

 Copyright © 2017 by Syncfusion Inc.

 2501 Aerial Center Parkway

 Suite 200

 Morrisville, NC 27560

 USA

 All rights reserved.

 Important licensing information. Please read.

 This book is available for free download from www.syncfusion.com on completion of a registration form.

 If you obtained this book from any other source, please register and download a free copy from www.syncfusion.com.

 This book is licensed for reading only if obtained from www.syncfusion.com.

 This book is licensed strictly for personal, educational use.

 Redistribution in any form is prohibited.

 The authors and copyright holders provide absolutely no warranty for any information provided.

 The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from, out of, or in connection with the information in this book.

 Please do not use this book if the listed terms are unacceptable.

 Use shall constitute acceptance of the terms listed.

 SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the registered trademarks of Syncfusion, Inc.

 Technical Reviewer: James McCaffrey

 Copy Editor: John Elderkin

 Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

 Proofreader: Graham High, senior content producer, Syncfusion, Inc.

 Table of Contents

 The Story behind the Succinctly Series of Books

 About the Author

 Introduction

 Chapter 1 A New Installation Experience

 Chapter 2 The Start Page Revisited

 Chapter 3 Code Editor Improvements

 Chapter 4 XAML Improvements

 Chapter 5 Working with Solutions, Folders, and Languages

 Chapter 6 Extensions and Extensibility

 Chapter 7 Debugging and Testing Improvements

 Chapter 8 Visual Studio 2017 for Mobile Development

 Chapter 9 Visual Studio 2017 for Cloud and Web Development

 Detailed Table of Contents

The Story behind the Succinctly Series of Books

 Daniel Jebaraj, Vice President

 Syncfusion, Inc.

 Staying on the cutting edge

 As many of you may know, Syncfusion is a provider of software components for the Microsoft platform. This puts us in the exciting but challenging position of always being on the cutting edge.

 Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other week these days, we have to educate ourselves, quickly.

 Information is plentiful but harder to digest

 In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

 While more information is becoming available on the Internet and more and more books are being published, even on topics that are relatively new, one aspect that continues to inhibit us is the inability to find concise technology overview books.

 We are usually faced with two options: read several 500+ page books or scour the web for relevant blog posts and other articles. Just as everyone else who has a job to do and customers to serve, we find this quite frustrating.

 The Succinctly series

 This frustration translated into a deep desire to produce a series of concise technical books that would be targeted at developers working on the Microsoft platform.

 We firmly believe, given the background knowledge such developers have, that most topics can be translated into books that are between 50 and 100 pages.

 This is exactly what we resolved to accomplish with the Succinctly series. Isn't everything wonderful born out of a deep desire to change things for the better?

 The best authors, the best content

 Each author was carefully chosen from a pool of talented experts who shared our vision. The book you now hold in your hands, and the others available in this series, are a result of the authors' tireless work. You will find original content that is guaranteed to get you up and running in about the time it takes to drink a few cups of coffee.

 Free forever

 Syncfusion will be working to produce books on several topics. The books will always be free. Any updates we publish will also be free.

 Free? What is the catch?

 There is no catch here. Syncfusion has a vested interest in this effort.

 As a component vendor, our unique claim has always been that we offer deeper and broader frameworks than anyone else on the market. Developer education greatly helps us market and sell against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon to cheese!”

 Let us know what you think

 If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at succinctly-series@syncfusion.com.

 We sincerely hope you enjoy reading this book and that it helps you better understand the topic of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the word about the Succinctly series!

 [image: Twitter Icon] [image: Facebook Icon]

[bookmark: _Toc475441637][bookmark: _Toc469678863]About the Author

Alessandro Del Sole has been a Microsoft Most Valuable
Professional (MVP) since 2008. Awarded MVP of the Year in 2009, 2010, 2011,
2012, and 2014, he is internationally recognized as a Visual Studio expert and
a Visual Basic and .NET authority. Alessandro has authored many books and
e-books on programming with Visual Studio, including Visual
Studio Code Succinctly, Visual Basic 2015 Unleashed, Roslyn
Succinctly, and Visual Basic 2012 Unleashed. He has written numerous
technical articles about .NET, Visual Studio, and other Microsoft technologies
in Italian and English for many developer portals, including MSDN Magazine and
the Visual Basic Developer Center from Microsoft. He is a frequent speaker at
Italian conferences, and he has released a number of Windows Store apps. He has
also produced a number of instructional videos in both English and Italian.
Alessandro works as a senior .NET developer, trainer, and consultant. You can
follow him on Twitter at @progalex.

[bookmark: _Toc475441638][bookmark: _Toc469678864]Introduction

“Any developer, any platform, any device.” If you attended
(in person or online) a recent Microsoft conference, such as //Build 2016,
Ignite, or Connect(); 2016, these words will not sound new. They represent the
vision and ambition behind the release of Microsoft Visual Studio 2017 as the
ultimate development tool supporting the most recent strategies at Microsoft.
Until a few years ago, Microsoft Visual Studio was the development environment
of choice if you wanted to build Windows and web applications based on the .NET
Framework with C#, F#, Visual Basic, and C++. If you wanted (or needed) to
build applications for different operating systems, platforms, or devices other
than a PC, you had to use proprietary development tools and native frameworks
on specific platforms.

In recent years, Microsoft has significantly changed its
strategy, opening up to other platforms, embracing open source, and focusing
even more on cloud services. In fact, the company has been making significant investments
for bringing technologies, platforms, developer tools, frameworks, and services
to other operating systems such as Linux and Mac OS, and to typically
non-Microsoft (and sometimes hostile) audiences by focusing on services much
more than in the past. In this strategy, .NET Core, the modular open source, cross-platform
runtime, enables C# developers to write applications that run on Windows,
Linux, and Mac. With Xamarin, you can write mobile applications that run on
Android, iOS, and Windows with a single, shared C# codebase. SQL Server 2016 now
has a preview that runs on Linux—a revolutionary milestone for Microsoft. A
preview of Visual Studio for Mac is currently available, and it fully enables
C# developers to write cross-platform apps with .NET Core and Xamarin on Mac
OS. In this cross-platform and cross-device vision, the cloud is even more
important. In fact, Azure hosts all the new and existing services Microsoft is
offering, and it grows according to what the market demands—for example, hosting
Docker containers on Linux.

Being the premier development environment from Microsoft,
Visual Studio 2017 fits perfectly into this mobile-first, cloud-first world;
developers can use Visual Studio 2017 to build apps that run on any platform
and any device with the language and framework of their choice. For example, Visual
Studio 2017 allows you to write Node.js applications, native iOS and Android
applications, and web apps that run on Linux and Mac OS. The good news is that
you, as the developer, can still use the same powerful tools you already know, such
as the debugger, IntelliSense, and profilers against all the supported
development platforms. In this e-book, you will find a comprehensive
description of new features in the Visual Studio 2017 IDE that will not only
help you to write better code but will also help you understand how you can use
it for building apps for any platform and any device.

As with its predecessors, Visual Studio 2017 is available
in different editions, such as Community, Professional, and Enterprise. If a
feature requires a specific edition, it will be highlighted when appropriate.
You can download the Community
edition for free.

A final disclaimer—this e-book has been written based on
the Release Candidate (RC) of Visual Studio 2017, which means some tools might
be subject to slight changes in the final version.

This book is
dedicated to my girlfriend Angelica. I’m so grateful for all you do for us.

Alessandro

[bookmark: _Toc475441639][bookmark: _Toc469678865]Chapter 1 A New Installation Experience

Microsoft Visual Studio has always been an extremely
powerful development environment. One of the reasons for its power is that it
can target multiple development platforms and, with versions 2013 and 2015, it even
added the option to target non-Microsoft technologies and operating systems. For
example, think of Android and iOS development with both Xamarin and Apache
Cordova. But great power also means a complex infrastructure, and in the past Visual
Studio required many hours for installation and a huge amount of space on disk.
In Visual Studio 2017, Microsoft brings a new installation experience that
simplifies the process and saves both time and disk space. Installing Visual
Studio 2017 will be your first experience with the new version, and it deserves
a thorough discussion.

[bookmark: _Toc475441640][bookmark: _Toc469678866][bookmark: _Solving_the_complexity]Solving the complexity of the Visual Studio installation

Keeping in mind the importance of the overall performance
and efficiency of its premiere development tool, one of Microsoft’s goals for
Visual Studio 2017 was to simplify the installation process to save developers
time and disk space. With Visual Studio 2015, a full installation required many
gigabytes on disk and several hours to complete. Solving this problem meant
rethinking the entire IDE infrastructure and changing both the way Visual
Studio consumes the components it relies on and the way it allows targeting
different development platforms. Based on these changes, Visual Studio 2017 is now
made of a core shell that includes the code editor and essential tools,
referred to as Visual Studio core editor. This provides capabilities for
writing code in a number of languages, including (but not limited to) Visual
Basic, C#, C++, and Python, along with syntax colorization, IntelliSense, and
debugging support, all in the familiar Visual Studio environment (see Chapter 5, "Working with solutions, folders, and
languages").

Additionally, Visual Studio 2017 supports adding sets of
components, each targeting a specific development scenario. Each set of
components is referred to as a workload. Workloads make installation and
maintenance easier and allow developers to install what they actually need
without unnecessary components, SDKs, and tools. You could even decide to
install only the Visual Studio core editor without any additional workloads in
order to get the basic coding environment, which would reduce the space
required by the Visual Studio installation to about 750 megabytes. You will probably
need more than just syntax highlighting, which means you will want to select
the proper workloads—this just gives you an idea of how Visual Studio’s
infrastructure has been revisited. The next section will describe how to
install Visual Studio 2017 and explain more about workloads and what you can do
with each.

[bookmark: _Toc475441641][bookmark: _Toc469678867]Installing Visual
Studio 2017

 	
 [image:]

 	
 Tip: Visual Studio 2017 can be installed side-by-side on a
 machine that has earlier versions of the IDE installed.

When you start the setup program, you are prompted with a
completely new user interface that presents a list of workloads. This is
represented in Figure 1.

Figure 1: Starting the Installation of Visual Studio 2017

As you can see, workloads are grouped by the following
categories:

	Windows

	Web & Cloud

	Mobile & Gaming

	Other Toolsets

All the available workloads can be discovered by scrolling
through the list (see Figure 2).

Figure 2: Additional Workloads

You can select all the workloads you’ll need for your
daily work with Visual Studio 2017. If you select no workloads, only the Visual
Studio core editor will be installed. On the right side of the dialog, you can
expand the workload name and see which components it includes and a list of
additional, individual components. Table 1 depicts available workloads in more
detail.

Table 1: Available Workloads for Visual Studio 2017

 	
 Name

 	
 Description

 	
 Universal Windows Platform development

 	
 Select this workload if you want to write universal
 applications for Windows 10, including PC, tablets, smartphones, HoloLens,
 Xbox, and IoT devices.

 	
 .NET desktop development

 	
 Select this workload if you want to build classic
 Windows desktop applications with WPF, Windows Forms, and console apps using
 the .NET Framework. This provides shorter solution load time and improved
 IntelliSense, code navigation, and refactorings. It includes new features such
 as XAML Edit and Continue and Run to Click debugging, both of which are
 discussed in this e-book.

 	
 Desktop development with C++

 	
 Select this workload if you wish to create, build, and
 debug native, classic desktop applications that run on versions ranging from
 Windows XP to the latest Windows 10 release, using the C++ language and
 environment.

 	
 ASP.NET and web development

 	
 Select this workload to develop web applications using
 ASP.NET and standards-based technologies such as HTML, JavaScript, CSS, and
 JSON. As with .NET desktop, this workload includes shorter solution load
 time, improved IntelliSense, code navigation, and more refactoring, and it
 enables you to quickly deploy your app to a web server or to Azure.

 	
 Azure development

 	
 This workload installs the latest Azure SDK for .NET and
 tools for Visual Studio 2017. It allows you to view resources in Cloud
 Explorer, create resources using Azure Resource Manager tools, and build
 applications and services ready to be hosted in Azure.

 	
 Node.js development

 	
 This workload adds everything you need to build apps for
 Node.js, including IntelliSense, local and remote debugging, profiling, npm
 integration, an interactive window, test runners, and Azure integration.

 	
 Data storage and processing

 	
 This workload provides tools for accessing on-premises
 SQL Server databases as well as SQL databases on Azure and Azure Data Lakes
 resources. It also provides support for U-SQL, Hive, and Big Data on Azure.

 	
 Office/SharePoint development

 	
 This workload provides the Office developer tools, which
 allow for creating Office and SharePoint add-ins and solutions.

 	
 .NET Core cross-platform development

 	
 This workload installs all the tools you need to write
 cross-platform web applications with .NET Core, with support for deployment
 to Docker containers.

 	
 Mobile development with .NET

 	
 This workload installs Xamarin, the technology that
 allows you to create native iOS, Android, and Universal Windows Platform apps
 using a shared C# codebase.

 	
 Game development with Unity

 	
 Select this workload if you want to develop
 cross-platform 2D and 3D games using the Unity framework and integrated tools
 for Visual Studio 2017.

 	
 Mobile development with JavaScript

 	
 This workload installs Apache Cordova for creating
 cross-platform mobile apps using HTML and JavaScript within Visual Studio.

 	
 Mobile development with C++

 	
 Select this workload if you want to create
 cross-platform mobile apps using C++.

 	
 Game development with C++

 	
 Select this workload if you want to create games using
 C++.

 	
 Visual Studio extension development

 	
 This workload installs the Visual Studio SDK and allows
 you to write extensions such as new commands, tool windows, and templates.

 	
 Linux development with C++

 	
 This workload enables you to author C++ code for Linux
 servers, desktops, and devices from within Visual Studio 2017.

For the instructional purposes of this e-book, I have
installed all the available workloads. You are not required to do the same—feel
free to select only those you need. You can later install additional workloads as
required.

[bookmark: _Toc475441642][bookmark: _Toc469678868]Customizing the installation
with individual components

Although workloads help keep the installation simple, you
might still need to install individual components. In Figure 2, you will see an
item called Individual components. Click it to access the full list of
individual components that can be installed regardless of selected workloads
(see Figure 3).

Figure 3: Selecting Individual Components

As an example, the GitHub extension for Visual Studio 2017
is not selected by default, which means you might want to select this component
if you plan to work with Git repositories on that popular service. Once you
have made your selection, click Close and select the edition of Visual
Studio 2017 you want to install. A dialog will show the progress of the
operation (see Figure 4).

Figure 4: Installation Progress

The time needed for complete installation depends on the
number of workloads and on your Internet connection. But even with many
workloads selected, you will notice it goes much faster than previous Visual
Studio installations.

[bookmark: _Toc475441643][bookmark: _Toc469678869]Installing multiple editions

With Visual Studio 2017, you can finally install multiple
editions on the same machine. This great feature means you can install the
Community, Professional, and Enterprise editions on the same machine (or any two
of them). This is now possible because each edition is installed into a
specific subfolder on the system. Apart from running separate installers, you
could launch a new installation directly from the current setup program. Figure
4 shows an Install button for both the Community and Professional editions
while Enterprise is being installed.

 	
 [image:]

 	
 Note: Visual Studio core assemblies are no longer installed to the Global Assembly Cache (GAC). In order to support the installation of multiple editions, most assemblies required by Visual Studio 2017 now reside in C:\Program Files (x86)\Microsoft Visual Studio\2017\%editionName%\Common7\IDE\PublicAssemblies, where %editionName% is the installed edition (such as Community, Professional, or Enterprise).

[bookmark: _Toc475441644][bookmark: _Toc469678870]Modifying the Visual Studio 2017 installation

Visual Studio 2017 offers a new shortcut for modifying an
existing installation. You simply go to the Windows > All Programs
menu and select the Visual Studio Installer shortcut. This will start
the setup program, and you will have an option to add or remove workloads or
individual components.

