that
match a particular Boolean expression. Code Listing 57 shows an example of
using the filter function.

Code Listing 57: Counting Elements in
Filtered Sets

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a set:

 val mySet = Set(1,
 5, 4,
 6, 9)

 // Filtering:

 println("Number of odd elements in mySet: " +

 mySet.count(x => x % 2
 == 1))

 println("Number of even elements in mySet: " +

 mySet.count(x => x % 2
 == 0))

 // For these operations, we can
 also create new sets,

 // instead of just counting
 elements:

 val evenNumbers = mySet.filter { x => x % 2
 == 0
 }

 val oddNumbers = mySet.filter { x => x % 2
 == 1
 }

 println("Set of Even Elements: " +
 evenNumbers)

 println("Set of Odd Elements: " +
 oddNumbers)

 }

 }

Sets are extremely powerful and versatile, and this
has necessarily been a brief introduction to them. For more information, consult
the Scala documentation for the set class at http://docs.scala-lang.org/overviews/collections/sets.html.

[bookmark: _Toc470870195]Tuples

A Tuple is a collection of objects that can be of different types and that
we can pass and use as a single entity. This is different from other
collections, such as Array, that contain objects that all have the same type. Tuples are useful for many things,
including returning multiple values from a function—instead of actually
defining a function with multiple returns, we can pass a Tuple and modify its values to act as
multiple returned values.

Code Listing 58: Defining Tuples

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Verbose syntax for tuple of 3
 elements:

 val tupleSlow = new Tuple3(2, "Banana", 2.6)

 // Quick syntax for tuple of 3
 elements:

 val tupleQuick = (1, "Pineapple", 3.5)

 // Many element tuple:

 val oneOne = (1, 1,
 "was", 'a', "racehorse",

 2, 2, "was", 1, 2,
 1, 1,
 1, 1,
 "race", 2,

 2, 1, 1,
 2)

 }

 >}

Code Listing 58 shows the definition of three Tuples. The first example shows the
verbose syntax in which we use the new operator and define a Tuple in the same way as we would any other object, i.e. calling the
constructor and pass parameters.

The second example shows a simpler syntax for Tuples. We can omit the new Tuple3 and simply specify the
parameter list in brackets.

The final example uses the quick syntax, but the
Tuple has many elements.
At the time of writing, the latest version of Scala can contain from 1 to 22
number of elements.

The data type of the Tuple is implied by the items passed
to the constructor. So the line new Tuple3(2, "Banana", 2.6) will
create a Tuple with data
types Int, String, and Double. Likewise, the final example
creates a 20-element Tuple with data types (Int, Int, String, Char, …, String, Int, Int, Int, Int, Int).

Accessing elements of a Tuple

Code Listing 59: Accessing Tuple Elements

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define two complex numbers as tuples:

 var complexNumberA = (1.5, 7.8)

 var complexNumberB = (2.6, 5.1)

 // Multiply them together to get
 complex product:

 var complexProduct = (

 complexNumberA._1 * complexNumberB._1 -

 complexNumberA._2 * complexNumberB._2,

 complexNumberA._1 * complexNumberB._2 +

 complexNumberA._2 * complexNumberB._1

)

 // Output results:

 println("Complex product of " +
 complexNumberA +
 " and " +
 complexNumberB +

 " is " +
 complexProduct)

 }

 }

Code Listing 59 shows an example of accessing
elements of tuples. The elements are numbered from 1 to N, where N is the
number of items in the Tuple. Note that we define two complex numbers as Tuple2
objects, then we multiply them together to produce the complex product. Notice also
the use of complexNumberA._1 in order to access the first element of complexNumberA.

When we print a Tuple to the console, Scala will surround the elements as a comma-separated
list with brackets. So, when we print complexNumberA, Scala
will output (1.5, 7.8).

Code Listing 60 shows an example of using foreach to iterate over the items in
a Tuple. The example
will assign the elements of the Tuple to the variable x and will print each element out on a separate line.

Code Listing 60: Iterating over Elements
of a Tuple

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a tuple:

 val tuple5 = ("One", 2,
 3.0f, 4.0, '5')

 // Output elements by iterating
 over tuple:

 println("Elements of tuple: ")

 tuple5.productIterator.foreach { x
 => println(x)
 }

 }

 >}

 	
 [image:]

 	
 Note: It may
seem awkward to access elements of a tuple as suchAndSuch._1. If you are
wondering why we are not able to use the syntax suchAndSuch(1), it is because
the (and) parentheses define a function implicitly, and functions need to
have some specific return type—they are not able to return each of the possible
types in the tuple.

Naming elements of a Tuple

We can name the elements of a Tuple, then refer
to them by name instead of index. Code Listing 61 shows an example of naming
the elements of a Tuple.

Code Listing 61: Naming Elements of a
Tuple

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a tuple:

 val point3D = (-9.5, 5.6, 7.2)

 // Name the elements of the tuple:

 val (x,
 y, z)
 = point3D

 // Print out the elements using
 names:

 println("Element x: " + x)

 println("Element y: " + y)

 println("Element z: " + z)

 }

 }

Notice that in Code Listing 61 the names x, y, and z refer
to the elements of the Tuple called point3D. This is not a method for naming the elements of Tuples in general, but only a method
for naming the elements of a specific Tuple.

Two elements Tuples shortcut

Code Listing 62 shows a shorthand for creating Tuple2
objects. We use the syntax “element1 -> element2” as in the definition of point2D.
Note that we cannot create a Tuple3 this way. The line val point3D = -9.5 -> 5.6 -> 7.2 actually creates a Tuple2 inside another Tuple2:
((-9.5, 5.6), 7.2).

Code Listing 62: Shorthand for Tuple2

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Short hand for two element
 tuple:

 val point2D = -9.5 -> 5.6

 // Be careful, the following is
 not a Tuple3!

 val point3D = -9.5 -> 5.6 -> 7.2

 // Print out the tuples:

 println(point2D)

 println(point3D)

 }

 }

Maps and Tuples

One of the most common uses of Tuples is
with Maps. A Map is a
collection of Key/Value pairs, which means Tuple2 is perfect. Maps are sometimes called mappings or associations; they represent a
mapping of the keys to the values.

Maps come in two flavors: Immutable and Mutable. The default is
Immutable, and in order to use a Mutable map, you should use import scala.collection.mutable.map. Code Listing 63 shows some examples of how to use an Immutable Map. Note that once an Immutable Map is created, the items are fixed.

Code Listing 63: Immutable Maps

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Immutable map:

 val staff = Map(1 -> "Tom", 2 -> "Tim", 3 -> "Jenny")

 val staff2 = Map(10 -> "Geoff", 7 -> "Sara")

 // Print out some info the staff
 map:

 println("Keys: " + staff.keys)

 println("Values: " + staff.values)

 println("IsEmpty: " + staff.isEmpty)

 // Concatenate two maps with the
 ++ operator:

 val staffConcat = staff ++ staff2

 println("All staff: " + staffConcat.values)

 // Access values by key:

 println("Element with key 1: " +
 staffConcat(1))

 println("Element with key 7: " +
 staffConcat(7))

 // The following will throw an
 exception because the key

 // does not exist:

 // println("Element
 with key 12: " + staffConcat(12))

 // To check if a key exists:

 if(staffConcat.contains(12))

 println("Element with key 12: " +
 staffConcat(12))

 else

 println("Element with key 12: Does not exist!")

 // Removing elements by key:

 val timGotFired = staffConcat -
 2 // 2 is the key for Tim

 // Now timGotFired will be the
 same as staffConcat, but Tim has

 // been removed:

 println(timGotFired)

 }

 }

 	
 [image:]

 	
 Note: As with
Sets, Scala’s Maps are extremely useful and fast. There are many operations
available for them, and the interested reader should have a look at http://docs.scala-lang.org/overviews/collections/maps.html
for more information.