[bookmark: _Toc475441645][bookmark: _Toc469678871]Launching Visual Studio
2017

As with its predecessor, Visual Studio 2017 launches using
the same-named shortcut in the All Programs menu. When it starts for the first
time, Visual Studio will ask for your Microsoft account credentials to log in
(optional). As you might know, entering a Microsoft account will allow for
synchronizing settings across machines. This will also automatically restore
customized settings you might have on an existing VS 2017 installation. When
launching Visual Studio, you will immediately recognize better performance and
faster startup than Visual Studio 2015. Other new features at startup are described
in the next chapter.

[bookmark: _Toc475441646][bookmark: _Toc469678872]Chapter summary

Visual Studio 2017 introduces a completely new
installation experience based on the Visual Studio core editor and a number of
workloads, each targeting specific development scenarios. This not only
simplifies the setup process, but installing Visual Studio is now much faster
and more efficient. You still maintain full control of the installed
components, and you can even install multiple editions of Visual Studio 2017 on
the same machine. Now that you have set up the environment, you will find some
new features when launching Visual Studio 2017 for the first time.

[bookmark: _Toc475441647][bookmark: _Toc469678873]Chapter 2 The Start Page Revisited

Visual Studio 2017 has improved performance and efficiency
in many ways. You will immediately notice this when you launch the IDE, which
will load faster than its recent predecessors. Not limited to performance, the
new version provides an enhanced start experience through a revised Start Page.

[bookmark: _Toc475441648][bookmark: _Toc469678874]Optimized start experience

The Start Page is the first contact you will have
with Visual Studio 2017, which means it plays an important role. In the new
version, the Start Page has been reorganized and optimized to offer more space
for common shortcuts and tools. Figure 5 shows the new Start Page.

Figure 5: The New Start Page

The first new feature in the Start Page allows the Get
Started area to be removed by clicking the X icon at the upper-right
corner. This area contains shortcuts to learning resources and documentation,
but you can also hide it to save space for other contents. These are described
in the next sections.

 	
 [image:]

 	
 Tip: In Visual Studio 2017, the menu command to open the Start
 Page has been moved from the View
 menu to the File menu.

[bookmark: _Toc475441649][bookmark: _Toc469678875]Staying up to date: Announcements
and news

As with its predecessors, Visual Studio 2017 offers a list
of announcements and news from official Microsoft channels (see Figure 5).
However, in the new version, this list has been moved to a collapsible panel on
the right side of the page called Developer News. Figure 6 shows how the
Start Page appears with the Developer News panel hidden.

Figure 6: Collapsing the Developer News Panel

By collapsing the Developer News panel, you can have more
space for recently used items and tools. Just click the arrow to restore the
panel. However, note that when it is collapsed, you will be notified of updated
news via an orange glyph that will overlay the arrow.

[bookmark: _Toc475441650][bookmark: _Toc469678876]Shortcuts for solutions,
projects, and folders

Visual Studio 2017 offers shortcuts to open and create
projects quickly. This is not in fact new, but there are several changes and
improvements in the new version.

[bookmark: _Toc469678877]Working with most recently used projects

The list of most recently used projects (MRUs) is on the
left side of the Start Page. Along with recently used projects, Visual Studio
2017 will also show the list of repositories you have recently cloned from
Visual Studio Team Services and GitHub, which are represented with a folder
icon. Even more interesting, this list is synced across machines if you log
into Visual Studio with a Microsoft Account, which means that you will see this
list on any of your installations of Visual Studio 2017. This will make it
easier to clone the same repositories on all your machines. Figure 7 shows the
list of MRUs, including cloned repositories.

Figure 7: List of MRUs and Cloned Repositories

[bookmark: _Toc469678878]Accessing project templates

The new Start Page makes it easier to create new projects
by selecting different templates. In the New project area, which you can
see in all the previous figures, you can find a list of recently used project
templates that you can click to create a new project based on that template.
This list is synchronized across machines, and it also shows the programming
language used with the project template. In fact, when you click a recent
template, Visual Studio 2017 shows the New Project dialog with the
specified template already selected. Also, by clicking More project
templates, the New Project dialog will appear and provide an option for deciding
which project template to use. Finally, you can search for project templates
directly within the Start Page by typing in the Search project templates
text box.

[bookmark: _Toc469678879]Opening projects, folders, and repositories from source
control

The Open area in the Start Page provides shortcuts
to open projects and websites. There are several very interesting new features
in Visual Studio 2017. The first feature comes with a shortcut called Open
Folder. This allows you to open folders containing loose assortments of
code files that are not based on proprietary project systems. This will be
examined thoroughly in Chapter 5, "Working with
solutions, folders, and languages."

The second new feature makes it easier to open projects
from source control engines such as Team Foundation Server, Visual Studio Team
Services, and Git. As you can see in Figure 7, the group called Checkout
from offers two shortcuts:

	Visual Studio Team Services

	GitHub

The first shortcut will allow you to open team projects or
Git repositories from both Visual Studio Team Services and Team Foundation
Server. The second shortcut allows you to open or clone Git repositories from
GitHub. Of course, you can still manage team project connections with the Team
Explorer tool window.

 	
 [image:]

 	
 Tip: The GitHub shortcut is available only if you install the
 GitHub extension for Visual Studio 2017. This can be easily selected from the
 list of individual components within the Visual Studio Installer.

[bookmark: _Toc475441651][bookmark: _Toc469678880]Chapter summary

Visual Studio 2017 improves developer productivity from the
moment it starts up. With the new Start Page, the available space has been
reorganized in order to offer more shortcuts to commonly used tools. Also, new
features have been introduced to support team projects and repositories,
including the list of recently cloned repositories (which is synced across
machines), and the option to open projects from source control engines such as
Git and Visual Studio Team Services.

[bookmark: _Toc475441652][bookmark: _Toc469678881]Chapter 3 Code Editor Improvements

The code editor is the place where you spend most of your
developer life, and Microsoft introduces productivity improvements at every
major release of the IDE. Visual Studio 2017 is no exception—it introduces a
number of excellent features to improve your coding experience.

 	
 [image:]

 	
 Note: All the topics described in this chapter apply to both C#
 and Visual Basic, except where expressly specified. Also, remember that C#,
 Visual Basic, C++, and F# also provide a number of new language features that
 are not covered in this chapter, which instead focuses on the code editing
 experience. Visit the Visual
 Studio documentation for further information on what’s new with
 programming languages in Visual Studio 2017.

[bookmark: _Toc475441653][bookmark: _Toc469678882]IntelliSense improvements

The IntelliSense tool has long been a best friend of every
developer using Microsoft Visual Studio. In Visual Studio 2017, IntelliSense
gets major improvements that will help you save time while coding. First,
IntelliSense is now smarter with filtering. Instead of suggesting the top item
in the list, it automatically shows the best matching result based on what you
typed. And, not limited to this, it starts highlighting the words in bold as
you type, as shown in Figure 8.

Figure 8: IntelliSense Suggestions and Filters

Filtering based on specific types or members is another
important improvement in Visual Studio. As you can see in Figure 8, there is a
new bar with many icons at the bottom of IntelliSense, each icon representing a
particular kind of object or member such as local variables, constants,
properties, fields, methods, interfaces, classes, value types, enumerations,
delegates, namespaces, reserved words, and even code snippets. For instance,
Figure 9 shows how to restrict IntelliSense’s members searches to methods,
classes, and code snippets.

Figure 9: Filtering IntelliSense Search

Click an icon to add or remove the specified filter. This
new option dramatically simplifies the way you can leverage word completion,
especially when you know in advance what kind of objects you need to work with.

[bookmark: _Toc475441654][bookmark: _Toc469678883]Code navigation made easier

Moving quickly between type definitions and member
invocations or assignments is crucial for productivity, especially with dozens
of code files. Visual Studio 2017 introduces a number of interesting
improvements to code navigation, thereby enhancing your productivity.

[bookmark: _Toc469678884]Find All References

Find All References is a popular tool window you can use to
see where and how an object or member has been used across your solution. It is
still more useful for developers who cannot take advantage of the CodeLens
tooling, which is only available in the Enterprise edition. With previous
versions of Visual Studio, Find All References showed a list of lines of code
where an object or member was used, including its definition, and provided an
option to double-click a line in the list and be immediately redirected to the
line of code in the editor. In Visual Studio 2017, Find All References groups
object and member references by project and then by type, with syntax
colorization and a more intuitive user interface. Figure 10 shows an example
based on references to a class called Person,
which is used in two different projects.

Figure 10: Find All References Groups References with Syntax
Colorization

As you can see, the new view makes it easier to see where
and how an object has been used. The tool window shows the number of references
near the project name, its types, and their members. You can still double-click
an item to open the code editor on the selected line. If you hover over a
reference, a colorized tooltip shows a preview of the code block that references
the object or member (see Figure 11).

Figure 11: Colorized Tooltip Shows a Preview of the Code Block
Referencing an Object

By default, Find All References shows references across
the entire solution. You can filter the list through open documents, the current
project, the current document, and documents with pending changes. Also, by
default, Find All References groups items by project, then by object
definition. Table 2 shows a list of available grouping objects you can find in
the Group by combo box.

Table 2: Grouping Options
for Find All References

 	
 Option

 	
 Description

 	
 Project then Definition

 	
 Groups by project, then by object definition (default).

 	
 Definition Only

 	
 Groups by object or member definition, without the project
 hierarchy.

 	
 Definition then Project

 	
 Groups by object definition, then by project.

 	
 Definition then Path

 	
 Groups by object definition, then by the path of the code
 file that contains the definition.

 	
 Definition, Project then Path

 	
 Groups by object definition, then by project, and then by
 the path of the code file.

You can also search among results with the Search Find
All References text box and lock the current results by clicking Keep
Results.

[bookmark: _Toc469678885][bookmark: navigatingCodewGoTo]Navigating code
with Go To

Visual Studio 2017 introduces a new navigation feature
called Go To, which replaces and improves another popular tool known as
Navigate To. To enable Go To, just press Ctrl+T. A navigation pop-up appears
and automatically lists all the occurrences of the identifier where the cursor
was when you pressed Ctrl+T. Figure 12 shows an example.

Figure 12: Go To Listing Occurrences of the Specified Identifier

You can refine your search by typing in the search bar. The
list will be automatically updated with any words matching what you typed. Like
IntelliSense, Go To has a new toolbar at the top that allows for easy filtering
based on the object type. You can filter by code file, type, method, object
members, and line of code. With Go To, you can only apply one filter at a time.
Notice that when you click the filter buttons, the search box shows special
characters before a word or identifier. For instance, the t character preceding any words in the search box will
filter the list by type, while the # character
will filter by method. Other supported characters are f
(files), m (members), and : (line numbers). These are very useful. If you know
in advance what kind of object or member you are searching for, they can speed
up your search.

Go To has settings that can be customized. If you click
the Show Settings button at the right corner of the tool bar, you will
be able to decide whether to show a preview tab or enable a detailed view.
Figure 13 shows a customized view that filters by type and shows details such
as the project, code file, and line number containing the selected type.

Figure 13: Customizing the Go To View

Actually, Ctrl+T is a shortcut for the Go To All
command in the Edit menu. The Edit menu has additional Go To commands
(e.g., Go To Type and Go To Member), each mapped to a filter in the Go To tool
window. If you select one of these commands, Go To appears with the appropriate
filter enabled. This can speed up your code navigation, especially if you use
the provided keyboard shortcuts.

[bookmark: _Toc469678886][bookmark: structureGuideLines]Structure guide
lines

Visual Studio 2017’s code editor introduces a feature known
as Structure Visualizer that was previously available in the
Productivity Power Tools extension for Visual Studio 2015. With this feature
enabled, the editor draws structure guide lines—small gray vertical lines near
each code block that make it easier to view the structure of your code. If you
hover over structured guide lines, the editor shows a tooltip with a preview of
the parent code for the current block. This is demonstrated in Figure 14.

Figure 14: Visualizing Code Structure with Guide Lines

This feature is very useful with long code blocks, and it is
enabled by default. If you want to disable it, go to Tools > Options
> Text Editor, and clear the Show structure guide lines
option.

[bookmark: _Toc475441655][bookmark: _Toc469678887]Roslyn code analysis

Along with Visual Studio 2017, Microsoft is releasing C#
7.0 and Visual Basic 15 with an updated version of the .NET Compiler Platform,
also known as Project Roslyn.
The .NET Compiler Platform provides open source C# and Visual Basic compilers
with rich code analysis APIs. With this platform, compilers are offered as a service
and developers can take advantage of their APIs to perform a number of
operations against source code. If you want to know more about Roslyn, you can
read the e-book Roslyn
Succinctly (also written by me). Starting with Visual Studio 2015, a
huge number of tools, including the code editor, are no longer powered by the
IDE itself; instead, they are powered by Roslyn. These tools include the live
code analysis that detects issues while typing, and code refactoring. As
described in Roslyn
Succinctly and Visual
Studio 2015 Succinctly, when the compiler detects code issues as you
type, the editor offers the light bulb and quick actions to fix an issue or to
refactor a code block. Visual Studio 2017 takes some steps forward, providing
new refactoring tools and an enhanced coding experience based on Roslyn.

[bookmark: _Toc469678888]More Roslyn refactorings

The new release of Roslyn offers additional interesting
code refactorings. The following is a detailed list of what’s new.

Simplify object initialization

The first new refactoring simplifies object initialization.
It replaces an object initialization based on property assignments with another
one based on object initializers. Figure 15 shows this refactoring in action.
Notice that when the code editor detects a possible refactoring for an object
initialization, it underlines the constructor invocation with three gray dots.

Figure 15: The Object Initialization Refactoring

This code refactoring also provides the proper indentation
when applied.

Convert to interpolated string

Another very useful refactoring converts an invocation to string.Format to an interpolated string. This is shown
in Figure 16.

Figure 16: Converting string.Format to String Interpolation

You can enable this refactoring by right-clicking the string.Format invocation, not the assignment. If you
want to know more about string interpolation, visit the documentation
page on MSDN.

Move type to matching file

Suppose you have a class that is not defined within an
individual file but rather is defined inside a code file that contains other
type definitions or, more generally, other code. A new Roslyn refactoring
allows you to quickly move the specified type into a new file that will have
the same name as the type. For instance, Figure 17 shows a class called Person that is defined inside Program.cs. If you
right-click Person, you will see a refactoring
that offers to move the type into a new file called Person.cs.

Figure 17: Moving a Type Definition into a Matching File

This feature is extremely useful if you use it to define
multiple types in one code file. The only caveat is that, if the target file
already exists, Visual Studio will generate a new file and will not use the
existing one. In the current example, if Person.cs already exists, then Visual
Studio will generate Person1.cs and place the type into the newly created file.

Synchronizing type name and file name

If you have a type definition inside a file whose name
doesn’t match the type name, a new refactoring will simplify the work of
keeping the type name and file name in sync. For instance, if you have a Person class defined inside a file called Human.cs,
you can either rename the file or rename the type to make them match. Figure 18
shows this refactoring in action, which you enable by right-clicking a type
name.

Figure 18: Keeping Type Name and File Name in Sync

The rename file refactoring offers to rename the file to
match the type name. Alternatively, rename type offers to rename the type to
match the file name.

Inline out variable declarations

 	
 [image:]

 	
 Note: This refactoring is not available in Visual Basic 15.

C# 7.0 introduces a new feature known as out variables, which
provide the ability to declare a variable right at the point where it is used as
an out argument. Roslyn now offers a new refactoring to support this feature,
as shown in Figure 19.

Figure 19: Introducing an Inline Out Variable

With the inline variable declaration refactoring, you can
simplify code that uses out variables introducing an inline declaration.

[bookmark: _Toc469678889]Controlling live analysis with code style

With Roslyn, compilers can report code issues as you type,
no matter what kind of Roslyn-based IDE is being used. With Visual Studio and
before Roslyn, the code editor could only analyze code for rules designed at
Microsoft. One of the biggest advantages of Roslyn is that it allows you to introduce
your own analysis rules (with fixes and refactorings), and the compiler will
report issues for code that does not adhere to those rules. While we certainly have
full control over rules we write, before Visual Studio 2017 we had no control
over rules coded at Microsoft, except for disabling warnings. For instance, in
Visual Studio 2015 the background compiler always reports as redundant the
usage of the this and Me
keywords in C# and VB unless the keyword is used to reference a member that has
the same name as the variable we are assigning (e.g., this.name
= name).

As another example, in Visual Studio 2015 the compiler
always suggests that we replace the Framework type names with the corresponding
keywords; for instance, it suggests we use int (C#)
or Integer (VB) instead of System.Int32. However, there are plenty of reasons why
you might want to use those coding styles. In order to give developers the opportunity
to decide which coding styles they want to use, with Visual Studio 2017, Microsoft
has introduced a new tool called code style. This tool enables you to decide
how the compiler should treat some of our coding preferences, including naming.
You reach the code style settings by selecting Tools > Options
> Text Editor, then C# or Visual Basic, and finally the
Code Style node. I will provide a description based on C#, but the same
applies to Visual Basic (I will later summarize the available preferences for
both). In C#, code style has general, formatting (C# only), and naming options.

 	
 [image:]

 	
 Tip: Behind the scenes, this feature is based on the EditorConfig file format. If you wish to
 further configure code styles, you can read this blog
 post from the .NET Team at Microsoft.

General code style

The general settings are probably the most interesting options
for altering code style. They allow you to change preferences over some built-in
coding rules. Each group of preferences allows you to specify the preference
and the severity level. If your code does not match the preference, the
compiler will report a suggestion, warning, or error, depending on the severity
level you choose. The default severity is None, which means that the compiler
will simply ignore the preference and report nothing.

 	
 [image:]

 	
 Tip: Remember that the Error severity level will prevent you
 from building your project until the code issue is solved.

For instance, suppose you want to use the this keyword when referencing an object’s property and
that the compiler should report a suggestion if your code does not use the
keyword. Figure 20 shows how to accomplish this.

Figure 20: Changing Code Style Preferences

Notice how a preview of your code is shown at the bottom
of the dialog in Figure 20, whereas Figure 21 shows the result of setting this
preference—the compiler reports a suggestion over the property assignment
without this, and the light bulb offers to fix
the issue.

Figure 21: Changing the Code Style for the this Keyword

As another example, suppose you want to control the code
style for the var keyword. More specifically,
suppose you want to avoid using var with
built-in types and you want to avoid var when the
type is apparent from assignment expressions. Figure 22 shows how to accomplish
this.

Figure 22: Changing the Code Style for the var Keyword

In the first case, the compiler will report a warning each
time you use var instead of a built-in type, and
it will offer the proper code fix, as shown in Figure 23.

Figure 23: Compiler Detects and Fixes Improper var Usage

In the case of apparent assignments, Figure 24 shows how
the compiler detects that assigning an instance of the Person
type to a variable is an apparent assignment. The compiler therefore reports
the suggestion to replace var with the explicit Person type, offering the proper fix through the light
bulb.

[bookmark: OLE_LINK3]

Figure 24: Compiler Detects an Improper var Usage with an Apparent Assignment

Tables 3 and 4 summarize some of the available preferences
for C# and Visual Basic, respectively. Remember that a code preview for each
style is shown in the Options dialog.

[bookmark: OLE_LINK8]Table 3: Code Style Preferences for C#

 	
 [bookmark: OLE_LINK2][bookmark: OLE_LINK1]Preference Group

 	
 Preference

 	
 Description

 	
 ‘this.’ preferences

 	
 Qualify field access with ‘this’

 	
 Sets whether you should prefer the this keyword to qualify access to fields.

 	
 ‘this.’ preferences

 	
 Qualify property access with ‘this’

 	
 Sets whether you should prefer the this keyword to qualify access to properties.

 	
 ‘this.’ preferences

 	
 Qualify method access with ‘this’

 	
 Sets whether you should prefer the this keyword to qualify access to methods.

 	
 ‘this.’ preferences

 	
 Qualify event access with ‘this’

 	
 Sets whether you should prefer the this keyword to qualify access to events.

 	
 predefined type preferences

 	
 For locals, parameters, and members

 	
 Sets whether you should prefer the predefined type (e.g., int, double) over the
 Framework type (e.g., System.Int32, System.Double) with local variables, method
 parameters, and object members.

 	
 predefined type preferences

 	
 For member access expressions

 	
 Sets whether you should prefer the predefined type over
 the Framework type when accessing type members.

 	
 ‘var’ preferences

 	
 For built-in types

 	
 Sets whether you should prefer an explicit type instead of
 the var keyword with built-in types such as int, string, double, etc.

 	
 ‘var’ preferences

 	
 When variable type is apparent

 	
 Sets whether you should prefer an explicit type instead of
 the var keyword when the type can be easily
 discovered by the assignment of an expression.

 	
 ‘var’ preferences

 	
 Elsewhere

 	
 Sets whether you should prefer an explicit type instead of
 the var keyword in all other cases.

 	
 Code block preferences

 	
 Prefer braces, For methods, For constructors, For
 operators, For properties, For indexers, For accessors

 	
 Sets whether code blocks should be implemented using a
 block body or an expression body (that is, with lambda expressions).

 	
 Expression preferences

 	
 Prefer object initializer

 	
 Sets whether you should prefer an object initializer when
 instantiating an object and populating its members. When reported, this
 invokes the simplify object initialization refactoring described in the
 previous section.

 	
 Expression preferences

 	
 Prefer collection initializer

 	
 Sets whether you should prefer a collection initializer
 when instantiating a collection of objects. When reported, the editor offers
 the proper fix.

 	
 Expression preferences

 	
 Prefer pattern matching over ‘is’ with ‘cast’ check

 	
 Sets whether code should enforce cast check with pattern
 matching.

 	
 Expression preferences

 	
 Prefer pattern matching over ‘as’ with ‘null’ check

 	
 Sets whether code should use pattern matching instead of
 using the as conversion operator for null
 checks.

 	
 Expression preferences

 	
 Prefer explicit tuple name

 	
 Tuples in C# 7.0 allow for implicit names. This option
 sets whether code should use explicit or implicit tuple names.

 	
 Variable preferences

 	
 Prefer inline variable declaration

 	
 Sets whether you should prefer using inline variable
 declaration. When reported, this invokes the inline out variable declaration
 refactoring described in the previous section.

 	
 ‘null’ checking’

 	
 Prefer throw expression

 	
 With null checks, sets whether you should prefer using the
 new throw expression feature in C# 7.0 with the null-coalescing operator (??) instead of comparing variables to null.

 	
 ‘null checking’

 	
 Prefer conditional delegate call

 	
 With null checks, sets whether you should prefer the
 null-conditional operator (?.) and delegates’ Invoke method over evaluating an object with the != null expression.

 	
 ‘null checking’

 	
 Prefer coalesce expression

 	
 With null checks, sets whether you should prefer the
 coalescing operator (??) instead of
 expressions based on the conditional operator (?.)

 	
 ‘null checking’

 	
 Prefer null propagation

 	
 With null checks, sets whether you should prefer the null
 propagation (?.) instead of conditional
 comparisons based on the conditional operator ?:.

Table 4: Code Style Preferences
for Visual Basic

 	
 Preference Group

 	
 Preference

 	
 Description

 	
 ‘Me.’ preferences

 	
 Qualify field access with ‘Me’

 	
 Sets whether you should prefer the Me keyword to qualify access to fields.

 	
 ‘Me.’ preferences

 	
 Qualify property access with ‘Me’

 	
 Sets whether you should prefer the Me keyword to qualify access to properties.

 	
 ‘Me.’ preferences

 	
 Qualify method access with ‘Me’

 	
 Sets whether you should prefer the Me keyword to qualify access to methods.

 	
 ‘Me.’ preferences

 	
 Qualify event access with ‘Me’

 	
 Sets whether you should prefer the Me keyword to qualify access to events.

 	
 Predefined type preferences

 	
 For locals, parameters, and members

 	
 Sets whether you should prefer the predefined type (e.g., Integer, Date) over
 the Framework type (e.g., System.Int32, System.DateTime) with local variables, method
 parameters, and object members.

 	
 Predefined type preferences

 	
 For member access expressions

 	
 Sets whether you should prefer the predefined type over
 the Framework type when accessing type members.

 	
 Expression preferences

 	
 Prefer object initializer

 	
 Sets whether you should prefer an object initializer when
 instantiating an object and populating its members. When reported, this
 invokes the simplify object initialization refactoring described in
 the previous section.

 	
 Expression preferences

 	
 Prefer collection initializer

 	
 Sets whether you should prefer a collection initializer
 when instantiating a collection of objects. When reported, the editor offers
 the proper fix.

 	
 Expression preferences

 	
 Prefer explicit tuple name

 	
 Tuples in Visual Basic 15 allow for implicit names. This
 option sets whether code should use explicit or implicit tuple names.

 	
 ‘nothing’ checking

 	
 Prefer coalesce expression

 	
 Sets whether you should prefer calling the If operator with short-circuit evaluation for null
 checks.

 	
 ‘nothing’ checking

 	
 Prefer null propagation

 	
 Sets whether you should prefer the null conditional
 operator ?. for null checks.

This feature is extremely useful, especially if you find
some of the default suggestions from the compiler to be annoying.

Formatting code style

Formatting code style is available only to C#. This makes
sense because the primary goal of formatting is to control automatic formatting
and indentation of curly braces and code that is or should be inside braces as
you type. Formatting also allows you to control how some code blocks or
statements should be added to specific constructs. All the available options
have self-explanatory names and the Options dialog shows a preview of
how the code will look with a particular option selected. As an example, Figure
25 shows how a property definition looks with the Leave block on single line
option selected (under the Wrapping node), whereas Figure 26 shows how
the same property definition will look with that option not selected.

[bookmark: OLE_LINK4]

Figure 25: Code Blocks Should Be on a Single Line

[bookmark: OLE_LINK12]

Figure 26: Code Blocks Should Be on Multiple Lines

Naming code style

The naming code style preferences address .NET naming
conventions for types and members. With the naming specifications, you can
control how the compiler should report issues about code that does not adhere
to the specified naming conventions. For instance, if the name of an interface
does not begin with I, the compiler will report
a suggestion to fix its name. Each specification can have one style and severity
level. The severity level can be None, Suggestion, Warning, or Error. There are
three built-in styles and four built-in specifications—these are summarized in
Tables 5 and 6, respectively. By default, all specifications have the
Suggestion severity level.

[bookmark: OLE_LINK9][bookmark: Table5]Table 5: Built-In Naming Styles

 	
 Style name

 	
 Description

 	
 Begins with I

 	
 The name of the type or member selected in the
 specification to which it is assigned should begin with I.

 	
 Pascal Case

 	
 The name of the type or member selected in the
 specification to which it is assigned should follow the Pascal case naming convention.

Table 6: Built-In Naming Specifications

 	
 Specification name

 	
 Description

 	
 Interface

 	
 [bookmark: OLE_LINK10]Determines that an interface’s name
 should follow the naming rule assigned in the Style column. The default style
 is Begins with I.

 	
 Types

 	
 [bookmark: OLE_LINK11]Determines that a type name should
 follow the naming rule assigned in the Style column. The default style is
 Pascal Case.

 	
 Non-Field Members

 	
 Determines that object members different than fields
 should follow the naming rule assigned in the Style column. The default style
 is Pascal Case.

 	
 [image:]

 	
 Note: I strongly recommend that you not change these four
 specifications. They reflect some of the most important general
 naming conventions in .NET and should be left as they are.

Figure 27 shows the default settings for the Naming code
style options.

[bookmark: OLE_LINK13]

Figure 27: Default Settings for the Naming Code Style

You have significant control over naming settings. In
fact, you can add your own specifications and styles, and you can combine
multiple styles for the same specification. You can even edit existing
specifications and styles by clicking Manage specifications and Manage
styles. For instance, suppose you want to add a new naming convention for
private enumerations and you want the style to be camel case. To accomplish
this, click Manage specifications. This will show the full list of
active specifications (see Figure 28).

[bookmark: OLE_LINK14]

[bookmark: Figure28]Figure 28: The List of Available Specifications

For each specification, you can click Edit (with
the pencil icon) to change its properties or Delete to remove it (not
recommended).

 	
 [image:]

 	
 Tip: Editing an existing specification will open the same Symbol
 Specifications dialog described shortly (and visible in Figure 29).

As you can see, a specification for Enum types already exists, but let’s say you want to
add one specifically for private enumerations. Click Add (the green + icon). In the Symbol Specification dialog
that appears, you will see a list of available types, modifiers, and accessors.
Make sure that only enum and private are selected, then assign the Private Enums
title in the Symbol Specification Title text box (see Figure 29) and,
finally, click OK.

[bookmark: OLE_LINK15]

[bookmark: Figure29]Figure 29: Creating a Custom Specification

Click OK again to close the Manage Specifications
dialog. At this point, the new specification will be listed in the Naming
code style list. Now you need to create a new style, so click Manage styles.
The Manage Naming Styles dialog will show the list of current styles,
which contains the three styles described in Table 5.
Click Add to add a new one. In the Naming Style dialog (see
Figure 30), provide a title for the new style, such as Camel Case, then select
the camel Case Name option from the Capitalization combo box. As
you can see, you also have the option to specify a prefix, a suffix, and a word
separator (not required in this case).

[bookmark: OLE_LINK16]

Figure 30: Creating a Custom Style

Click OK to close the Naming Style dialog, then
click OK to close the Manage Naming Styles dialog. At this point, you
will be able to assign the new style for the previously created specification,
as shown in Figure 31 (notice that a severity level of Warning has been also
assigned).

[bookmark: OLE_LINK17]

Figure 31: Assigning a Custom Style to a Custom Specification

If you want to see the result of your work in action, you
must take an additional step. Because the Types specification includes all
types with any visibility accessor, you should edit this specification and
remove the private accessor from the list. You can use Figures
28 and 29 as a reference. Of course, we do this
only for demonstration purposes, but the default specifications should not be
changed. However, with these custom specifications and styles, the compiler now
detects a violation of the naming rule for private enumerations, shows a
warning message, and offers the appropriate fix, as shown in Figure 32.

Figure 32: Detection of Custom Naming Rules Violations and
a Code Fix

So, you are not limited to creating custom naming rules
that will be checked by the live analysis engine, but you will also get code
fixes for violations, which is really amazing.

[bookmark: _Toc475441656][bookmark: _Toc469678890]Editing improvements
for C++ and F#

Visual Studio 2017 introduces improvements to the code
editing experience for C++ and F#, too. For C++, features such as IntelliSense,
Go To Definition, and Find All References now rely on a SQLite database that
stores the information the IDE needs in order to quickly move among lines of
code, and that dramatically improves performance. Also, the code editor for C++
now provides two new refactorings: change signature and extract function. The
first refactoring allows you to more quickly change the signature of a method,
while the second one allows you to encapsulate a code block into a function. With
F#, the code editor now offers improved IntelliSense with better completions
and filters, along with type colorization. Also, the F# code editor is now
built on Roslyn Workspaces, and many features are now powered by Roslyn,
including Go To Definition, Peek Definition, brace matching, indentation,
breakpoint resolution, and debugging data tips.