Mutable Maps

Mutable Maps
are essentially the same as Immutable Maps, except that we can add and
remove items without creating a new map each time.

Code Listing 64: Mutable Maps

 import scala.collection.mutable.Map

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create a new map object:

 val staff: Map[Int, String] = Map()

 // Adding tuples (key/value pairs)
 to a map with +=

 staff += (5 -> "Teddy")

 staff += (1 -> "Rene")

 staff += new Tuple2(3, "Ronnie")

 // Print out some info on the map:

 println("Keys: " + staff.keys)

 println("Values: " + staff.values)

 println("IsEmpty? " + staff.isEmpty)

 // To remove an item by key:

 staff -= 5

 println(staff) // Teddy
 got fired!

 staff += (5 -> "Dean") // Dean took Teddy's old key.

 // We are not able to add multiple
 items with the

 // same key so the following is
 illegal:

 // staff += (5, "Teddy")

 // Iterating through a map:

 for(i
 <- staff.keys) {

 println("Staff Member ID: " +
 i +
 " -> " +
 staff(i))

 }

 // To set map elements, we use
 map(x)=xyz

 for(i
 <- staff.keys) {

 staff(i)
 = "Teddy"

 }

 println(staff)

 }

 }

Code Listing 64 shows the use of a Mutable map.
The only real difference is that Mutuable maps can add items and change the
values of the keys. Also, note that the operations for Maps are the same as those for sets
because the keys for a map are a Set.

There are many other types of collection
available in Scala. Each has a different implementation and is designed for
different types of data and algorithms. The interested reader can visit the
page http://docs.scala-lang.org/overviews/collections/concrete-mutable-collection-classes.html for more information on the available collection types.

[bookmark: _Toc470870196]Chapter 7 Classes and Objects

Scala is a language that combines functional and
object-oriented paradigms. The object-oriented mechanisms are designed to allow
us to create modules of reusable code called classes. A class is a collection
of data and methods that operate on that data. We will see that classes are
very similar to the objects we have been using all along—for example, the MainObject. The main difference
between a class and an object is that a class is designed to have multiple
instances of objects created from it, whereas an object is the only instance of
its class.

If you are not familiar with Java’s object-oriented
programming mechanisms, I strongly suggest you read up on them. Scala is a
language designed to address many of the shortcomings of the Java language.
Object-oriented programming is all about defining our own data structures to
reduce the overall amount of code in our projects and to allow our projects to
be maintainable and scalable.

A class is a blueprint for creating objects.
Objects are called instances of the class. All of the data types in Scala are
objects, including Int and Double. When we specify a new var or val, we are using
objects. The fields of our objects must be initialized, and, unlike with Java,
in Scala we cannot create an object with uninitialized fields.

Object-oriented programming allows us a
mechanism to combine data and functions that operate on this data. In
Java-speak, these are called member variables and member methods. Member
variables are variables that belong to the objects, and the member methods are
the functions that the objects are able to perform. These can be accessed using
the “.” operator, such as someString.length. Or, if you have an
object with a member variable called height, you can use someClass.height to access this variable.

Variable names are used to point to objects. They
are references to objects.So an object, such as the number 100, can potentially
be referred to by many variables.

[bookmark: _Toc470870197]Classes

We can add classes to our existing files, but if
the classes are complicated and contain a lot of code, it is sometimes better to
add a separate code file to our project. We will look at two methods for adding
new classes to our projects—in the first, we add a new file for the class. This
keeps the code for our class separate from the other classes, but it means that
our project has multiple files. Using the second method, we add new classes to
existing files. In Scala, we can define multiple classes per file. This has the
advantage of minimizing the number of files in our project, but the classes are
all mixed together and this can sometimes become difficult to maintain. As a
general rule of thumb, if a class is required by other classes, or if a class
is complex and requires many methods, the class should be defined in a separate
file. Otherwise, if the class is very simple and only used by one other class
in our project, we might define the new class inside the same file as the
existing class.

Adding a new class

Method 1: Adding a new class file

To add a new class file to your project, click File
> New > Scala Class, as in Figure 17. You can also add a new class by
right-clicking the project in the Package Explorer and selecting New >
Scala Class.

Figure 17: Adding a New Class File

You will be presented with the New File box, as in
Figure 18. In this box, you can name your class in the box provided and click Finish.
It is common to name classes with a leading uppercase letter because this makes
it easy to differentiate identifiers that are class names from identifiers that
are functions or variables.

Figure 18: Adding a New Class Step 2

Eclipse will create a new file in your project
and write the basic skeleton of a new class with the name provided, as in Code
Listing 65.

Code Listing 65: A Blank Class

 class MyNewClass {

 }

In the Package Explorer, you will note that we
now have a new file added to the src folder (as in Figure 19). We can edit the
code for our new class by doubling-clicking its name to open the code in the
code view.

Figure 19: Class File in Package Explorer

Method 2: Adding class to an existing file

We can also code a new class directly into any
existing object or class file. Code Listing 66 assumes we did not add the class
called MyNewClass in a
separate file and shows us a basic code file for the MainObject of a new program with the
code for the MyNewClass
class defined above the code for the MainObject.

Code Listing 66: Defining a Class in an
Existing File

 //
 Definition of a new class

 class MyNewClass {

 }

 //
 Definition of the MainObject

 object MainObject {

 def main(args: Array[String]): Unit = {

 println("All good?")

 }

 }

Scala is fairly flexible with regards to where
we can define a new class. Code Listing 67 shows three examples of new classes
defined at different points in our MainObject file.

Code Listing 67: Adding Classes to an
Existing File

 //
 Define a new class outside:

 class Class1 {

 }

 //
 Definition of the MainObject

 object MainObject {

 // Define a new class local to
 MainObject

 class Class2 {

 }

 def main(args: Array[String]): Unit = {

 // Define a new class local to
 MainObject.main

 class Class3 {

 }

 }

 }

Code Listing 67 shows the declaration of three
classes, each having a different scope. Class1 is defined outside the body of the MainObject object, and it has program-wide scope (exactly the same as adding
the class to a new file). Class2 is defined inside the body of the MainObject object. This class is not accessible to outside classes, but it can
be used in any methods within the MainObject. Class3 is
defined inside the body of the main method. This means that the class does not exist outside the main method.

[bookmark: _Toc470870198]Class syntax

The syntax for a class begins with the keyword class and
is followed by the name of the class and a code block surrounded by { and }. Code Listing
68 shows the basic skeleton of a do-nothing class. This is the basic class that
Eclipse will write for us when we add a new class to our project, or the
smallest amount of code we are required to write in order to define a new
class.

 	
 [image:]

 	
 Note: In Java,
class files and the classes in them should share the same name. However, this
restriction is not part of Scala, and we are free to name our classes anything
we like (within reason) and to define multiple classes and objects per file.

Code Listing 68: Skeleton of a Class

 class ClassName {

 // Body
 of the class

 }

A class is simply a blueprint. It defines what
types of variables and functions the objects built from it will have. When we
create an object from our class blueprint (instantiate the class), the object
is called an instance of the class. In order to instantiate a class, we use the
new keyword in a similar
way as with Java. Code Listing 69 shows two examples of creating an instance
from a class called ClassName (this Code Listing is not complete and will not compile and run).

Code Listing 69: Creating an Instance from
a Class

 // Two ways
 to create an instance from a class

 //
 called ClassName:

 //
 Shorthand method:

 var classInstance = new ClassName

 //
 Verbose method:

 var classInstance: ClassName = new
 ClassName

In Code Listing 69, the first method for
creating an instance is to specify either var or val
(depending on whether you want to change the variable or create a constant
object). Next, we use an identifier for the new object, in this case classInstance, and we set the identifier
equal to new ClassName. This is a shorthand method for creating an instance, and it should
look very familiar. This is exactly the same as when we define other basic
objects such as Int and Boolean.