[bookmark: _Toc475441657][bookmark: _Toc469678891]Chapter summary

Microsoft has increased the code editor’s productivity for
C# and Visual Basic in Visual Studio 2017 by investing in IntelliSense, code
navigation, and integrated Roslyn code analysis. IntelliSense has better
performance and allows for type filtering, which makes it easier to use the
objects and members you need. For code navigation, Find All References now
presents grouped lists of objects with syntax colorization. Go To is an
improved replacement of Navigate To, with type filtering and quick search among
large codebases. Finally, structure guide lines help us understand to which code
block a snippet belongs. With live code analysis powered by Roslyn, new
refactorings are available to both C# and Visual Basic, and you can now control
styles and naming rules coded at Microsoft with the new code style features.
Code editor improvements are not limited to C# and Visual Basic—the XAML code
editor has exciting new and updated features as well, which is discussed in the
next chapter.

[bookmark: _Toc475441658][bookmark: _Toc469678892][bookmark: _Chapter_4_]Chapter 4 XAML Improvements

The eXtensible Application Markup Language (XAML)
is the language for designing the user interface of Windows Presentation
Foundation (WPF) and Universal Windows Platform (UWP) applications. Therefore,
it’s crucial for Microsoft. In Visual Studio 2017, the tooling for XAML has
been dramatically enhanced. On the performance side, switching between tabs in
the XAML code editor is more than 90% faster in some cases, and many
investments have been made to avoid delays when typing XAML markup in the
editor. Additionally, many other improvements have been made to the coding
experience and the diagnostic tools. This chapter will describe such
improvements, showing how much more productive you can be in Visual Studio
2017. If you want to try it yourself, simply create a blank UWP or WPF project
and open a .xaml file.

 	
 [image:]

 	
 Note: This chapter describes features that are common to both
 WPF and UWP. Chapter 8, “Visual Studio 2017 for mobile
 development,” will address additional improvements that target UWP.
 Topics discussed in this chapter are not available to XAML for Xamarin.Forms.

[bookmark: _Toc475441659][bookmark: _Toc469678893]XAML Edit and Continue

One of the most important additions to the XAML tooling in
Visual Studio 2017 is XAML Edit and Continue. This feature allows us to edit
XAML code while the application is running in Debug configuration. The
application will immediately reflect those edits without the need to break the
application execution and restart after making some edits. Figure 33 shows how
you can edit property values in debugging mode (demonstrated by the orange color
of the status bar at the bottom of the main Visual Studio shell).

Figure 33: Modifying XAML at Runtime with Edit and Continue

You are not limited to editing controls’ or panels’
property values—you can also add new controls, new panels, and everything you
might need to improve your user interface. You can combine using this feature
with the Live Visual Tree and Live Property Explorer windows to get an enhanced
experience. Edit and Continue has been a heavily requested feature and is
finally available to all editions of Visual Studio 2017.

[bookmark: _Toc475441660][bookmark: _Toc469678894]XAML code editor improvements

More often than not, you will write XAML code manually in
order to design or at least to fine-tune the user interface of a WPF or UWP
app. For this reason, Microsoft has introduced additional improvements to the
XAML code editor that will greatly improve your coding experience. Among
others, the XAML editor now has the structure guide lines feature we examined
in Chapter 3. Additional features address
IntelliSense and code refactoring, and they are described in the following paragraphs.

 	
 [image:]

 	
 Note: Figures in this chapter have been captured from a UWP
 project, but the same applies to WPF.

[bookmark: _Toc469678895]Navigating code with Go To

In Chapter 3, we looked
at the Go To feature, which makes navigating code easier and faster. This is
also available for the XAML code editor and can be enabled by pressing Ctrl+G.

[bookmark: _Toc469678896]IntelliSense filtering

IntelliSense for XAML has been updated to show only those
members that best match what you type. Additionally, if you type only the
capitalized letters of a control name, IntelliSense will show the list of full control
names that match those capitalized letters. For instance, if you type SV in UWP, IntelliSense will filter the completion
list showing only the ScrollViewer and SplitView element names (see Figure 34).

Figure 34: IntelliSense Filtering

[bookmark: _Toc469678897]Refactoring namespaces

Numerous improvements have been introduced for better
management of XAML namespaces. These include features that were previously
available to C# and Visual Basic, such as inline renaming, resolving missing
namespaces, and removing redundant namespaces.

Removing and sorting namespaces

The XAML code editor detects redundant namespaces by
presenting them with a lighter syntax colorization, exactly as with C# and
Visual Basic since Visual Studio 2015. You can easily remove redundant
namespaces with the help of the light bulb as shown in Figure 35.

Figure 35: Removing Redundant Namespaces

You can also quickly remove redundant namespaces and sort
the remaining namespaces by right-clicking the XAML code then selecting Remove
and Sort Namespaces, or by pressing Ctrl+R, then Ctrl+G.

Inline namespace rename

The inline rename feature was first introduced in Visual
Studio 2015 for the C# and Visual Basic languages, and it allows renaming a
symbol directly in the editor, without any modal dialogs. In Visual Studio 2017,
this feature now comes to the XAML code editor, providing an option to rename
namespaces more efficiently. You can right-click the name of a namespace, then
select Rename. This will also highlight all the references to the
selected namespaces, as shown in Figure 36.

Figure 36: Enabling Inline Rename on Namespaces

Simply type the new name on any highlighted location and
it will be applied to all references in the entire solution (see Figure 37).

Figure 37: Renaming Namespaces as You Type

As with C# and Visual Basic, you can also include
namespace references within comments and strings for a consistent rename.

Resolving missing namespaces

 	
 [image:]

 	
 Note: In order to demonstrate this feature, I have added the
 Microsoft.Toolkit.Uwp.Controls NuGet package to a blank UWP project. However,
 it applies to any control in any library and namespace, both to UWP and WPF.

We often need to add a reference to a library that
provides some controls, which can be a Microsoft or third-party library.
However, you might not know which XAML namespace exposes the control, which can
result in time wasted searching for the proper namespace and adding its
declaration. In Visual Studio 2017, the code editor can easily resolve missing
namespaces, adding the proper declaration on your behalf. Figure 38 shows how
you can type the name of a control with the light bulb and then suggest a quick
action to add the proper, missing namespace declaration.

Figure 38: The Light Bulb Suggests Quick Actions for Missing
Namespaces

As a result of the quick action, Visual Studio adds the
proper XAML namespace. In this particular case, it adds a xmlns:controls directive that points to a namespace
called Microsoft.Toolkit.Uwp.UI.Controls, as shown in Figure 39.

Figure 39: Namespace Added and Issue Fixed

Notice that the identifier for the directive (control in this case) is generated based on the .NET
namespace name. You can then use inline renaming to provide a different
identifier and automatically update all references.

[bookmark: _Toc475441661][bookmark: _Toc469678898]XAML Diagnostics

Visual Studio 2017 includes a feature called XAML
Diagnostics. This feature was first introduced with Visual Studio 2015 Update 2
under the name XAML In-App Menu, but it deserves some explanation, especially
if you are new to the Visual Studio development environment. XAML Diagnostics
consists of a black, collapsible toolbar that appears when you debug a WPF or
UWP application. Figure 40 shows this toolbar over a very simple app.

Figure 40: The XAML Diagnostics Toolbar

 	
 [image:]

 	
 Tip: The In-App Menu is enabled by default. If you want to
 disable it, go to Tools > Options > Debugging,
 and clear the Show runtime tools in
 application option.

The In-App Menu can be minimized, which is useful for avoiding
overlaying parts of the UI—but for now, leave it open. The menu has four
buttons, each described in the next paragraphs (starting from left to right).

Go to Live Visual Tree

As the name implies, this button simply opens the Live
Visual Tree tool window. I suggest that you dock the Live Visual Tree window so
that you will immediately see the result of the other buttons. More information
about the Live Visual Tree can be found in the MSDN
documentation.

Enable Selection

This button allows you to select controls on the user
interface. When you select a control, it is surrounded with a red border, and
the Live Visual Tree window automatically shows the selected control within the
visual tree. Figure 41 shows an example.

Figure 41: Enabling Element Selection in XAML Diagnostics

This is useful for focusing more precisely on a specific
control or UI element, including primitive elements in the visual tree.

Display Layout Adornments

This button allows you to highlight the surface of a
control or UI element. If combined with Enable Selection, an element is
highlighted and selected. Selection is also reflected in the Live Visual Tree
window. This is useful for understanding the delimiters of a control. Figure 42
shows an example based on the combination of both buttons.

Figure 42: Displaying Layout Adornments

Track Focused Element

The Track Focused Element is similar to Enable Selection
in that it allows selecting a control and reflecting the selection in the Live
Visual Tree, but you should note that it only allows selecting controls that
can receive focus (for instance, TextBox
controls).

[bookmark: _Toc475441662][bookmark: _Toc469678899]Chapter summary

Due to its importance in the Universal Windows Platform
and Windows Presentation Foundation, the XAML code editor has received a number
of improvements in Visual Studio 2017. With Edit and Continue, you can now
modify the visual tree and see changes while the application is in debugging
mode. IntelliSense has improved filtering, Go To allows you to quickly navigate
your markup, and new refactorings have been introduced to support namespace
management. But Visual Studio 2017 is not simply the environment for managed
languages and XAML. It is the development environment for any development on
any platform. In the next chapter, you will discover amazing new features for
developers who do not work with MSBuild solutions and projects.

[bookmark: _Toc475441663][bookmark: _Toc469678900][bookmark: _Chapter_5_]Chapter 5 Working with Solutions, Folders, and Languages

Visual Studio 2017 introduces updates to the solution
model and to the way the IDE manages projects. This brings improved performance
and reliability, especially with large solutions. Visual Studio 2017 also supports
a larger number of languages and code files, regardless of the project system to
which they belong. All these goodies are described thoroughly in this chapter.

[bookmark: _Toc475441664][bookmark: _Toc469678901]Lightweight Solution
Load

Often, enterprise applications consist of very large
solutions, sometimes with dozens of projects. However, loading a very large
solution can result in a negative impact on the overall performance of Visual
Studio. For this reason, Visual Studio 2017 has introduced a new feature called
Lightweight Solution Load. This feature optimizes the process of loading very
large solutions, providing better responsiveness and performance. This feature
is not enabled by default, so you can enable it manually by navigating to Tools
> Options > Projects and Solutions, and then selecting Lightweight
Solution load (see Figure 43).

Figure 43: Enabling Lightweight Solution Load

You must understand the reasons why this feature is not
enabled by default before you use it:

	You benefit from using this feature only with large solutions.

	It is optimized to work with solutions made of C#/VB projects or
a mix of C# and C++ projects. Not all project types benefit from this feature.

	Visual Studio 2017 can automatically detect if loading a given
solution might be optimized with this feature. In this case, it will prompt you
with a message and ask your permission to enable the feature for you.

Behind the scenes, Lightweight Solution Load delays
loading some projects until you actually need them. This implies that some
features, such as code refactoring, code navigation, or inline renaming, might
require some extra milliseconds the first time you invoke them. In conclusion,
Lightweight Solution Load is a very useful addition, but only with large solutions
made of C#/VB projects or with mixed C#/C++ solutions.

[bookmark: _Toc475441665][bookmark: _Toc469678902]Extended language support

Out of the box, Visual Studio 2017 provides built-in
support for a broader set of languages than past versions. This support consists
of syntax colorization, code snippets, navigation, and code completion through
the Visual Studio core editor, which means it is available even if no workloads
are installed. If you install workloads that target specific languages (e.g.,
.NET desktop development that targets C# and VB), those languages will receive
more extensive support, such as, but not limited to, IntelliSense, light bulbs
and quick actions, debugging, and so on. The value of this feature will be
demonstrated in the next section, “Open Folder: Working with any codebase.” In
the meantime, take a look at Table 7, which summarizes the list of supported
languages and features per language.

[bookmark: Table7]Table 7:
Supported Languages and Features in Visual Studio 2017

 	
 Features

 	
 Languages

 	
 Only syntax colorization and code completion

 	
 Batch, Clojure, CoffeeScript, CSS, Docker, F#, INI, Jade,
 JSON, LESS, Make, Markdown, Objective-C, PowerShell, Python, Rust, ShaderLab,
 SQL, YAML

 	
 Code snippets, syntax colorization, and code completion

 	
 CMake, Groovy, HTML, Javadoc, Lua, Perl, R, Ruby, ShellScript,
 Swift, XML

 	
 Go To, code snippets, syntax colorization, and code
 completion

 	
 C++, C#, Go, Java, JavaScript, PHP, TypeScript, Visual
 Basic

By supporting these languages, you can work with source
code for different platforms and take advantage of evolved editing features—even
with no installed workloads. If you are impatient, you can try to open
individual code files in any of the supported languages, but the biggest
benefit is working with folders. The next section provides some practical
examples.

[bookmark: _Toc475441666][bookmark: _Toc469678903]Open Folder: Working with
any codebase

Many development environments have their own project
system, and Visual Studio is no exception. A project contains everything needed
to build an application, including source code files, references to external
libraries, assets, and metadata. Microsoft Visual Studio has always had its own
proprietary project system based on solutions (.sln files) and projects with
the .xxproj extension, where xx represents the targeted development platform,
the utilized programming language, or both. A solution can be considered as a
collection of projects, and in the .NET terminology it is often referred to as
an MSBuild solution, because MSBuild.exe is the tool Visual Studio uses to
produce an application that compiles all the projects in a solution in the
proper order. Visual Studio 2017’s ambition is to be the development
environment for any developer on any platform, so it takes an important step
forward by supporting a large number of non-.NET languages (see Table 7). Visual Studio 2017 also supports working with
folders; this means that you can open folders on disk containing multiple code and
asset files and Visual Studio will organize them in the best way possible in that
environment. This makes Visual Studio independent from any proprietary project
system (except for solutions, of course). It loads all the code files in a
folder as a loose assortment, providing a structured view by organizing files
and subfolders into a root folder for easy navigation through Solution
Explorer. The root folder is actually the name of the folder you opened.
Let’s look at a couple of examples.

[bookmark: _Toc469678904]Setting up the demo

For the examples, I’ll be using a nice open source project
called Haikunator, which provides functions that generate random subdomain
names for the Heroku platform. This project
is available in various programming languages and with no proprietary project system,
so it is perfect for our needs. I’ll be using two versions: the version written
in Go and the version written in Python. The first example will be used to
showcase the capabilities of the Visual Studio core editor, and the second
example will be used to demonstrate extensive language support with the debugger
and IntelliSense. That said, follow these steps:

	Go to github.com/Atrox/haikunatorgo
for the Go version.

	Click Clone or download, then Download ZIP.

	Extract the content of the downloaded .zip archive into a folder of your
choice.

	Go to github.com/Atrox/haikunatorpy
for the Python version, then repeat steps two and three.

Take note of the folders where you extracted both .zip
archives because they will be used shortly.

[bookmark: _Toc469678905]Basic language support in Visual Studio 2017

Our first example is based on the version of the
Haikunator project written with the Go programming language. In Visual Studio
2017, select File > Open > Folder. Browse the disk
until you find the folder where you extracted the code, then click Select
Folder. After a few seconds, Solution Explorer will show the root
folder for navigation and files inside that folder (see Figure 44). If you double-click
any of the files with the .go extension, you will see how Visual Studio 2017
offers syntax colorization for this supported language even if no workloads
have been installed and even if the current language does not belong to the
.NET family (see Figure 44).

Figure 44: Opening a Folder and Editing Any Supported Code Files

Additionally, you get code navigation features such as Go
To and structure guide lines as demonstrated in Figure 45, where you can see
how the list of items can be filtered as you type.

Figure 45: Code Navigation Features in Visual Studio’s Core
Editor

For every supported language, you also get code
completion, a feature that makes writing and editing code faster and easier.
Figure 46 shows an example.

Figure 46: Code Completion Simplifies Writing Code

Some languages, including Go, also support TextMate code
snippets, which are available through the code completion pop-up. Code snippets
can be recognized through the icon of a blank sheet (see Figure 46). For
example, if you select the init snippet and then press Tab, the
code editor will insert a function stub called init,
as shown in Figure 47.

[bookmark: OLE_LINK18]

Figure 47: Inserting Code Snippets

Notice how the code editor highlights in yellow the code
that should be replaced with your code. Remember that code snippets are not
available to all languages, but you can refer to Table 7
as a quick reference for this feature’s availability. The important thing to emphasize
here is that you have all you would expect from an evolved code editor
regardless of the language, project systems, and installed workloads.

 	
 [image:]

 	
 Note: Code completion is not IntelliSense. This is an important
 clarification. IntelliSense is an evolved tool, typically powered by a
 background compiler or by a completion database that allows an IDE to display
 and group items based on types, members, identifiers, and so on. Not
 surprisingly, IntelliSense in Visual Studio is available only to a restricted
 number of languages that have extensive support provided by specific
 workloads and tools. Code completion is more limited, often based on a small
 built-in list of keywords and on literals that the editor detects in the
 code, but it is in fact available to any language.

[bookmark: _Toc469678906]Extensive language support through workloads and tools

For some languages, Visual Studio 2017 allows for adding
extensive support through specific installation workloads or third-party tools.
Think of Python, which is a very popular programming language. The Visual
Studio core editor provides basic support for it, including syntax colorization
and code completion. However, Visual Studio 2017 allows executing external
programs against your source code; this means that if you install the Python interpreter, you can
execute your Python code from the development environment.

 	
 [image:]

 	
 Tip: The last sentence applies to all the supported languages,
 not only Python.

In pre-releases of Visual Studio 2017, Microsoft also
included a specific installation workload for Python development which included
debugger integration and other enhanced tools to work with Python from the IDE.
For RTM, the Python workload has been removed from the Visual Studio Installer.
The Visual Studio Tools for Python for Visual Studio 2017 will be offered
separately and is planned to be released a few days after Visual Studio 2017
reaches the RTM milestone. So, the next example based on the Python version of
the Haikunator project is actually based on the pre-release of Visual Studio
Tools for Python previously included with the Visual Studio Installer and will
still be valid once the updated tools ship.

 	
 [image:]

 	
 Note: The reason why I’m showing an example based on Python
 though it will only be available after RTM ships is that it’s the perfect
 demonstration of extensive language support with debugging features and code
 refactorings.

When you are done, open the folder containing the Python
project with the Open Folder command. Then, open any .py code file to
see how the code editor provides the expected syntax colorization. Figure 48
shows an example based on the tests.py file.

[bookmark: OLE_LINK19]

Figure 48: Syntax Colorization for Python

When you start typing, you will see IntelliSense in
action, not just code completion. Figure 49 demonstrates how IntelliSense for
Python shows items with icons that explain an item’s scope, such as keywords,
functions, and types. Remember that IntelliSense is available for Python
because of the specific installation workload, otherwise only code completion
would be available.

[bookmark: OLE_LINK20]

Figure 49: IntelliSense for Python

You might see a warning message that the completion DB
needs to be refreshed. This happens because IntelliSense for Python is
populated with an external database, which is different from what happens with
C# and VB, in which the Roslyn APIs expose available members to Visual Studio.
If you see the warning message, click the Python Environments hyperlink in
the IntelliSense pop-up (see Figure 49). This action will open the Python
Environments tool window, where you can see a list of available environments
and interpreters (see Figure 50). The Python development workload installs the
latest version of the interpreter from the official Python Software Foundation
website—in this case version 3.5. Depending on your machine, the workload
installs the 32-bit or 64-bit version. You will see a Refresh button
near the Python environment—click it to start refreshing the completion
database.

Figure 50 shows this operation in progress. Notice that
not all of the available environments are also installed locally. For instance,
in Figure 50 you can see how the Anaconda environment appears disabled, which
means available but not installed. This is available as an individual component
in the Visual Studio Installer or can be installed separately.

[bookmark: OLE_LINK23]

Figure 50: The Python Environments Tool Window

There are other shortcuts in this window, but they are
strictly related to the Python tools for Visual Studio—addressing them is beyond
the scope of this e-book. Now, it is time to discover some benefits of the
Visual Studio editor by writing a bit of Python code.

Setting up a startup item

As we know, a great benefit that comes from installing
tools that extend a language’s support is being able to run a program directly
from within Visual Studio. This is true for the Python language, too. In order
to run code, Visual Studio 2017 needs us to set up a startup item, which is the
code file it will use to start a program. If your folder already contains a
startup item, you are set. In this current example, the Haikunator project is a
library that does not contain a startup item. To add one, right-click the root
folder in Solution Explorer, then select Add > New File.
You will see a new file in the folder. You can type any name you like, but for
consistency in this chapter, enter Startup.py and press Enter. At this
point, type the code shown in Code Listing 1. You will get IntelliSense as you
type, and this will make your coding experience truly awesome.

Code Listing 1

 from haikunator import Haikunator

 haikunator =
 Haikunator()

 name =
 haikunator.haikunate()

 print(name)

The code is very simple—it imports the Haikunator type that is defined in the haikunator
package and generates a random name invoking the haikunate
method. Then it simply prints the name on screen. This is enough to demonstrate
a number of features of the code editor. When you open the code editor on a
specific file, either new or existing, this will automatically be set as the
startup item. In this case, Startup.py is automatically set as the startup item
for the program. If you wish to use a different startup file, simply open it or
right-click its name in Solution Explorer, then select Set as Startup
Item.

Running a program

As you would do with any other Visual Studio project, you
can run a program by pressing F5 (debug mode), Ctrl+F5 (without debugging), or
by clicking Start on the standard toolbar. When working with folders,
the Start button shows the name of the startup item (see Figure 51).

[bookmark: OLE_LINK24]

Figure 51: Start Button Displays the Name of the Startup Item

Whatever start option you choose, your program will run as
expected. In this particular case, you do not need to manually invoke the
Python interpreter. Starting the sample program will produce the result shown
in Figure 52 (the generated random name will vary on your machine).

[bookmark: OLE_LINK27]

Figure 52: Running a Python Program from Visual Studio 2017

Notice that with specific regard to Python, the
installation workload automatically configures Visual Studio 2017 to run the
interpreter from within the IDE against the selected startup item. For other
languages and with other tools, Visual Studio 2017 must be manually configured
to run compilers or interpreters. We will look at those situations later in
this chapter. For now, take a closer look at Figure 52—notice how the status
bar of Visual Studio is orange, which means it is in debugging mode. This also
implies that the new IDE can use external debugging tools.

Debugging

Visual Studio 2017 can extend the debugger to support
additional languages. Specific workloads or third-party tools can install
debugging components that the IDE can integrate into its powerful development
experience. For a better understanding of this, open the haikunator.py
file in the code editor. Move to the last line of code and place a breakpoint
exactly as you would in C# or Visual Basic. Make sure you open the Startup.py
file so that this is set again as the startup item, then run the program. After
a few seconds, the debugger will break the application execution because of the
breakpoint. At this point, you will be able to use powerful debugging features
you already know, such as data tips, local variables, and other debugging
windows. Figure 53 shows an example.

[bookmark: OLE_LINK28]

Figure 53: Debugger Support and Integration for Python

We need to remember that features such as debugging and
IntelliSense are not available to all the supported languages, but rather they
are available through specific workloads or third-party tools. However, Visual
Studio 2017 offers its robust environment to non-.NET languages, and this is a tremendous
added value for any developer.

Code refactoring

For specific languages, the Visual Studio 2017 code editor
also offers light bulb and quick actions to provide an evolved code editing
experience. For example, in Python you can select a code block and extract a
method as you would with C# and Visual Basic refactorings. Figure 54
demonstrates this.

Figure 54: Code Refactoring for Python

With support for integrating features such as
IntelliSense, refactorings, and debuggers, Visual Studio 2017 certainly lives
up to its claim as the development tool for any developer on any platform.

Customizing tasks

Previously, we saw how easy it is to run a Python program
by simply pressing F5. This is true because the Python tools for Visual Studio
automatically configure the environment to run the interpreter against the
selected source code file. Specific integrated tools do not exist for all
languages, but for many we can still automate the execution of external
programs, such as interpreters, compilers, or Windows commands by creating and
customizing tasks.

 	
 [image:]

 	
 Tip: If you are familiar with tasks in Visual Studio Code, you
 will notice a very close similarity with tasks in Visual Studio 2017. They
 have different locations and different syntax, but their purpose is exactly
 the same.

A task is an operation with a number of settings and is
represented with JSON markup. Settings include the command to execute and its
command-line arguments. An explanation will be provided shortly, but for now
suppose you want to be able to compile or run a Go program. You first need a Go
compiler and the proper settings. The Go
Programming Language website has everything you need, including binaries
and documentation. First, download and install the binaries for Windows. Second, create a folder
in which you will write a simple Go program and configure the GOPATH environment variable as explained in the documentation, which also explains
everything you need to know about writing, compiling, and running code with Go.
The installer automatically configures the GOROOT
environment variable so that you can run the Go.exe compiler from any location.
In the current example, I’ll use a folder called C:\GoWork. Now, everything we
need to compile and run a Go program is ready.

 	
 [image:]

 	
 Note: Obviously, different programming languages work with
 different binaries and system configurations, which means that configuring
 tasks requires the same steps with any language but with different settings.
 In this e-book, I’m providing an example based on Go because installing its
 binaries is very easy, though configuring the system requires some manual
 steps.

In Visual Studio 2017, open the folder you created (such
as my C:\GoWork). When ready, add a new file called HelloWorld.go. Next,
enter the code shown in Code Listing 2.

Code Listing 2

 package main

 import "fmt"

 func main() {

 fmt.Printf("hello world from Visual
 Studio 2017!\n")

 }

I’m using a new “Hello World!” program instead of the
Haikunator project because Go requires that we install and configure packages
before we can use them. We should compile and install the Haikunator library,
then provide the proper configuration (which requires us to be somewhat
familiar with Go rules).

While providing these details is outside of the scope of
this e-book, the Go documentation offers
good explanations. Code Listing 2 simply defines a package called main and imports a base library called fmt, then prints a simple message on screen. Now, in Solution
Explorer, right-click the Helloworld.go file and select Customize
Task Settings. This action will create a new JSON file called
tasks.vs.json, which is located in a hidden folder called .vs and that
resides in your workspace. This JSON file contains the directives Visual Studio
needs to know in order to execute a number of tasks, including launching the
startup item. The following is a list of JSON properties common to every task:

	taskName: A name for the task that
will be shown in the Solution Explorer context menu.

	appliesTo: Specifies the target of
the current task, typically a specific file.

	type: Represents the type of task,
typically command.

You must edit tasks.vs.json and specify that it must
execute the Go.exe compiler against the current source code file. Code Listing
3 shows how to accomplish this by adding the command
and args properties.

[bookmark: OLE_LINK25]Code Listing 3

 {

 "version": "0.2.1",

 "tasks": [

 {

 "taskName": "Run Hello World",

 "appliesTo": "Helloworld.go",

 "type": "command",

 "command": "Go.exe",

 "args": ["run", "Helloworld.go"]

 }

]

 }

Notice how command
specifies the name of the external program that must be executed. In this case,
you specify the compiler file name with no path because an environment variable
has been set by the installer. Instead, args
specifies any command-line arguments for the command in the form of a JSON
array. In this case, the first argument is an option called run that instructs the compiler to build and run a
program, and the second argument is the name of the file to be compiled.

 	
 [image:]

 	
 Note: Tasks.vs.json can contain many tasks, such as for
 building a whole folder or cleaning the build output. For additional
 configuration options, you can read this
 blog post from the Visual C++ Team in which they provide further
 explanations about multiple task configurations, supported constants,
 literals, and macros.

At this point, right-click the Helloworld.go file
name in Solution Explorer, then select Run Hello World from the
context menu (this is the taskName you supplied
before). This action will launch the Go compiler and will make the program
output visible in the Output window, as shown in Figure 55.

[bookmark: OLE_LINK29]

Figure 55: Running a Go Program with a Task

Though you don’t have debugging support or a console
window for the execution, you have been able to run a Go program from within
Visual Studio 2017. Many other possibilities for task automation are available
to you that provide greater control over all supported languages.

[bookmark: _Toc475441667][bookmark: _Toc469678907]What’s new for source control
and team projects

Visual Studio 2017 also has something new for team
collaboration. In fact, you can now use a new dialog to connect to Visual
Studio Team Services and Team Foundation Server. For instance, in Team Explorer,
click Manage Connections, then Connect to Team Project. At this
point, you will see a new dialog called Connect to a Project, which
shows all the Visual Studio Team Service accounts and TFS servers you are subscribed
to (see Figure 56). By default, Visual Studio looks for repositories associated
with the Microsoft account you used to log into the IDE, but you can add
multiple accounts through the account drop-down. When you click Connect,
Visual Studio will open Team Explorer showing a button labeled Map & Get,
which provides a shortcut to map the remote repository to a local folder and
get the latest version of the source code from the server.

Figure 56: Connecting to Visual Studio Team Services Repositories

If you click Add TFS Server, you will be
able to add and connect to on-premises TFS instances. Figure 57 shows an
example based on fictitious information.

Figure 57: Adding an On-Premises TFS Instance

As with the Team Services tab, here you are still
able to map the repository to a local folder and get the latest version of the
source code. All the other features related to team collaboration, including
Team Explorer, remain unchanged.

 	
 [image:]

 	
 Tip: You can also enable the connection dialog through the Manage Connections command in the Team menu.

 	
 [image:]

 	
 Note: Visual Studio 2015 Update 2 introduced more Git commands
 in Team Explorer and shortcuts for Git repositories at the bottom-right
 corner of the status bar. Visual Studio 2017 inherits these features, but it
 does not introduce anything new. If you want to learn more about these
 features, read the Visual Studio IDE and Team Explorer sections of the Visual
 Studio 2015 Update 2 release notes.

[bookmark: _Toc475441668][bookmark: _Toc469678908]Chapter summary

Visual Studio 2017 introduces very important improvements
and features for solutions, projects, and code files. With Lightweight Solution
Load, large solutions can be loaded more efficiently and faster. The new IDE
also supports a broader set of programming languages, even with no workloads
installed, and the core editor can work with folders containing code files,
providing not only a structured, organized representation, but also offering
basic features such as syntax colorization and code completion, as well as
evolved features like IntelliSense, debugging, and code snippets. In order to
support these and other new or updated features, the architecture of Visual
Studio 2017 is very different from previous editions, and this affects
extensibility, as we’ll see in the next chapter.

[bookmark: _Toc475441669][bookmark: _Toc469678909]Chapter 6 Extensions and Extensibility

Changes in the architecture of Visual Studio 2017 have an
impact on the extensibility model. This chapter will describe the improvements in
extensions and extension management, but it will also provide information for
extension authors looking to upgrade their Visual Studio 2015 extensions to the
Visual Studio 2017 extensibility model.

[bookmark: _Toc475441670][bookmark: _Toc469678910]What’s new with extensions
in Visual Studio 2017

In Chapter 1, I
described the new installation model based on workloads and how we can now
install multiple editions of Visual Studio 2017 on the same machine. For
example, a developer might want to install an extension for the Enterprise
edition but not for the Community edition, while another developer might have
only the core editor installed and no workloads so that some extensions would
not work. Consequently, extensions must be versatile enough to fit into these
situations. In order to support these scenarios, Microsoft changed the
extensibility model by introducing version 3 of the .vsix file format, which
represents Visual Studio extension installers. This presents a number of
breaking changes that will be described later in this chapter. For now, you must
know that you will only be able to install extensions specifically written and
compiled for Visual Studio 2017. An extension for Visual Studio 2015 cannot also
target Visual Studio 2017, while an extension for Visual Studio 2017 can target
past versions of Visual Studio, down to and including Visual Studio 2012. Let’s
now focus on new features that save time when using third-party extensions.