The second method is slightly more verbose than
the first. We can optionally specify the data type for our new object. In the previous
example, this is not particularly useful, but Code Listing 70 shows another
example of this verbose method, this time using inheritance. Code Listing 70 defines
an instance of SomeChild
called myInstance, but
the data type is SomeParent. We will soon look at inheritance in more detail.

Code Listing 70: Example of Verbose Method
with Inheritance

 //
 Define a parent class:

 class SomeParent {

 }

 //
 Define a child class:

 class SomeChild extends SomeParent {

 }

 //
 Definition of the MainObject

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a SomeParent object,
 which is

 // presently an instance of
 SomeChild

 var myInstance: SomeParent = new SomeChild

 }

 }

Code Listing 71 shows a basic example of a class
complete with a few fields. The listing also shows that we access the fields
using the dot syntax.

Code Listing 71: Basic Class with Some
Fields

 //
 Definition of the Atom class

 class Atom {

 // Three fields, or member
 variables:

 var electronCount: Int = 0

 var name: String = "Unknown"

 var symbol: String = "NoSymbol"

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Instantiate a new member of
 Atom class:

 val hydrogen = new Atom

 // Set the fields/member variables:

 hydrogen.electronCount = 1

 hydrogen.name = "Hydrogen"

 hydrogen.symbol = "H"

 // Access the fields/member
 variables:

 println("Name: " + hydrogen.name +
 " (" +
 hydrogen.symbol + ")")

 println("Electrons: " + hydrogen.electronCount)

 }

 }

Note that in Code Listing 71, the “.” means “the field belonging to,” so
that hydrogen.symbol
means the symbol field
belonging to the hydrogen object. Each instance of a class has its own fields; if we created a
second object from the Atom class, iron,
for example, the fields hydrogen.symbol and iron.symbol would be two distinct fields that would not necessarily have the
same values.

In Scala, we have abstract classes, just like in
Java. Unlike Java, Scala has abstract variables. If a class variable is not
assigned a value in the class definition, the class must be marked as abstract.
This is also true of methods. Methods can be abstract (or have no definition)
in Scala, and any class with one or more abstract methods is itself abstract.
In Code Listing 71, all variables have been given a default value in the Atom class. Also note that the
variables are public by default, which means they can be accessed inside the
main method without marking them as public (whereas in Java, all members of a
class are private by default). We will look at abstract class in more detail
later, but this is the reason that I have set each of the members of the Atom class to default values 0, Unknown, and NoSymbol.

As a second example, Code Listing 72 shows a
basic Box class. The
class consists of two fields, sideLen1 and sideLen2,
that we will use to define a box of size sideLen1*sideLen2. We will expand this class by adding some member methods.

Code Listing 72: Basic Box Class

 class Box {

 var sideLen1: Int = 0

 var sideLen2: Int = 0

 }

Val vs. var in object-oriented programming

It is worth pointing out a particularly detailed
nuance of the val vs. var mechanism. If we have a val that refers to some object, and the class has fields
marked as var, we can change the object’s fields
even though the object itself is immutable. The val
means the assignment of the object itself is immutable—it does not refer to the
member fields of the object (which may or may not be val
themselves). Code Listing 73 shows an example of this behavior.

Code Listing 73: Val vs. Var and Objects

 class Box {

 var sideLen1: Int = 0

 var sideLen2: Int = 0

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define a new val:

 val immutableBox = new Box

 // Define a new var:

 var mutableBox = new Box

 // Set the fields of mutableBox

 mutableBox.sideLen1 = 12

 mutableBox.sideLen2 = 13

 // Set the fields of the
 immutableBox

 immutableBox.sideLen1 = 23

 immutableBox.sideLen2 = 14

 // Set the mutableBox to point to
 another Box.

 // This is fine because mutableBox
 is var:

 mutableBox = immutableBox

 // But the following illegal, we
 cannot reassign the

 // immutableBox, because it is val!

 immutableBox = mutableBox

 }

 }

Notice that in Code Listing 73 we can change the fields of the
object called immutableBox even though the
object is val. But we cannot reassign the object
to another Box (this reassignment is illustrated
by the final line, which I highlighted in red because it is illegal). It is
very important to understand what the val and var refer to when we use the terms in our projects.

Private modifier

When we declare a field in a class, we can mark
it as private. This
prevents any outside objects from interacting with the field. In Scala, members
that have no modifier are assumed to be public, so that external objects can
interact with the fields. In object-oriented programming, it is recommended
that we hide details of the way our classes work because that gives us the
flexibility of changing the way the class works without having to worry about
other objects accessing the fields directly.

Code Listing 74 shows the code for our Box class, but now the sideLen1 and sideLen2 fields have been marked as private (highlighted in Yellow). Notice that we are not able to set the sideLen1 field from the main method because the MainObject object is not part of the Box class, and the fields are private. Therefore, the final line of
the main method is
illegal, and I have highlighted it in Red.

Code Listing 74: Private Fields

 class Box {

 private var sideLen1: Int = 0

 private var sideLen2: Int = 0

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create an instance from the box
 class:

 var myBox = new Box

 // It is no longer legal to access
 the sideLen1

 // or sideLen2 fields outside the
 Box class.

 // The following line is illegal!

 myBox.sideLen1 = 100

 }

 }

Member methods

A member method is a function that instances of
a class are able to perform. When we define a member method for a class, we
access all of the class’s private fields. In order to add a member method to a
class, we use def to
define a method inside the body of the class. We have seen this many times
already, particularly when the main method is a method that we have defined for our MainObject objects.

Code Listing 75: Basic Member Methods

 class Box {

 private var sideLen1: Int = 0

 private var sideLen2: Int = 0

 // Member method called area:

 def area(): Int = {

 return sideLen1 * sideLen2

 }

 // Member method called perimeter:

 def perimeter: Int = { // No params, brackets are
 optional

 2*(sideLen1 +
 sideLen2) // Implicit return

 }

 }

 	
 [image:]

 	
 Note: When we
use parameters in methods, they are val from the point of view of the
method, so they cannot be changed. This means that even when a var is passed
to a method from within the body of the method, the value is immutable. Put
another way, Scala does not support C# style out or ref parameters.

 	
 [image:]

 	
 Note: The
return statement in functions is not needed. Functions return or evaluate to
the last value computed. In Scala, it is typical that we try to write functions
so that only a single line returns the result. This means that we tend to
ensure a Scala function evaluates to a single return statement, and the return
keyword is often not used.

Code Listing 75 shows two example methods for
our Box class. The
method area returns Int and takes no parameters.
Likewise, the method perimeter takes no parameters and returns Int. When a function takes no parameters, we can leave out the
parameter parentheses, as in the perimeter method.

We can also leave out the code block if a
function is only a single statement. This means the area function of the Box class could have been written as
the following single line of code (the perimeter method could also be a single
line): def area(): Int = sideLen1 * sideLen2.

If a method returns Unit, i.e. no return value, we can
use the brackets in a similar way as with Java by leaving out the return type
of Unit all together. Code
Listing 76 shows a new method we can add to our Box
class. This method prints out the sideLen1 and sideLen2 fields, but it does not
return anything, and I have left out the return type of Unit.

Code Listing 76: Unit Is Optional

 def printMe() {

 println("Box Sides: " + sideLen1 + " " +

 sideLen2)

 }

Constructors

A constructor is a special member method that we
call when we use the new
operator. In Scala, the constructor for a class is defined by specifying a
parameter list in the class’s declaration. Code Listing 77 shows an example of
our Box class, complete
with a constructor that takes two integers, side1 and side2.
We set the member fields sideLen1 and sideLen2
to the parameters passed. Then, in the main method, when we create an instance
of our class using the new operator, we can pass the lengths as parameters.