[bookmark: _Toc469678911]Roaming Extension Manager

The first important new feature regarding extensions is
the Roaming Extension Manager. This tool allows for synchronizing
installed extensions on every Visual Studio installation you have on different
machines. The Roaming Extension Manager is included in the Extensions and
Updates dialog that you enable through Tools > Extensions and
Updates. Figure 58 shows what the tool looks like.

[bookmark: OLE_LINK30]

Figure 58: Activating the Roaming Extension Manager

The state of an extension is represented by one of the
following three icons:

	A white cloud means the extension is subject to roaming but is not
installed locally.

	A white cloud with a green check symbol means the extension is
installed locally and roams.

	A green check symbol means the extension is installed locally but
does not roam.

You can control extension roaming by selecting an
extension and then clicking Stop Roaming (if it roams) or Start
Roaming (if it’s only installed locally). In Visual Studio 2017, this is
one of the synchronized settings you enable once you log in with your Microsoft
account.

[bookmark: _Toc469678912]Scheduling operations over extensions

Visual Studio 2017 also introduces a new way of
installing, updating, and uninstalling extensions. In fact, the IDE now allows
you to schedule multiple extensions for installation, update, or removal. These
operations will be executed in bulk when you close Visual Studio. In order to
understand how this works, consider Figure 59, in which you can see the Extensions
and Updates dialog. In the figure, you can see two extensions marked with a
clock icon. This icon appears after you download an extension, and it means it
will be installed after Visual Studio shuts down.

[bookmark: OLE_LINK33]

Figure 59: Scheduling Operations for Extensions

In the bottom-right corner, you can see the list of
scheduled operations grouped by Scheduled For Install, Scheduled For Update,
and Scheduled For Uninstall. For example, Figure 59 shows the number 1 next to
the Updates node, which means there is one update available for an
extension. When you click the Updates node and then click the Update
button for each update available, the extension will be listed in the Scheduled
For Update group. Figure 59 shows how, on my machine, an update is available
for the GitHub Extension that will be installed when Visual Studio shuts down, along
with the other extensions listed in the Scheduled For Install group.

This also applies to extensions you want to remove. You
can exclude an extension from the schedule simply by clicking the X
symbol next to its name. If you are familiar with Visual Studio 2015, you might
remember how the Extensions and Updates dialog offers buttons to restart the
IDE in order to complete the installation or update of one or more extensions.
In Visual Studio 2017, you no longer have such buttons. Instead, you have only an
option to close the dialog. All the operations will be executed in bulk when
the IDE shuts down. This is a more convenient way of managing extensions that avoids
moving your focus away from the development environment.

[bookmark: _Toc475441671][bookmark: _Toc469678913]What’s new with extensibility

 	
 [image:]

 	
 Note: This section is dedicated to extension authoring. If you
 are interested in this topic, make sure you have installed the Visual Studio extension
 development workload. I will assume that you are familiar with extension
 authoring in previous versions of Visual Studio, so some steps and concepts
 will not be addressed in detail.

Extension authoring for Visual Studio 2017 requires facing
some changes that break with previous editions because of the new extensibility
model and version 3.0 of the .vsix file format. Breaking changes are due mainly
to the following scenarios that Visual Studio 2017 must support:

	Developers might install multiple editions on the same machine,
so extensions can no longer be installed into a centralized location, but must
be installed with each edition.

	Developers might install only the Visual Studio core editor with
no workloads, or only a restricted number of workloads. That means extensions
must be able to detect if the workloads and components they need to work are
installed.

There is an important implication here: Visual Studio 2017
can only accept extensions specifically written for this version of the IDE and
installed through version 3.0 of a .vsix package. An extension written for
Visual Studio 2015 cannot simply be updated or recompiled to target Visual
Studio 2017. However, an extension written for Visual Studio 2017 can target through
Visual Studio 2012. As an extension author, you must be aware of these
considerations if you have existing extensions that you want to port to Visual
Studio 2017.

[bookmark: _Toc469678914]Creating a blank extension for demo purposes

In order to describe the new features in extension
authoring, an extensibility project is required. You can now simply create a
blank project, as the new features reside in the VSIX manifest. Follow these
steps:

	Select File > New > Project.

	In the New Project dialog, expand the language of your choice (C#
or VB), then select the Extensibility node.

	Select the VSIX Project template, supply a different project name
if you want, and then click OK.

	Right-click the project name in Solution Explorer, then select Add
New Item.

	In the Add New Item dialog, click the Extensibility node.

	Select one of the available item templates, then click OK. If you
want to be consistent with this e-book, choose the Custom Tool Window
template.

When everything is ready, double-click the source.extension.vsixmanifest
file. This is the extension manifest that contains all the information and
metadata required to build the .vsix package.

[bookmark: _Toc469678915]Specifying extension prerequisites

In the manifest designer, you will see a new item called Prerequisites
(see Figure 60).

[bookmark: OLE_LINK34]

Figure 60: The New Prerequisites Item in the Manifest Designer

This new element is very important because it allows for
specifying the workloads or individual components your extension requires in
order to work inside Visual Studio 2017. As you can see, a prerequisite called
Visual Studio core editor is available by default and targets the current and
future versions of the IDE. Click New to add a new prerequisite. The Add
New Prerequisite dialog will appear, and you can select a workload or
component from the combo box, as shown in Figure 61.

[bookmark: OLE_LINK35]

Figure 61: Selecting a Prerequisite

Once selected, you will be able to specify a version
number for the prerequisite, as shown in Figure 62.

[bookmark: OLE_LINK36]

Figure 62: Specifying the Version Number for a Prerequisite

Specifying a version is optional because Visual Studio
2017 automatically selects the current IDE version detected on the development
machine.

 	
 [image:]

 	
 Note: This section has been written in conjunction with the
 Release Candidate of Visual Studio 2017, which means the default version
 number might be slightly different when Visual Studio reaches the RTM
 milestone.

After you specify the required prerequisites, you can
build your .vsix package. When launched on the target machine, the VSIX
installer will show the list of required prerequisites.

[bookmark: _Toc469678916]Ngen support and custom file installation

The new .vsix format supports the Native Image Generator
tool Ngen, which allows creating native images of the extension assembly and
the referenced assemblies. This can be set using the Properties window,
as shown in Figure 63.

Figure 63: Ngen and File Destination Properties

The following Ngen options are available:

	Ngen: Sets whether to use Ngen. Options are True or False
(default).

	Ngen Application: The application to pass into Ngen via the
/ExeConfig switch.

	Ngen Architecture: Specifies the architecture among x86, x64, and
All.

	Ngen Priority: Specifies the Ngen priority level.

In Figure 63, you can also see a group called VSIX, which
allows you to control the behavior of some important assets, such as the
.pkgdef file. Properties are self-explanatory, but it is worth emphasizing how
you can specify a different installation target through the Install Root
property. Here you can pick a destination folder from a predefined list, but
unless you have very specific requirements, Default is a good option.

[bookmark: _Toc475441672][bookmark: _Toc469678917]Chapter summary

Visual Studio 2017 introduces two new tools for consuming third-party
extensions—the Roaming Extension Manager, which makes it easy to make the same
extension available across machines, and support for scheduling operations over
extension installation, update, and removal. This avoids the need to close and
restart the IDE each time. For extension authors, Visual Studio 2017 introduces
version 3.0 of the .vsix file format, which requires specifying extension
prerequisites (workloads or components), and allows controlling the extension
behavior by creating native images of the assemblies and by controlling the
destination folder.

[bookmark: _Toc475441673][bookmark: _Toc469678918]Chapter 7 Debugging and Testing Improvements

Debugging and testing code are two fundamental tasks in
the application development lifecycle, and it should be no surprise that Visual
Studio 2017 introduces important improvements for both. Such improvements make
debugging and testing faster but still efficient while you keep your focus on
the active editor. This chapter will describe new features, but it will also
walk through updated tools you already know and that, in Visual Studio 2017,
come to a new life.

[bookmark: _Toc475441674][bookmark: _Toc469678919]Introducing Run to
Click

When we are debugging, stepping through lines of code is
one of our most common operations. We use breakpoints, and then use features
such as Step Into, Step Over, or Step Out in order to understand the behavior
of code blocks, local variables, and more generally, the application execution
flow. Before Visual Studio 2017, we had to introduce temporary breakpoints to
continue the execution from a breakpoint to a certain point in our code. Visual
Studio 2017 makes a step forward and introduces a new feature called Run to
Click. To understand how this feature works, consider Figure 64, in which you
can see that a breakpoint has been hit and the application is in break mode.

Figure 64: The Run to Click Icon

When you hover over a line of code, a green glyph appears
near the line, as shown on line 43 of the code file in Figure 64. This glyph
represents the Run to Click button. If you click it, your code will be executed
to that line, without the need for temporary breakpoints. Actually, the line where
Run to Click is activated is highlighted but not executed, exactly as it would
happen if a breakpoint was set on that line (see Figure 65).

Figure 65: Run to Click Stops at a Line of Code without a Breakpoint

You can then continue to use the Run to Click
button and execute code to a specific point, thereby avoiding temporary
breakpoints.

 	
 [image:]

 	
 Tip: Keep in mind that Run to Click works only in break mode,
 which means it is not available when the application is running.

[bookmark: _Toc475441675][bookmark: _Toc469678920]Updated diagnostic windows

Visual Studio 2015 introduced the Diagnostic Tools
window, which shows application events, memory and CPU usage, and other
diagnostic information at debugging time. This tool window appears by default when
you start debugging your application. In Visual Studio 2017, the Diagnostic
Tools window has been updated with a view called Summary (see Figure 66).

Figure 66: The New Summary View in Diagnostic Tools

This new view contains a summary of the number of
application events (Show Events), exceptions, IntelliTrace events, Application
Insights (if applicable), and UI Analysis events for UWP apps. It provides
shortcuts to take snapshots of the managed heap and to enable or disable CPU
profiling.

 	
 [image:]

 	
 Tip: You can enable or disable specific IntelliTrace events by
 going to Tools > Options > IntelliTrace
 > IntelliTrace Events.

 	
 [image:]

 	
 Note: UI Analysis events are a new feature in Universal Windows
 Platform that detects accessibility issues. They will be addressed in Chapter 8, “Visual Studio 2017 for mobile development.”

This new view provides quick insight into what’s happening
at debugging time, then you can use the other tabs for further details.

[bookmark: _Toc475441676][bookmark: _Toc469678921]Analyzing exceptions with
the Exception Helper

The Exception Helper is a pop-up that appears when an
unhandled or thrown exception occurs at debugging time. Through the Exception
Helper, Visual Studio shows details about the exception. Previous versions of
Visual Studio offered the Exception Assistant and Exception Dialog tools, which
took different approaches to productivity. In Visual Studio 2017, the Exception
Helper has a completely new look and improved behavior. Before we examine the
new benefits, let’s look at Figure 67, which shows the updated Exception Helper
in action.

Figure 67: The Updated Exception Helper

Let’s summarize what’s new:

	The Exception Helper will appear whether you are debugging
managed or unmanaged code.

	When an unhandled exception occurs, the entire line of code is
highlighted. This improves code readability. An exception error icon will help you
understand why the execution was interrupted.

	The Exception Helper pop-up is smaller, nonmodal, and less
distractive.

	At a glance, the pop-up shows only the exception type, the error
message, and whether the exception was thrown or unhandled.

	The pop-up immediately shows any inner exceptions—without the
need of additional dialogs.

	In the Exception Settings group, you can specify if the
debugger must break the execution when the exception is thrown, and you can
exclude specific modules from breaking the execution.

	If you click the Open Exception Settings hyperlink, the
exception information will be shown inside the QuickWatch dialog (see
Figure 68). This makes it easy to investigate the exception details and to reevaluate
an expression.

	You can click the Edit Conditions hyperlink to specify
when the execution should be broken by including or excluding specific modules
(see Figure 69). This is the only case in which you interact with a modal
dialog from the Exception Helper.

Figure 68: The Exception Settings within the QuickWatch Dialog

Figure 69: Editing Exception Conditions

With its new look and behavior, the Exception Helper
improves productivity by providing all the information you need while letting you
focus on the code.

[bookmark: _Toc475441677][bookmark: _Toc469678922]Introducing Live Unit
Testing

 	
 [image:]

 	
 Note: This feature is available only in the Enterprise edition
 and only for C# and Visual Basic, and it assumes you already have basic
 knowledge of unit testing. If you need some guidance, the MSDN
 documentation has everything you need to get started.

Live Unit Testing is a new, exciting feature in
Visual Studio 2017. It allows for executing unit tests in the background and
showing their results and coverage in the code editor as you type. The best way
to understand how this feature works is with an example. Create a console
application and consider Code Listing 4.

Code Listing 4

 namespace ConsoleApp1

 {

 class Program

 {

 static void Main(string[] args)

 {

 var rh = new RectangleHelpers();

 double result = rh.CalculateArea(10, 10);

 }

 }

 public class RectangleHelpers

 {

 // Calculate the area of a rectangle.

 public double CalculateArea(double width, double
 height)

 {

 return width * height;

 }

 }

 }

The RectangleHelpers class
provides a very simple CalculateArea method that
returns the area of a rectangle when given width and height. The class is
instantiated and the method is invoked in the Main
method of the Program class. Now you need to
create some unit tests. Right-click the CalculateArea
method, then select Create Unit Tests. The Create Unit Test
dialog (see Figure 70) appears and asks you to specify basic information for a
test project. By default, the test framework is MSTestv2 and the offer is to
create a new test project. Leave all the default settings and click OK.
Of course, you can change the default settings if you have previous experience
with unit testing in Visual Studio. At the time of writing, the supported test
frameworks are MSTest, xUnit, and NUnit.

Figure 70: Creating a Test Project

Now you have a test class called RectangleHelperTests
and a method called CalculateAreaTest, both
available in the RectangleHelpersTests.cs file of the test project. They are
decorated with the TestClass and TestMethod attributes, respectively, to instruct
Visual Studio that they are within a test project and that they will be used by
the proper testing framework and tools. At this point, you need to implement
your unit test. Code Listing 5 shows a very simple implementation that checks
for equality between the expected and actual results.

Code Listing 5

 namespace ConsoleApp1.Tests

 {

 [TestClass()]

 public class RectangleHelpersTests

 {

 [TestMethod()]

 public void CalculateAreaTest()

 {

 var rectHelpers = new RectangleHelpers();

 double width = 3;

 double height = 2;

 Assert.AreEqual(6,
 rectHelpers.CalculateArea(width, height));

 }

 }

 }

Now go back to the Program.cs file. Select Test
> Live Unit Testing > Start. After a few seconds, you will
see how Visual Studio runs the unit test in the background, showing the results
live in the editor (see Figure 71).

Figure 71: Live Unit Test Results in the Code Editor

Instead of running unit tests with Test Explorer, Visual
Studio 2017 is able to run tests in the background and, most importantly,
associate coverage and results based on the actual code, not on unit tests.

 	
 [image:]

 	
 Note: Visual Studio 2017 can associate Live Unit Testing to
 your code only if unit tests have a reference to an object. In our example,
 the unit test defines an instance of the RectangleHelpers class, and so it
 creates a reference. Then Visual Studio 2017 associates the CalculateAreaTest
 method to the CalculateArea
 method based on this reference.

Icons you see in the code editor will help you understand
test results and code coverage. More specifically:

	A green icon with a check symbol means that a piece of code has
been covered by a passing unit test.