Code Listing 77: Constructors

 // Box
 class with constructor:

 class Box(side1: Int, side2: Int) {

 // Set the member fields to the
 values

 // passed as paramaters:

 private var sideLen1: Int = side1

 private var sideLen2: Int = side2

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Call the Box constructor and
 pass parameters:

 var myBox: Box = new Box(10, 12)

 }

 }

In order to define multiple constructors, we use
the this keyword to
overload the constructor. This is useful for defining several constructors that
take different parameter lists. Code Listing 78 shows an example of our Box class with three different
constructors.

Code Listing 78: Defining Multiple Constructors

 //
 Class with 3 constructors:

 class Box(side1: Int, side2: Int) {

 private var sideLen1: Int = 0

 private var sideLen2: Int = 0

 def this() {

 this(-1,
 -1) // Call main constructor with -1

 }

 // This constructor takes one
 parameter,

 // it sets both sideLen fields to
 the

 // same value:

 def this(side: Int) {

 this // Call the constructor which takes no arguments

 // After we have called any fully
 defined constructor

 // inside the body of a new
 constructor, we are free to

 // reassign the values of the
 fields:

 sideLen1 = side

 sideLen2 = side

 }

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create a box by calling the
 main constructor:

 var box1 = new Box(10, 10)

 // Create some boxes by calling
 the parameter-less constructor

 var box2 = new Box

 var box3 = new Box()

 // Create a box by calling the
 constructor which takes one

 // parameter:

 var box4 = new Box(100)

 }

 }

Notice that in Code Listing 78 the first thing inside the
additional constructors is a call to some other, fully defined constructor. The
main constructor for our class is defined with the class declaration as
requiring two Int parameters. This means that
when we define new constructors, they must provide a call to this main
constructor in some way. We can either call the main constructor directly, e.g.,
this(-1, -1), or we can call some other
constructor that in turn calls the main constructor, e.g., this in the third constructor. Note that the third
constructor calls the parameterless constructor, which in turn calls the main
constructor.

 	
 [image:]

 	
 Note: Function overloading is a technique in which we create multiple
functions with the same name. We can have as many functions with the same name
as we need, but the functions must have unique parameter lists.

 	
 [image:]

 	
 Note: We can have two or more fields with the same name in different
scopes. This is the same as in Java, but in Scala we can also define two or
more variables with the same name in nested scopes. The inner variable is said
to shadow the outer one because the variable defined in the outer scope is not
available until the inner one goes out of scope.

 	
 [image:]

 	
 Note: Scala does not have static member variables. We can, however, create
singleton objects—these are objects built from classes of which there is only instance.
Singletons are simply Scala objects. We can add as many as we like in exactly
the same way that we have been adding our MainObject object to our programs.
Singletons are similar to classes in every way—except that we do not
instantiate them because they already represent the only instance of the
singleton.

 	
 [image:]

 	
 In addition to allowing singleton objects, in Scala we can also
create companion objects. A companion object is an object that has the same
name as a class and that is defined in the same file as that class. Companion
objects can be used in a similar way to static member methods and fields in
Java.

[bookmark: _Toc470870199]Inheritance

In terms of inheritance, Scala offers mechanisms
similar to Java’s. We can create a parent class with functions and fields, then
inherit from this parent to a more specific child class. Code Listing 79 shows
an example of inheritance. In order to inherit from a parent class, we use the extends keyword.

Code Listing 79: Inheritance

 // Main
 parent class:

 class GameObject(objName: String, xPos: Int, yPos: Int) {

 val name = objName

 var x = xPos

 var y = yPos

 def print {

 println("Name: " + name + " Pos: " + x
 + "x" + y)

 }

 }

 //
 PointObject class is a child class inheriting from

 //
 GameObject, but it adds a score, which is the amount

 // of
 points the player receives for collecting the object.

 class PointsObject(objName: String, xPos: Int, yPos: Int, scoreValue:
 Int)

 extends GameObject(objName, xPos, yPos) {

 // Define an extra field to record
 the score

 // this object is worth:

 var
 score: Int = scoreValue

 }

 //
 Another example class, the MoveableObject also inherits from the

 //
 GameObject parent, but it defines several methods for moving

 //
 around.

 class MoveableObject(objName: String, xPos: Int, yPos: Int)

 extends GameObject(objName, xPos, yPos) {

 def moveUp = y = y
 - 1

 def moveDown = y = y
 + 1

 def moveLeft = x = x
 - 1

 def moveRight = x = x
 + 1

 }

 // We
 can also inherit from other child classes:

 class Player extends MoveableObject("Player", 100, 100) {

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Create a GameObject:

 val gameObject = new GameObject("Some generic object", 54, 123)

 // Create a Points object:

 val pointsObject = new PointsObject("Coin", 65, 18, 500)

 // Create a Player object:

 val player: Player = new
 Player

 // All objects inherit from the
 GameObject class, so

 // we can call any methods from
 that class or access any

 // public member fields:

 player.print

 pointsObject.x
 = 90

 // In addition, the pointsObject
 has a score field, and

 // the player has several extra
 methods defined for moving

 // which it inherited from the MoveableObject
 parent:

 pointsObject.score = 1000

 player.moveUp

 player.moveLeft

 player.moveLeft

 player.print

 }

 }

Figure 20: Inheritance Hierarchy from Code
Listing 79

Figure 20 is an illustration of the hierarchy
defined by Code Listing 79. The main parent is the GameObject class. Both the PointsObject and the MoveableObject classes inherit from
this parent. This means they have access to the x and y
integers from the parent and also to the print method. The Player class inherits from the MoveableObject class, therefore it inherits the x and y from
the MoveableObject’s
parent along with the additional methods defined for the MoveableObject class. In this example,
the Player class does
not specify any additional fields or methods, but it could.

Notice that in Code Listing 79, when we specify
that our new classes extend an existing class, we must call the parent class’s
constructor class Player extends
MoveableObject("Player", 100, 100). This means that the Player class has access to all public members from the
parent class and that we should call the parent’s constructor with the values "Player", 100, 100 for the parameters.

We can access the parent’s methods and fields with the super keyword in the same way that we do in Java. So,
from the Player class’s body, we can access the moveUp method by calling super.moveUp.

Abstract classes

I will briefly explain what an abstract class is and how they are
defined in Scala, but if you are not already familiar with other object-oriented
languages (C++, Java, C#, etc.), I strongly recommend that you become familiar
with at least one of them. A lot of technique is involved with object-oriented
programming, and this e-book must necessarily concentrate on only Scala and how
it differs from some of the other languages.

An abstract class is a class that cannot be instantiated. It can
be used as a parent class, and child classes can define meanings for the
abstract parts of the parent class. For example, we can create a generic Shape class with computePerimiter
and computeArea methods, but the generic parent
class itself does not define these methods. We can then inherit from the parent
class in a child class such as Circle and Square, in which we define the body of the parent
class’s functions.

Code Listing 80: Abstract Class

 abstract class Shape {

 // Define an abstract field

 type id

 // Define some abstract methods

 def computeArea: Float

 def computePerimeter: Float

 }

 //
 Define a Child Class

 class Circle(radius: Float) extends Shape {

 var id: Int = 0

 def computeArea: Float = {

 return 3.14159265359f * radius * radius

 }

 def computePerimeter: Float = {

 return 2
 * 3.14159265359f * radius

 }

 }

 object MainObject {

 def main(args: Array[String]): Unit = {

 var circle: Circle = new
 Circle(6)

 println("Area of Circle: " +
 circle.computeArea)

 }

 }

Code Listing 80 shows an abstract parent class called Shape. The class contains an undefined field called id using the type
keyword and two abstract methods—computeArea and
computePerimiter. Notice that the class is
marked as abstract. When we extend from this
parent, we must define all of these abstract elements in the child class or
else the child class must itself be marked abstract. The Circle class inherits from the Shape class and provides a definition for each of the
parent’s abstract elements. This means the Circle
is not abstract, and we can create an instance
from it as illustrated in the main method of Code
Listing 80.

 	
 [image:]

 	
 Note: Scala
also offers a similar mechanism to Java’s interfaces called traits. The
interested reader should look up traits in the Scala documentation. Find more
information at http://docs.scala-lang.org/tutorials/tour/traits.

[bookmark: _Toc470870200]Chapter 8 Pattern Matching

Pattern matching is similar to Java’s switch/case mechanism. But,
as we will see in Scala, pattern matching is more interesting and flexible than
switch/case. Code Listing 81 shows a basic example of pattern matching.

Code Listing 81: Simple Matching Example 1

 object MainObject {

 // This function is an example of pattern
 matching:

 def matchFruit(index: Int): String = index match {

 case 1
 => "Apple"

 case 2
 => "Banana"

 case 3
 => "Kumquat"

 case _ => "Unknown"

 }

 def main(args: Array[String]): Unit = {

 // 2 and 3 match banana and
 cumquat

 println("2's Case: " + matchFruit(2))

 println("3's Case: " + matchFruit(3))

 // Anything not mapped in the
 match/case matches _

 println("100's Case: " +
 matchFruit(100))

 }

 }

In Code Listing 81, we use match/case to perform a task much like
Java's switch/case mechanism. The function matchFruit
takes an integer parameter called index, and we
match this parameter to various fruits. The first case to correctly match the
variable will provide the value to which the variable is mapped. When we call
the function with matchFruit(2), it will return
"Banana". Likewise, matchFruit(3) returns the string "Kumquat".

If we pass a value that does not match any previous case, the
underscore case "_" will execute, and
the program will return "Unknown". The
underscore character stands for a wild card, just as it does when we import
items using the _. We see the output of this program in Code Listing 82.

Code Listing 82: Output from Code Listing 81

 2's Case: Banana

 3's Case: Cumquat

 100's Case: Unknown

We can also use match/case without defining a separate function.
In Code Listing 81, we defined a separate function called matchFruit, but Code Listing 83 shows how to use a
match/case to set a variable without calling a distinct function.

Code Listing 83: Simple Matching Example 2

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define some variable

 var fruitIndex = 2

 // Perform the matching

 var output = fruitIndex match {

 case 1
 => "Apple"

 case 2
 => "Banana"

 case 3
 => "Cumquat"

 case _ => "Unknown"

 }

 // Output the result:

 println(fruitIndex + "'s Case: " + output)

 }

 }

[bookmark: _Toc470870201]Using OR with pattern matching

We can use the OR operator |
and combine several conditions into each case. The example in Code Listing 84
takes an input Int from 1
to 13 and returns the card classification Ace,
King, Small, Medium, etc. Notice the use of |
to combine several conditions.

Code Listing 84: Combining Conditions with |

 object MainObject {

 def main(args: Array[String]): Unit = {

 def classifyPip(x: Int): String = x
 match {

 case 1
 => "Ace"

 case 2|3|4 => "Small"

 case 5|6|7 => "Medium"

 case 8|9|10 => "Large"

 case 11 => "Jack"

 case 12 => "Queen"

 case 13 => "King"

 }

 println("Pip 5 returns: " +
 classifyPip(5))

 println("Pip 11 returns: " +
 classifyPip(11))

 println("Pip 1 returns: " +
 classifyPip(1))

 }

 }

[bookmark: _Toc470870202]Variable scoping

The variables we use in the cases are not the same as any outside
variables, even when they have the same names. For instance, Code Listing 85
shows a rather strange output. Study the listing for a moment and try to decide
what it will output.

Code Listing 85: Variables in Case vs. Outside

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define some variables

 val My_Amazing_Variable = "123"

 val someOtherVar = "456"

 // Perform matching:

 "123" match {

 case someOtherVar =>

 println("someOtherVar")

 case My_Amazing_Variable =>

 println("My_Amazing_Variable")

 }

 }

 }

Looking at Code Listing 85, we might assume the string “123” matches the variable called “My_Amazing_Variable” because that
variable is set to “123”.
Therefore, we might expect the program in this example to output “My_Amazing_Variable”. But this is not
what happens. The program will output “someOtherVar”,
and it is important that we know why.

Scala will take the string “123”
to match against its cases. The first case is “someOtherVar”. There is a local variable called someOtherVar, but the someOtherVar
in the cases is actually shadowing it! The someOtherVar
in the cases is not related to the local variable with the same name. “123” definitely matches some random
variable name, which means the program will print “someOtherVar” to the screen. It is not testing the value
of the local variable someOtherVar, but rather it
is assigning “123” to a new variable with the
same name. This output would be exactly the same as if we named the first case anyRandomVariable, and the fact that
the variable outside the cases shares the same name as the case's variable is
irrelevant.

We can test the actual values of local variables in our cases. If
we want to use the actual values from the variables defined outside the cases,
we must delimit the variable names with back quotes—see Code Listing 86.

Code Listing 86: Delimiting Variable Names with Back Quotes

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define some variables:

 val My_Amazing_Variable = "123"

 val someOtherVar = "456"

 "123" match {

 // Use back quotes to test the
 value of the local

 // variables:

 case `someOtherVar` => println("someOtherVar")

 case `My_Amazing_Variable` => println("My_Amazing_Variable")

 }

 }

 }

Code Listing 86 will check the values of the local variables
called “someOtherVar” and “My_Amazing_Variable”, and it will print
“My_Amazing_Variable” to the
screen because the string “123”
matches the value of this variable as defined outside the scope of the cases.

[bookmark: _Toc470870203]Cases and classes

Match/case in Scala is much more powerful than Java's
switch/case. We can match objects as well as simple data types. Code Listing 87
shows an example of matching objects. These examples are all about musical key
signatures. The exact meaning of the key names and sharps or flats is
irrelevant—the listings are simply illustrations of how matching works.

Code Listing 87: Matching Objects of a Case Class

 object MainObject {

 // Define a class marked with
 'case' modifier

 case class KeySignature(name: String, sharpsFlats: Int)

 def main(args: Array[String]): Unit = {

 // Define some KeySignature
 variables:

 var key1 = new KeySignature("C", 0)

 var key2 = new KeySignature("Bb", -2)

 var key3 = new KeySignature("c", -3)

 // Perform a loop to match our
 keys:

 for(key <- List(key1, key2, key3)) {

 // Perform the match for each key:

 val fullKeyName = key match {

 case KeySignature("C", 0)
 => "C
 Major"

 case KeySignature("Bb", -2)
 => "B Flat
 Major"

 case KeySignature("c", -3)
 => "C
 Minor"

 }

 println("Key: " + key + " -> " + fullKeyName)

 }

 }

 }

In Code Listing 87, we define a class called KeySignature. Note that the class is marked with the
modifier case. This is important if we wish to
use the class in a match/case. When we mark a class with the case modifier, Scala writes additional methods that
enable it to perform pattern matching.

Case classes have an equals
method, toString method, a hashcode method, and several other methods written for
them. Case classes can be instantiated without the "new" operator
because they implement the apply method, and all
parameters to the constructor of a case class are public and val. This is important because it allows matching. Without
the case modifier, we would need to write our
own code to mimic the code in Code Listing 87.

Wild card

Code Listing 87 shows very basic matching. We can also use the
wild card symbol for one or all of the parameters for the cases. This is where the
term “pattern matching” really becomes applicable. We are not necessarily
matching objects against their exact copies, as we do with a Java switch/case,
but instead we are matching objects against patterns.