	A blue icon of a horizontal line represents code that is not
covered by any unit tests.

	A red X icon represents code that has been covered by a
unit test that did not pass.

	Any of these icons with an overlaid clock icon indicates code
that is currently being edited.

Now edit the Assert.AreEqual
statement in the CalculateTestArea method as
follows to make the test fail:

Assert.AreEqual(5,
rectHelpers.CalculateArea(width, height));

While editing, you will notice that the icons show an
overlaid clock. When you are done, you will see that the code editor is updated
to show the unit test result (failed, in this case), as shown in Figure 72.

Figure 72: The Code Editor Updated with Unit Test Results

 	
 [image:]

 	
 Tip: If you hover over an icon, you will get details about the
 test method that was invoked in the background (and its results).

Whatever changes you make to your code, Live Unit Testing will
run in background, showing the result in the code editor. You can control Live
Unit Testing with commands inside Test > Live Unit Testing—for
example, Pause, Stop, and Restart. These are only visible when the feature is
active.

[bookmark: _Toc475441678][bookmark: _Toc469678923]Miscellaneous improvements

In addition to the major updates described in this
chapter, Visual Studio 2017 introduces miscellaneous improvements that make the
debugging experience even better. These are briefly summarized in this section.

[bookmark: _Toc469678924]Accessibility improvements

Most debugging windows (Locals, Watch, QuickWatch, Autos,
Call Stack) have been improved for readability for screen readers and other
accessibility features.

[bookmark: _Toc469678925]IntelliTrace events for .NET Core

IntelliTrace, the historical debugger in Visual Studio,
now supports tracing events in .NET Core applications. More specifically, you
can enable IntelliTrace to track ADO.NET, MVC, and HttpClient events. Go to Tools
> Options > IntelliTrace > IntelliTrace events to
set events you want to record with .NET Core.

[bookmark: _Toc469678926]Profiling tools updates

Profiling tools such as the Performance Profiler, CPU
Usage, GPU Usage, and Performance Wizard can now attach to a running process.
An option for this becomes available when you start the desired profiling tool.
The CPU Usage tool has also been improved when working with external code to provide
more detailed information.

[bookmark: _Toc469678927]Support for Chrome with JavaScript

With ASP.NET, if you debug an application using Chrome as
the browser, the debugger will run against JavaScript code running in Chrome.

[bookmark: _Toc475441679][bookmark: _Toc469678928]Chapter summary

Debugging and testing are very important tasks in the
application development lifecycle, and Visual Studio 2017 introduces new
goodies for both. With Run to Click, you no longer need temporary breakpoints
to run code to a specific point while in break mode. The Diagnostic Tools
window now provides a Summary tab with shortcuts that allow you to keep your
focus on the IDE—it provides this along with an updated version of the
Exception Helper that shows exception details in a simplified and focused manner.
And with Live Unit Testing, you can write code and run unit tests in the
background, getting test results and code coverage directly in the code editor,
all live as you type.

[bookmark: _Toc475441680][bookmark: _Toc469678929][bookmark: _Chapter_8_]Chapter 8 Visual Studio 2017 for Mobile Development

Enabling developers to build apps for any platform and any
device is a major goal of Visual Studio 2017. This certainly includes mobile
app development. With the 2016 Microsoft acquisition of Xamarin, and with
improvements to the Universal Windows Platform and to the tools for Apache Cordova,
Microsoft makes Visual Studio 2017 the ultimate development environment for
building apps that run on Android, iOS, and Windows with shared codebases. This
chapter is not intended to be a guide to mobile development with Visual Studio
2017, rather it will highlight what’s new in the most popular tools for cross-platform
development with Microsoft’s IDE. Links to the documentation for each tool are
provided where appropriate.

[bookmark: _Toc475441681][bookmark: _Toc469678930]Visual Studio 2017 and
the Universal Windows Platform

 	
 [image:]

 	
 Tip: Documentation to get started with Universal Windows
 Platform is available at developer.microsoft.com/en-us/windows/apps/getstarted.

 	
 [image:]

 	
 Note: Building Universal Windows apps requires selecting the
 Universal Windows Platform development workload in the Visual Studio
 Installer.

The Universal Windows Platform (UWP) offers an incredibly
rich set of APIs for building apps that run on Windows 10 and on equipment such
as PCs, tablets, smartphones, Xbox, HoloLens, and Internet of Things (IoT)
devices. In most cases, you code once and your UWP app will run on all the
aforementioned devices; in some cases, you will need to make adjustments for
specific SDKs.

In March 2016, Microsoft announced the Anniversary Update
for Windows 10, a major update delivered in July 2016 that added new features
and improvements to the operating system and included some goodies for
developers via the Windows 10 Anniversary Update SDK. The latter is already
included in Visual Studio 2017 through the UWP development workload. The SDK
contains integrated tools for development with Visual Studio 2017 and emulators
that support the Anniversary Update. You can still choose the target version
and minimum version for your UWP apps when creating a new project. For example,
select File > New > Project, then select the Blank
App (Universal Windows) project template in the Windows Universal
folder of the C# and VB languages. Before generating the solution, Visual
Studio will ask you to specify the target and minimum versions with the dialog
shown in Figure 73.

Figure 73: Selecting Target and Minimum Versions for UWP Apps

In most cases, leaving the default selection is the best
choice. When you click OK, Visual Studio generates a solution that
supports the specified Windows 10 versions. Do not delete the new project—keeping
it enables the new project to serve as a test environment for future topics. Along
with support for the Anniversary Update, Visual Studio 2017 includes the
following improvements for UWP.

 	
 [image:]

 	
 Note: The Universal Windows Platform also receives all the
 improvements described in Chapter 4, “XAML improvements.”

[bookmark: _Toc469678931]Updates to .NET Native

As you might know, compiling a Universal Windows app in
Release mode involves the .NET Native tool chain. Think of .NET Native as a
compiler that directly produces a native image of the app instead of generating
intermediate language (IL) that would need a just-in-time compilation. As a
consequence, starting up a Universal Windows app is much faster than a .NET
application or a Windows Phone app. With Visual Studio 2017, the .NET Native
tool chain is updated with more than 600 bug fixes, runtime performance
optimization, and overall improvements to the entire tool.

 	
 [image:]

 	
 Note: If you have ever written a UWP app, you know that
 compiling in Release mode requires much more time than in Debug mode because
 for Release, Visual Studio 2017 invokes .NET Native. Behind the scenes, .NET
 Native is generating IL from your C# or VB code, then converting the IL into
 C++—finally producing native binaries. This is why it takes so long, but this
 is also why universal apps are so efficient.

[bookmark: _Toc469678932]Updated NuGet packages

Universal Windows apps rely on the
Microsoft.NETCore.UniversalWindowsPlatform NuGet package. For full alignment
with the Anniversary Update, .NET Core, and Visual Studio 2017, the
aforementioned NuGet package is updated to version 5.2.2. This version mostly
addresses issues reported by developers, and existing apps can be easily
updated with the NuGet Package Manager tool in Visual Studio 2017.

[bookmark: _Toc469678933]XAML improvements for UWP

Visual Studio 2017 introduces some improvements to XAML
that target only UWP. The first improvement addresses UI elements you create by
using drag-and-drop from the Toolbox. Visual Studio 2017 now reduces the number
of auto-generated XAML tags, which means the resulting markup is clearer and
more readable. The second improvement addresses the XAML Designer—Visual Studio
2017 introduces a new button called Device Preview Settings, which can
be found in the upper bar of the Designer. Double-click the MainPage.xaml
file to open the XAML Designer if it is not already available. The new button
is represented by a gear icon and allows for quick changes to contrast and
theme settings. When you click it, the Device Preview Settings dialog
appears (see Figure 74).

Figure 74: Changing Contrast and Theme Settings at Design Time

You can choose among a number of possible contrast
settings and between the Light and Dark themes. This makes it easy to see how
the UI of your app behaves with different settings at design time. The third improvement
addresses the Properties window. You can now assign properties with
basic mathematical equations that will be evaluated immediately, and the
resulting value will be assigned to the selected control in XAML. Figure 75
shows an example in which the Width property of
a Button control is assigned the sum of 60 + 40.

Figure 75: Basic Equations—Evaluated and Assigned to UI Elements’
Properties

In this case, the evaluation result (100) will be assigned
to the Button.Width property and will be visible
in the XAML code. It supports sums, subtractions, multiplications, and
divisions. Why is this feature useful? Think of the Button.Width
with a starting value of 60, then suppose you wish to see how the button
appears by increasing the width by 40. Instead of calculating the new value in
your head, you can simply write the expression 60 + 40.

[bookmark: _Toc469678934]Updated Manifest Designer

Probably the most important update for UWP, from the IDE
perspective, addresses the Manifest Designer, which you enable by
double-clicking the Package.appxmanifest file in Solution Explorer.
More specifically, the Visual Assets tab now has a new feature called Asset
Generator, which can automatically generate all the required assets
starting from a single source image.

 	
 [image:]

 	
 Note: The Visual Assets Generator in Visual Studio 2017 is only
 available for Visual Basic and C#. Support for C++ and JavaScript is planned
 for a future release.

 You simply need to supply an image file then click Generate
and the Asset Generator will create tiles, logos, icons, and splash screens at
any or all scales to fit every type of device your app targets. Figure 76 shows
how the Visual Assets tab appears in Visual Studio 2017, with a sample
image supplied as the source.

Figure 76: The New Asset Generator in Visual Studio 2017

When you click Generate, Visual Studio generates
all the required assets, as you can see by scrolling down the window (see
Figure 77). All the generated image files will be listed in Solution
Explorer. By default, the Visual Assets tab shows all the available
visual assets, but you can also select a specific asset category from the list
on the left.

Figure 77: The Auto-Generated Assets

Visual Studio 2017 generates assets, making sure they
adhere to all the design guidelines suggested for Windows 10 apps, such as padding
and background colors. This feature is extremely useful and will help you save
a huge amount of time because you will no longer need to supply individual
assets separately.

 	
 [image:]

 	
 Tip: The Badge Logo (for lock screen notifications) and Package
 Logo assets must be generated individually by selecting the corresponding
 items in the assets list. You will still supply a single source image, and
 you will click the Generate button.
 Visual Studio will then generate the required assets according to the Windows
 10 guidelines. For instance, for the Badge Logo, the generator will
 automatically reduce colors as appropriate.

[bookmark: _Toc469678935]UI Analysis tool

The Diagnostic Tools window in Visual Studio 2017
introduces a special analysis tool for UWP apps called UI Analysis. This
tool analyzes an app for accessibility and performance issues while debugging.
UI Analysis is not enabled by default, which means that the first time you
start debugging an app in the Diagnostic Tools window, you must click Select
Tools, then select the UI Analysis item (see Figure 78).

Figure 78: Enabling UI Analysis

Once enabled, UI Analysis will be available only the next
time you start debugging the app, which means you must first stop the execution
and then restart it. In order to understand how this feature works, let’s introduce
a couple intentional issues. In the XAML markup of the MainPage.xaml file, insert
the code shown in Code Listing 6 inside the default Grid.

Code Listing 6

 <ListView>

 <ListView.ItemsPanel>

 <ItemsPanelTemplate>

 <StackPanel/>

 </ItemsPanelTemplate>

 </ListView.ItemsPanel>

 </ListView>

This code has two issues: first, the ListView is not virtualized because it is using a StackPanel container instead of an ItemsStackPanel, so the ListView
can have performance problems when bound to a collection of objects. Second, its
Name property has not been assigned, which means
there is no chance to interact with it in code. At this point, start debugging
by pressing F5, then keep an eye on the Diagnostic Tools window.
In the Summary tab you will see two UI Analysis Events, and if you click
the Events tab, you will see the full list with details for each event
(see Figure 79).

Figure 79: The List of UI Analysis Events with Details

As you can see, the list of UI Analysis events shows
detailed information for each event. If you double-click an event, you will be
redirected to the line of XAML code that caused the issue. You can also click
the More information on this issue hyperlink to open the documentation
for an issue, as shown in Figure 80.

Figure 80: The Documentation of a UI Analysis Issue

The documentation also offers a page called App
Analysis overview that contains the full list of issues the UI Analysis
tool can detect. The UI Analysis tool is an extremely useful addition because
it allows you to discover a large number of potential problems before you
submit the app to the Windows Store for approval and publication.

[bookmark: _Toc475441682][bookmark: _Toc469678936]Cross-platform development
with Apache Cordova

 	
 [image:]

 	
 Note: Building apps with Apache Cordova requires selecting the Mobile
 development with JavaScript workload in the Visual Studio Installer. Also,
 the Chrome browser is required for new features such as Cordova Simulate.

Apache Cordova is a development platform that allows us to
create cross-platform apps for Android, iOS, and Windows using HTML and
JavaScript. Visual Studio 2017, as well as its predecessor, includes the Tools
for Apache Cordova (TACO) so that you can use your favorite powerful IDE to
write, debug, and publish apps. Also, VS 2017 supports Ionic, a popular front-end JavaScript
framework that works with Cordova. There are a number of changes and
improvements in TACO for Visual Studio 2017 that enhance performance and
productivity. These new additions will be demonstrated using the WeatherApp
sample application included in the official Microsoft examples for Cordova. You
can download these from GitHub
as a .zip archive. The weather-app folder contains the solution you can
open in Visual Studio 2017. Of course, you can also use any other Cordova
project.

 	
 [image:]

 	
 Tip: When opening any Cordova solutions built with previous
 versions of Visual Studio, VS 2017 needs to perform a one-time upgrade. It
 will ask you to reload the solution after the upgrade process.

[bookmark: _Toc469678937]Supported versions and platforms

In Visual Studio 2017, Tools for Apache Cordova no longer support
Windows 8.1. Existing projects should be updated to target Windows 10. This
release adds support for iOS 10 and Xcode 8 on the iOS development side.
Finally, the minimum supported version for Cordova is 6.0.0. At the time of writing,
Visual Studio 2017 ships with Cordova 6.1.3. Existing projects built with
previous versions will need a one-time upgrade when the solution is opened.

[bookmark: _Toc469678938]In-browser simulation with Cordova Simulate

If you’ve already used Cordova, you might know it offers a
number of plugins that can be thought of as libraries that provide shared APIs
to access device capabilities such as GPS, sensors, battery status, and so on. Visual
Studio 2017 introduces a new feature called Cordova Simulate that allows
you to simulate and control the behavior of plugins on Android apps by
simulating the Android environment inside the Chrome browser without installing
emulators or using physical devices. As a consequence, Visual Studio 2017 can
now debug JavaScript code running in Chrome. When you press F5, Visual Studio
2017 launches an instance of Chrome, attaches the debugger, and shows a new
tool window called Cordova Simulate. Figure 81 shows an example based on
an app that uses the Geolocation plugin.

Figure 81: Controlling Plugins with Cordova Simulate

The Cordova Simulate window not only allows you to control
the in-browser Android simulation (see the Device group), but it also
allows you to manage any plugins your app is using with a convenient user
interface. Additionally, you can simulate specific actions by using the Fire
Event button in the Events group. For instance, you can simulate
pressing the hardware Back button. In Figure 81, you can see how Cordova
Simulate allows for controlling the Geolocation plugin by changing the position
on the map, simulating navigation. This tool window works with many other
plugins—for instance, you can control the battery status or simulate sensors
such as the compass. For each plugin, Cordova Simulate will show a specific
group of properties that you will be able to change to simulate different
situations.

[bookmark: _Toc469678939]Message colorization

Cordova tools produce very verbose output messages, and it
is often difficult to distinguish between important messages, errors, and
compilation messages. Because the latter can often end up ignored, Visual
Studio 2017 introduces message colorization for relevant messages that are now
shown in blue. Figure 82 shows an example based on the build output of the
WeatherApp sample.