Code Listing 88 shows an example of using the _ wild card in the
determination of key signatures.

Code Listing 88: Using _ as a Wild Card in Cases

 object MainObject {

 case class KeySignature(name: String, sharpsFlats: Int)

 def main(args: Array[String]): Unit = {

 // Define some keys

 var key1 = new KeySignature("C", 0)

 var key2 = new KeySignature("Bb", -2)

 var key3 = new KeySignature("c", -3)

 // Loop through the keys, this
 loop has an additional

 // couple of keys, "D"
 and "QWERTY" at the end:

 for(key <- List(key1, key2, key3,

 KeySignature("D", 123),// D does not actually have 123 sharps!

 KeySignature("QWERTY", 5)// 5 sharps is not called QWERTY!

))
 {

 // Perform the matching:

 val fullKeyName = key match {

 case KeySignature("C", 0)
 => "C
 Major"

 case KeySignature("Bb", -2)
 => "B Flat
 Major"

 case KeySignature("c", -3)
 => "C
 Minor"

 // Using wild cards for
 parameters:

 case KeySignature(_, 5) => "B Major" // B Major has 5 sharps

 case KeySignature("D", _) => "D Major" // D Major

 }

 println("Key: " + key + " -> " + fullKeyName)

 }

 }

 }

Code Listing 88 shows that we can match objects even when we do
not necessarily match all parameters. The wild card symbol is used in Code Listing
88 to return "B Major" when the key
has 5 sharps, and the key name is irrelevant because of the _. Likewise, we can
match the key "D Major" by stating
that if the key name is "D", then the
number of sharps is irrelevant. This is not actually how musical keys work (D Major
has two sharps in reality), but this works as an illustration.

Using Any as a data type

We can often use Any as a data
type to mean multiple types are returned. Notice how the keyword is used in Code
Listing 89 to mean “any data type.”

Code Listing 89: Using Any as a Data Type with Matching

 object MainObject {

 def main(args: Array[String]): Unit = {

 // This function takes a single
 parameter

 // of any data type:

 def toColorString(q: Any): Any = q match
 {

 case 1
 => "Red"

 case "1" => "Red"

 case "one" => "Red"

 case 2
 => "Green"

 case "2" => "Green"

 case "two" => "Green"

 case 3
 => "Blue"

 case "3" => "Blue"

 case "three" => "Blue"

 case _ => -1

 }

 // Test the matching with some
 calls to toColorString:

 println("Color matched for \"one\": "
 + toColorString("one"))

 println("Color matched for \"2\": "
 + toColorString("2"))

 println("Color matched for 3: " +
 toColorString(3))

 println("Color matched for \"Hello\": " +
 toColorString("Hello"))

 }

 }

In Code Listing 89, we specify the data type of the function toColorString as Any.
This means any data type can be passed as the parameter q. Then we specify that the function returns Any as a data type. This means we can return multiple
different data types from this function.

When we match the q variable, we
provide cases for Int and String. We also provide a final case that has a
pattern of _, the wild card. If none of the
previous cases matches, we return -1 as an Int. This is a function that takes multiple parameter
types, tests them with a series of cases, and returns either a String or an Int, depending
on whether or not the q parameter was matched.
If you are familiar with Java programming, this function will look extremely
odd.

The next example program uses Any as
a data type again. This time, we return a String
version of the input if it is an Int, and an Int version if it is a String.
Without some context, this is a pointless activity, but it does illustrate how
we can easily test and change data types without using the complex syntax that
Java requires in order to do the same thing.

Code Listing 90: Flipping Data Types

 object MainObject {

 def main(args: Array[String]): Unit = {

 // Define the function to flip
 data types:

 def flipStringAndInt(x: Any): Any = x match
 {

 case y:
 Int => y.toString

 case y:
 String => y.toInt

 case _ => "Unknown data type!"

 }

 // Make some test cases:

 val myInt = flipStringAndInt("190")

 val myString = flipStringAndInt(190)

 val unknown = flipStringAndInt(190.0)

 // Output results:

 println("myInt: " + myInt)

 println("myString: " + myString)

 println("unknown: " + unknown)

 }

 }

In order to match the type of the argument in a case, we specify
another variable—y in the example. We say that y: Int =>, which means the data type of y is Int, then we
supply the return value. So, when the data type of y
is an Int, the pattern-matching mechanism maps
it to a String, and vice versa—String is mapped to Int.

We should note that in Code Listing 90 the function flipStringAndInt returns a String for any input that is an Int, and vice versa. When we pass a Double as the input, the function
returns the string Unknown data type!.

[bookmark: _Toc470870204]Chapter 9 Closures

A closure is a function that computes with
variables defined outside the body of the function. Code Listing 91 shows a
simple example of a closure. Closures are sometimes called Lambda functions,
and they are similar to Java’s anonymous functions. Closures are one of the many
mechanisms offered by Scala from the functional programming paradigm (as
opposed to the object-oriented programming paradigm).

Code Listing 91: Simple Closure

 object MainObject {

 def main(args: Array[String]) = {

 // Define a variable:

 var divisor = 9

 // Define a closure which uses the
 divisor

 // variable:

 var divideClosure = (i: Int) => i / divisor

 // Execute the closure using 90 as
 the

 // Int i:

 println("90/9=" + divideClosure(90))

 }

 }

In Code Listing 91, we define a closure called divideClosure. First, we specify an
identifier for the closure, divideClosure, then we use the equals operator to set it to a parameter list = (i: Int). We then use the => operator (sometimes called
rocket) and specify the body of the closure. Notice that the closure uses the
variable called divisor,
which is defined outside the body of the closure. In this particular instance,
the variable divisor is
still in scope, but as we will see, this does not need to be the case.

Also
note that the use of variable divisor in the body of the
closure does not shadow the local variable divisor as we might
expect, especially considering some of the previous examples we have examined.
The divisor variable in the closure is
the local variable divisor.

We should note that closures do not need to use
external variables. We can define a closure that uses only the parameters
defined in its own parameter list. Also, the closure evaluates the values of
the variables, so that when we update the values of the variables defined
outside the body of the closure, the return value of the closure will be
updated, too.

Code Listing 91 provided a completely redundant
example of a closure, but that is actually an interesting mechanism. Another
interesting aspect of closures is that we can pass them as parameters to a
method. Code Listing 92 shows an example of this. It might not seem strange yet,
but it will when we look at its implications.

Code Listing 92: Passing a Closure as a
Parameter

 object MainObject {

 def executeClosure(closure: (Int) => Int, parameter: Int) {

 println("The closure said: " +
 closure(parameter))

 }

 def main(args: Array[String]) = {

 var divisor = 9

 var divideClosure = (i: Int) => i / divisor

 executeClosure(divideClosure, 125)

 }

 }

In Code Listing 92, we define a function called executeClosure. The function takes
two parameters—one is a function called closure and the other is a parameter.
The executeClosure
function executes the function and prints the result to the screen. The
function is a roundabout way of dividing 125 by nine, and it prints 13 to the
screen, which is perhaps not very interesting (this is just basic integer
arithmetic, 125/9=13.888, and the 0.8888 is truncated as per the normal rules
of integer arithmetic). However, let’s have a quick look at another example. This
time, let’s illustrate something slightly strange about the way closures work.

Code Listing 93: Altering a Closure’s
Variable

 object MainObject {

 def executeClosure(closure: (Int) => Int, parameter: Int) {

 println("The closure said: " +
 closure(parameter))

 }

 def main(args: Array[String]) = {

 var divisor = 9

 var divideClosure = (i: Int) => i / divisor

 divisor = 45

 executeClosure(divideClosure, 125)

 }

 }

In the main method of Code Listing 93, we define
the same closure as before. This time, however, I have added a line and
reassigned the divisor
variable, setting it to 45. When we call the function executeClosure and pass the parameter 125, the closure will execute 125/45 even though the divisor variable is out of scope at the point of execution and it has been
changed since the closure was defined. Code Listing 93 correctly computes the
result that 125/45 is 2.

A closure, therefore, is a function we can pass
around and that is able to refer to variables that are not in scope.

[bookmark: _Toc470870205]Shorthand syntax

There is a shorthand syntax for simple closures.
We can use the _ (the underscore wild card symbol) to mean a single parameter,
if there is one. So if the closure takes only a single parameter, we can use
the _ instead of a formal parameter list. See Code Listing 94 for an example of
this.

Code Listing 94: Shorthand for Closure

 object MainObject {

 def main(args: Array[String]) = {

 // Define divisor variable.

 var divisor = 9

 // Define a closure using _
 syntax:

 var divideClosure = (_:Int) / divisor

 // Again, this closure will divide
 125 by 9

 // and return 13:

 println("125/9=" + divideClosure(125))

 }

 }

Notice that in Code Listing 94 we need to
specify the data type of the _ symbol with (_:
Int). If the data type is specified in the closure
already, we can use the underscore by itself.

Code Listing 95 shows a slightly more
complicated example of a closure. This particular use of a closure is commonly
used for performing operations on lists and arrays.

Code Listing 95: Passing Functionality as
a Parameter

 object MainObject {

 def main(args: Array[String]) = {

 // Define a functions which takes
 two ints, x and y

 // and a function to perform
 between them called func:

 def performOperation

 (x: Int, y: Int, func: (Int, Int)=>Int):

 Int = func(x,
 y)

 // Call the perform operation
 function with 78 and 26

 // as the Int parameters, and with
 the closure (a, b)=>

 // a-b as the func parameter:

 println("78-26=" + performOperation(78, 26, (a, b)=>a-b))

 // Call the perform operation
 function with 6 and 5

 // as the Int parameters, and with
 + short hand

 // closure as the func parameter:

 println("6+5=" + performOperation(6, 5,
 +))

 }

 }

In Code Listing 95, we define a function called performOperation. The function takes
three parameters—two Int
and a function. The function parameter is called func. It takes two inputs of its own and
returns an Int (this is
all specified by the (Int, Int)=>Int). The performOperation function performs whichever operation we pass as a final argument
between the two Int
parameters and returns the result.

 	
 [image:]

 	
 Tip: Notice the use of the wild card symbol in
the second call to the closure in Code Listing 95. When we use multiple wild
cards, such as _+_, the first is assigned to the first parameter and the second
to the second parameter, etc. The _+_ is shorthand for a+b since a is the first parameter and is
substituted for the first occurrence of _. And b is the second parameter—it is
therefore substituted with the second instance of _.

The most important aspect of Code Listing 95 is
how we call the function. Notice that with the first call to performOperation, we pass 78, 26 as the integer parameters, then we specify the functionality of the
func closure using (a, b)=>a-b. This means we want the second parameter to be subtracted from the
first, so that the first println will output 78-26=52. The second call uses the wild card symbol and the shorthand syntax
for the functionality.

[bookmark: _Toc470870206]Chapter 10 Conclusion

This has been a short introduction to some of
the fascinating mechanisms and features of the Scala language. Scala is a flexible
and powerful general-purpose language, it is built upon the Java Runtime
Environment, and it can be easily incorporated into existing Java applications.
The language offers a rich set of mechanisms that address many of the
shortcomings of the Java language, and it is an interesting blend of functional
and object-oriented programming paradigms.

I hope you have enjoyed this e-book. I have
certainly enjoyed writing it. Many other interesting topics remain, such as the
yield keyword and
currying. And there are many Scala-related resources available (both for free
and in book form). Scala is one of the most fascinating of the modern
languages, and it is being quickly adopted by programmers. If you are
interested in learning more about Scala, I recommend the following sources:

Scala Documentation: http://docs.scala-lang.org/ and http://docs.scala-lang.org/tutorials/.

Programming in Scala by Martin Odersky, Lex Spoon, and Bill Venners. Available as a free
PDF e-book.

Scala by Example by
Martin Odersky. Available as a free PDF e-book.

Tutorialspoint
Scala Tutorials.

Programming Scala
by Dean Wampler and Alex Payne. Published by O’Reilly. Available from Amazon.

 Detailed Table of Contents

 	
 The Story behind the Succinctly Series of Books

 	
 About the Author

 	
 Chapter 1 Introduction

 	
 Installation

 	
 Selecting a workspace

 	
 Hello World

 	
 Running the application

 	
 Debug and run configurations

 	
 Problems and errors

 	
 Chapter 2 Variables and Values

 	
 Identifier names

 	
 Data Types

 	
 Literals

 	
 Integer literals

 	
 Floating-point literals

 	
 Other literals

 	
 Comments

 	
 Casting

 	
 Chapter 3 Expressions and
Functions

 	
 Expressions

 	
 Creating and calling functions

 	
 Named arguments

 	
 Default parameters

 	
 Functions as data

 	
 Variable parameters

 	
 Evaluation of functions

 	
 Chapter 4 Control
Structures

 	
 “If” statements

 	
 For loops

 	
 until vs. to

 	
 Multiple range for loops

 	
 For loop filters

 	
 While loops

 	
 Do while loops

 	
 Example programs

 	
 Testing if a number is prime

 	
 The Goldbach conjecture

 	
 Chapter 5 Arrays and Lists

 	
 Arrays

 	
 Accessing and setting elements

 	
 Val vs. var arrays

 	
 Multidimensional arrays

 	
 ArrayBuffer

 	
 Lists

 	
 Multiple dimensional lists

 	
 Useful methods on lists

 	
 Tabulate method

 	
 Concatenate operator

 	
 Take, drop, and SplitAt

 	
 Folding

 	
 Chapter 6 Other Collection Types

 	
 Stacks and Queues

 	
 Sets

 	
 Tuples

 	
 Accessing elements of a Tuple

 	
 Naming elements of a Tuple

 	
 Two elements Tuples shortcut

 	
 Maps and Tuples

 	
 Mutable Maps

 	
 Chapter 7 Classes and
Objects

 	
 Classes

 	
 Adding a new class

 	
 Class syntax

 	
 Private modifier

 	
 Member methods

 	
 Constructors

 	
 Inheritance

 	
 Abstract classes

 	
 Chapter 8 Pattern Matching

 	
 Using OR with pattern matching

 	
 Variable scoping

 	
 Cases and classes

 	
 Wild card

 	
 Using Any as a data type

 	
 Chapter 9 Closures

 	
 Shorthand syntax

 	
 Chapter 10 Conclusion

 Landmarks

 	
 Table of Contents

 	
 Copyright Page

 	
 Table of Contents

 	
 Body Matter

OEBPS/Images/image00220.jpeg
xep®

% PE

Golnto

Openin New Window

Open Type Hierarchy
Showln

Copy.
Copy Quaified Name.
Paste
Delete

Build Path

Source.
Refactor

Import..
Export..

Refresh

Assign Working Sets...
Debug As

RunAs

Velidate:

Team

Compare With

Restorefrom Local History..

Properties

Aleshifes >
AlshiftsT>

AleEnter

Scale Package Object
Scala App

Source Folder

Folder

File

Play Template

Scala Worksheet

Eampl..
Other... N

OEBPS/Images/image00219.jpeg
1 New Scala Project

Create a Scala project

Creste a Scala project n the workspace o in an extermal location.

et rame: [Feiviend

[Use defaut location

CAUsers\ ChrisworkspaceScala\ HelloWorld

R
©® Use an execution environment RE: | JavaSE-1.8
O Use s project specific JRE: 12091

(O Use defaultIRE currently re1 80.91)

Project layout

(O Use prject folder a roo for sourcesand cas e

(® Creste separate foders for sources and clss fes

Werking sets
[C1Add project to working st

@ <Back Net>

Finih

Select.

Cancel

OEBPS/Images/image00218.jpeg
Fle| Ede_Source Refoctor Refactor Nmvigute Seach Project Scals Run Window Hel

Open .. 03 Pt
close cuew @
Close Al cnsiw G
S cules g

), Swehs.

Swvel cutsins | @
Revert =
e &
tove.. &

] Rename.. 7

&) Retresn 5y
‘Convert Line Delimtes To >le
P s
Swich Workspace B
Restan

2 Import..

e Bpor.

Properies Aetter

1MyObjctscals (MyPrsjectne]
2Demoscals (MyPrsjctsc]
3 manclsscsls (MyProjctne]
upperiscals (MyPrjecse]

e

OEBPS/Images/image00217.jpeg
‘Workspace Launcher x

Selecta workspace

ScalaDE stores your prjects na folderclled s workspace.
 Choosea werkspacefldr o usefor this sesson.

opuce [BIEEEIEEER]

s i the el and do ot sk gein

OEBPS/Images/image00216.jpeg
R e e ver s

* 4 [« Progam Fies > Scala Eclpse

Quickaceess Name

11 configuaton
1 festures

@ Onediive

e
B Desktop
2 Document:
3 Downlests
™

V0| | sechscsdip. p

Date modied

w2 as6PM
206 a36PM
a6 assPM
woame assPM
wome a37 oM
o6 a3 oM
270120151008 .
11272015 57PM

Tipe
Fiefold
Filefold
Fiefold
Fiefold
Fiefold

Fiefold
ecupsel
XML Do

= pictues

7 eclpsecne
& ephviommt

122015 457PM
112205 a58PM
20120151006

2015 45500 Appict

R

Appicat
Fuetoxk

OEBPS/Images/image00215.gif

OEBPS/Images/image00214.jpeg
Java Virtual Machine

OEBPS/Images/image00213.gif

OEBPS/Images/image00235.jpeg

OEBPS/Images/image00212.jpeg

OEBPS/Images/image00234.jpeg
¥ Scala - ExsmpleProject/src/MyNewClass.scals - Scala IDE
Fle Edt Resctor Neigate Seach Proect Scoh Fun Window Help

B-EHG&%#-0-0-0¢-FE=0

e B -Gl
18 Package plores 1 E% 7 = O [6 ManObectscss | B Myenclssscals &2
+ & bamplebect
V@
~ i Gk package) “class Mypiewciass
> B Manobjectscos
> (5] MyNenClssscols)

> B Scls by cotainer (2117
5 B IRESystem brary a1

OEBPS/Images/image00233.jpeg
W1 New File Waard.

Create New Fi

Kind © sala Gl

St ol

Name [t

The wizard uses a templte nScala = = Tempaes o rest thecontent of nw .
Thecomsponding templates st with iz nd can e ey eded.

OEBPS/Images/image00232.jpeg
1 Scala -

- Scala IDE.

il £t Souce Refocor Reacor Neigme Seuch Prect_Scala Run Vindow Help

43

Properies

Cutesits

33

ap

DeviarACQA

=
§

aen

OEBPS/Images/image00231.jpeg

OEBPS/Images/cover00253.jpeg
SeAL

BY CHRIS ROSE

*
SUCCINCTLY E-BOOK SERIES EISgncfusion"‘

OEBPS/Text/nav.xhtml

 Guide

 		Body Matter

 		Table of Contents

 		Cover

 Table of contents

 		The Story behind the Succinctly Series of Books

 		About the Author

 		Chapter 1 Introduction

 		Installation

 		Selecting a workspace

 		Hello World

 		Running the application

 		Debug and run configurations

 		Problems and errors

 		Chapter 2 Variables and Values

 		Identifier names

 		Data Types

 		Literals

 		Integer literals

 		Floating-point literals

 		Other literals

 		Comments

 		Casting

 		Chapter 3 Expressions and Functions

 		Expressions

 		Creating and calling functions

 		Named arguments

 		Default parameters

 		Functions as data

 		Variable parameters

 		Evaluation of functions

 		Chapter 4 Control Structures

 		“If” statements

 		For loops

 		until vs. to

 		Multiple range for loops

 		For loop filters

 		While loops

 		Do while loops

 		Example programs

 		Testing if a number is prime

 		The Goldbach conjecture

 		Chapter 5 Arrays and Lists

 		Arrays

 		Accessing and setting elements

 		Val vs. var arrays

 		Multidimensional arrays

 		ArrayBuffer

 		Lists

 		Multiple dimensional lists

 		Useful methods on lists

 		Tabulate method

 		Concatenate operator

 		Take, drop, and SplitAt

 		Folding

 		Chapter 6 Other Collection Types

 		Stacks and Queues

 		Sets

 		Tuples

 		Accessing elements of a Tuple

 		Naming elements of a Tuple

 		Two elements Tuples shortcut

 		Maps and Tuples

 		Mutable Maps

 		Chapter 7 Classes and Objects

 		Classes

 		Adding a new class

 		Class syntax

 		Private modifier

 		Member methods

 		Constructors

 		Inheritance

 		Abstract classes

 		Chapter 8 Pattern Matching

 		Using OR with pattern matching

 		Variable scoping

 		Cases and classes

 		Wild card

 		Using Any as a data type

 		Chapter 9 Closures

 		Shorthand syntax

 		Chapter 10 Conclusion

OEBPS/Images/image00230.jpeg
Initial State After Setting

Index Var Index Var
0 0.0 0 99.0
1 0.0 1 0.255
2 0.0 2 3.16227766...
3 0.0 3 4.0

4 0.0 4 3.14

OEBPS/Images/image00229.jpeg
Short .._ Each bocis a byte! Double
Exponent Mantissa

Ul ks, canony sore
Boolean @ s, i st
Sl R depans o tho

char F [—
T——
L -.. -— SRR

OEBPS/Images/image00228.jpeg
Name [Type [Size (Bytes) |Size inBits Maximum
Byte | nteger I] 127
Short_| _nteger 7 6 32767

Tnt__| Tnteger 7 37 JTATAS36A8 | 214TAB36AT
Tong | Tnteger 5 23 7= =1
Float | _Float 3 52 3 AXI0% 3 4x10%

Double | _Float 5 64 22x10%_| 220

Boolean | Boolean 1] Talse e
Char_| Character 2 16 Unicode Unicode

OEBPS/Images/image00227.jpeg
52 robems 3| &) Toks @ Console

e, D warnings, O cthers
Descrpton Reouce ath locsion Type

© @ trors (1 tem)
© notfound: vlue prntine MoinObjects.. /MelloWorldisrc ine3. Scal Problem

OEBPS/Images/image00226.jpeg
* Debug Configurations x

Create, manage. and run configurations ,‘

CRX[E®-
[bpetites

© capesppicnon
5 imasr
T it
o
| 5 ok uginten
| ot
% ok oot [Twie—————
| B terteimaptcncn || et s hensechng o s
I samsppicton DOsepivmon
) MainObjects (1)
5 Sciiteprer
T SctanGoanros)

Fite meched 12121 s

@

singScl pplcation (o debugge Launchr - Sl s

OEBPS/Images/image00225.jpeg

OEBPS/Images/image00224.jpeg

OEBPS/Images/image00223.jpeg

OEBPS/Images/image00222.gif

OEBPS/Images/image00221.jpeg
Create New File

Kind: | @ Scala Object
St [

Nome [ttt

Thewizard uies a templtein Scla £t~ Tmpltes to crese th content o nw e
“Thecomesponcing empats ot wth ‘i andcon b ey cted