Figure 82: Message Colorization in Tools for Apache Cordova

[bookmark: _Toc469678940]In-product acquisition of development tools

In Visual Studio 2017, selecting the Mobile development
with JavaScript workload does not automatically include build tools for Android
and Windows, which are now optional. This makes sense for two reasons: the
product installation is faster, and now you have the choice of installing the
tools you actually need according to how development continues. Though you can
still select the build tools as individual components in the Visual Studio Installer,
you can also take advantage of a new feature called In-product acquisition.
In the drop-down near the Start button on the toolbar, you will find a
new option labeled Install build tools referring to the current
platform. Figure 83 shows an example based on Android.

Figure 83: Installing the Required Tools at Build Time

This option allows you to install specific build tools
only when and if you need them.

 	
 [image:]

 	
 Tip: In-product acquisition is not specific to Cordova. In fact,
 the IDE can generally suggest SDKs and tools based on languages and platforms
 you are working with.

[bookmark: _Toc475441683][bookmark: _Toc469678941]Cross-platform development
with Xamarin

 	
 [image:]

 	
 Note: Building apps with Xamarin requires selecting the Mobile development
 with C# and .NET workload in the Visual Studio Installer. Note that Xamarin
 development is not available for Visual Basic.

Xamarin is the name of both
a company and a very popular development platform that allows building native
iOS, Android, and Windows apps via writing and sharing C# code. Microsoft
recently acquired Xamarin and is making significant investments in order to
increase productivity with the Xamarin tools for Visual Studio. As with other
platforms, my goal here is not to describe what you can do with Xamarin.
Instead, you will find a thorough explanation of what’s new with Xamarin tools
in Visual Studio 2017. If you need a place to get started, you can visit the official developer portal, which
includes all the resources you need for both Visual Studio and Xamarin Studio.
The first important update is that Visual Studio 2017 supports Xamarin 4.3,
which significantly improves the XAML editing experience in Xamarin.Forms and
introduces the features detailed in the sections that follow.

 	
 [image:]

 	
 Tip: Features described in this section are offered by version
 4.3 of the Xamarin tools for Visual Studio, and they are not exclusive to Visual
 Studio 2017. This means they will also be available for previous versions
 (such as Visual Studio 2015 Update 3 and Visual Studio 2013 Update 2) if you
 upgrade the Xamarin tools. At the time of writing, Xamarin 4.3 is available
 as a preview release through the Alpha Updater Channel.

[bookmark: _Toc469678942]Automatic fix for missing Android dependencies

When you create a Xamarin project, some components
required by the Android platform might not be detected. If this happens, the Error
List window shows an error message describing which components are missing
(typically JavaScript dependencies). In Visual Studio 2015, you were required to
download these components and extract them manually into the proper locations.
In Visual Studio 2017, the Error List window offers to download and
install the missing components by double-clicking the error message. At this
point, the IDE will download and install the required components in the
appropriate way. Note that this might take a few minutes.

[bookmark: _Toc469678943]Updates to project templates

Xamarin 4.3 brings updated project templates to Visual Studio
2017. You can easily see this new feature when you select File > New
Project. In the New Project dialog, select Visual C# >
Cross-Platform. As you can see in Figure 84, the New Project
dialog now shows only three templates.

Figure 84: Updated Project Templates for Xamarin

The Class Library and UI Test App templates are taken from
past versions, while the Cross Platform App template is a new addition. If you
double-click this template, you will access the New Cross Platform App
dialog (see Figure 85).

Figure 85: The New Dialog for Creating Xamarin Projects

Here you have three templates:

	Master Detail, which generates a master–detail user interface
with either XAML (Xamarin.Forms) or native UI. It’s based on shared projects
and is ready to be hosted on Microsoft Azure.

	Blank App, which allows for generating a blank project based on
either Xamarin.Forms or native APIs. You can choose between a Portable Class
Library (PCL) and Shared Projects to share your C# code across platforms.

	Blank App (XAML). This is the project template you want to use
for Xamarin.Forms development using XAML for the user interface (see Figure 86).
You can choose between PCL and Shared Projects, but in most cases you will use
the PCL option.

Figure 86: Creating a Project Based on Xamarin.Forms and
XAML

 	
 [image:]

 	
 Note: Microsoft has invested heavily in .NET Standard
 libraries, which share the same APIs across a number of platforms. It is no
 secret that Xamarin should provide fully integrated support for .NET Standard
 in the future, so keep in mind that the PCL support might be replaced by .NET
 Standard in the future. This blog
 post from Xamarin provides more information on this topic.

When you have made your choice, click Accept and
wait for Visual Studio 2017 to generate your solution. In addition to
cross-platform templates, Xamarin 4.3 introduces new project templates for
native iOS development that you can find in the iOS and tvOS
nodes of the New Project dialog, under Visual C#. There are new
templates for the Apple Watch, Apple TV, and iOS extensions.

[bookmark: _Toc469678944]Unified .plist editor for iOS

 	
 [image:]

 	
 Note: This section assumes you are somewhat familiar with iOS
 development with Xamarin.

In iOS development, you supply app metadata, assets, capabilities,
and requirements with .plist files such as info.plist and entitlements.plist. In
Visual Studio, most of these settings can be provided through the project Properties
window, then the IDE will bundle the specified information into the proper
.plist files. In addition to the Properties window, the Xamarin tools
for Visual Studio have always offered built-in, specific editors for .plist
files that allow fine tuning settings with a convenient user interface. Xamarin
4.3 integrates a new hierarchical, unified editor that provides better
organization of all the information and allows for working with all .plist
files in one place. Assuming you have either a Xamarin.Forms or a Xamarin.iOS
project opened in Visual Studio 2017, double-click the info.plist file
in Solution Explorer to call up the new editor. Figure 87 shows how it will
appear.

Figure 87: The New .plist Editor for iOS in Xamarin 4.3

As you can see, the new editor provides a unified view of
your app settings and allows for making edits quickly. You can easily add custom
settings by clicking the + icon at the bottom of each group. You can also
filter the list using the drop-down at the top—the filter options are iOS
InfoPList (full view), iOS Entitlements (only entitlements
information), and iOS Settings Bundle (only information related to
bundle signing). Notice that this editor works with any .plist file, so if you
double-click entitlements.plist in Solution Explorer, you will
get the same editor but the view will be restricted to entitlements. If you
want to change the view, just change the selected item in the drop-down.

[bookmark: _Toc475441684][bookmark: _Toc469678945]Chapter summary

Mobile development is crucial for Microsoft’s strategies,
and Visual Studio 2017 introduces important improvements to the development
experience for any supported platform. For the Universal Windows Platform, you
have a faster .NET Native compiler, updated NuGet packages, better design-time
and diagnostic tools, and an updated Manifest Designer that automatically
generates assets from a single image file. Regarding Tools for Apache Cordova
(TACO), Visual Studio 2017 allows for simulating the Android environment inside
the Chrome browser, which is useful for debugging apps that use plugins. The
IDE also provides message colorization and in-product acquisition so that you can
install the required tools only when and if you need them. For Xamarin, you get
updated project templates and an enhanced XAML editing experience, a new editor
for .plist files in iOS, plus many fixes in all platform-specific projects.

[bookmark: _Toc475441685][bookmark: _Toc469678946]Chapter 9 Visual Studio 2017 for Cloud and Web Development

Cross-platform development is not only mobile development.
Microsoft has been heavily investing in building tools that developers can
leverage to write applications that run on Windows, Mac OS, Linux, and its most
popular distributions. The result of such investments is .NET Core, the
cross-platform framework that allows you to build applications that run on
multiple systems using C#. Web apps you write on .NET Core need a robust
infrastructure, and Microsoft Azure is the perfect companion on the cloud. When
it comes to deploying .NET Core apps to Azure, many developers decide to adopt
Docker containers. Visual Studio 2017 has integrated support for all of these
technologies and, once again, proves to be the perfect environment to write
applications that run on any platform and any device. This chapter provides a
high-level overview of what’s new in the tooling for cloud and web development
in Visual Studio 2017, and you’ll get links to the official documentation for
further study.

 	
 [image:]

 	
 Note: This chapter assumes you are familiar with basic Azure
 concepts and terminology. In fact, you will find mentions of resource groups,
 app service plans, Azure container registries, and other terms. If you are
 not familiar with Azure, or if something is not clear, the official documentation
 will help.

[bookmark: _Toc475441686][bookmark: _Toc469678947]Building cross-platform
apps with .NET Core 1.1

 	
 [image:]

 	
 Note: This section requires installing the .NET Core cross-platform
 development workload.

The .NET Core
is an open source, cross-platform, modular runtime that runs on Linux, Mac OS, and
Windows. With .NET Core, you can write applications that run on multiple
operating systems and platforms by using your existing C# skills. .NET Core
ships with a command-line interface (CLI) and exposes a rich set of APIs that
are shared across operating systems and, put succinctly, it allows you to
deploy an application while including only the libraries the application
effectively needs plus a component called Core CLR. The latter can be
considered as a portable Common Language Runtime, and it allows an application
to run. Discussing .NET Core in detail would require an entire book, so this
chapter will focus on new tooling in Visual Studio 2017 that supports version
1.1 of the framework. Visual Studio 2017 provides a new node called .NET
Core in the New Project dialog, under Visual C#, as shown in
Figure 88.

Figure 88: Available Project Templates for .NET Core

Two project templates (Unit Test Project and xUnit Test
Project) are related to unit testing. With the Console App (.NET Core) template,
you can write a console application that runs from the command line on Linux,
Mac OS X, and Windows. With the ASP.NET Core Web Application (.NET Core)
template, you can create a C# cross-platform web application based on the MVC
pattern. The Class Library (.NET Standard) template allows you to create a
library that is usable across all .NET runtimes, including .NET Core, Mono, and
.NET Framework.

 	
 [image:]

 	
 Tip: The .NET Standard Library specification, currently in
 version 1.6, is growing quickly, and it will be much more important in the
 next releases. If you author libraries, I strongly recommend that you
 consider .NET Standard libraries instead of Portable Class Libraries.
 Detailed information and explanations about .NET Standard can be found in the
 official
 documentation and in this blog
 post from the .NET Team at Microsoft.

For now, select the ASP.NET Core Web Application
template, give a name to the project, then click OK. At this point, you
will be able to specify which kind of application you want to create in the new
ASP.NET Core Web Application (.NET Core) dialog, as represented in
Figure 89.

[bookmark: Figure89]

Figure 89: Creating a New ASP.NET Core
Web Application

As you can see, you can decide to create an empty
application, a cross-platform Web API service, or a cross-platform MVC web application.
Select the Web Application for consistency with the next examples.

With both Web API and MVC web application, you also get a
chance to supply which kind of authentication the application must offer. The
default is no authentication, so click Change Authentication, then
select Individual User Accounts. For now, disable the Enable
Container (Docker) Support in the dialog, and, finally, click OK. Docker
support will be discussed later in this chapter. As you would expect from an
MVC application, in Solution Explorer you can see folders containing C#
controllers, models, startup files, and services needed to manage registration
and credentials (see Figure 90).

.NET Core applications can access SQL databases using a
cross-platform version of the Entity Framework called Entity Framework Core.
This is demonstrated by the availability of the Data\Migrations subfolder,
which contains several of the so-called Code
First Migrations.

Figure 90: The Structure of an ASP.NET Core Web Application

 	
 [image:]

 	
 Note: There is an important breaking change between .NET Core
 1.0 and 1.1. With 1.1, Microsoft introduces MSBuild support for .NET Core,
 which means you now have a solution .sln file and a project .csproj file. In
 the previous version, there was no solution file and project information was
 inside project.json. Visual Studio 2017, will help you migrate older projects
 to the latest version, however.

Behind the scenes, Visual Studio 2017 simply invokes the
.NET Core command-line interface and launches the following command that
scaffolds a new ASP.NET Core web application:

> dotnet new -t web

where -t means the type of
application.

You can then add your own data model, controllers, and
views exactly as you would do in an ASP.NET MVC application built on the full
.NET Framework. To get a better idea of what Visual Studio 2017 generated with
.NET Core, simply press F5. After a few seconds, you will see the web
application running in the browser, as shown in Figure 91.

All the powerful debugging tools in Visual Studio 2017
that you already know will be at your disposal. The application has a built-in
authentication service, which means users can quickly register and log in to
access information secured within controllers. Most importantly, the web
application you have can run on Mac OS X, Linux, and Windows.

Figure 91: A Cross-Platform ASP.NET Core Web Application Running
in the Browser

Do not close the solution, as it will be used in the next
section with Docker. Here are a few more considerations about .NET Core 1.1 in
Visual Studio 2017:

	NuGet package references are now included in the project .csproj
file. This makes it easier to consolidate all packages in one file.

	The Web Publish tool has been moved from PowerShell to MSBuild.

	.NET Core 1.1 supports standard references, which means you can
add references to non-.NET Core libraries. This makes it easier for .NET Core
projects to interoperate with Xamarin projects.

	Visual Studio 2017 supports continuous delivery to Docker
containers directly from within the IDE.

The following is a list of useful resources for further
study:

	.NET Core home page.

	Tutorial: Getting
started with ASP.NET Core MVC and Visual Studio.

	Entity Framework Core documentation.

	.NET Core command-line
interface tools.

Visual Studio 2017 also allows you to quickly package an
ASP.NET Core web application into a Docker container, as you will see in the
next section.

[bookmark: _Toc475441687][bookmark: _Toc469678948]Introducing tools for
Docker containers

 	
 [image:]

 	
 Note: This section requires installation of the .NET Core cross-platform
 development workload.

Containers can be considered units of deployment, and they
allow you to package an application, its dependencies, and its environment
configuration into an image that is finally deployed to a host operating system—typically
Linux or Windows. The biggest benefit of containers is that they isolate
applications on a shared operating system (Linux or Windows) and are lighter than
virtual machines, because a virtual machine has a host operating system, one or
more guest operating systems, and, therefore, a much more complex
infrastructure.

Instead, containers use essentially the same, shared
operating system, but they isolate applications from one another. In the world
of containers, Docker is the most popular
platform to package, deploy, and host containerized applications, and it is
quickly becoming the standard. Docker can work on the cloud and on-premises,
and it has been adopted by many vendors, including Microsoft and the Azure
platform. Because of the growing importance and power of Docker, Visual Studio
2017 has added support for containers with the Docker tools for Visual Studio,
which easily allow developers to package and deploy containerized applications.
This section cannot explain Docker in complete detail, but it will demonstrate
how to leverage the Docker integrated tools for development and debugging.
Before looking at how Visual Studio 2017 natively supports Docker, it is first
necessary to set up your development environment.

 	
 [image:]

 	
 Tip: Microsoft has recently released a free e-book called Containerized
 Docker Application Lifecycle with Microsoft Tools and Platform. This is a
 very good starting point if you are not familiar with Docker and you want to
 learn how to use it with Microsoft tools.

[bookmark: _Toc469678949]Setting up the development environment

This chapter will explain how to package a .NET Core
application into a Docker container, and how to publish the container to
Microsoft Azure. Before continuing, you need to set up both Docker and Azure.

 	
 [image:]

 	
 Note: Publishing a Docker container to Azure is an optional
 step, so you can skip setting up an Azure workspace and the section titled “Running
 a Docker container on Azure” if you are not interested in Docker on Azure.
 However, if you are interested, you need an active Azure subscription. If you
 do not have one, you can request a free trial at azure.microsoft.com/en-us/free.

Installing and setting up Docker

The first order of business is downloading and installing Docker for Windows
for local debugging. When the installation is complete, you will see the Docker
icon in the Windows tray bar. Right-click the icon, then select Settings.
Docker needs you to specify a drive that will provide the shared operating
system for containers, so click Shared Drives and select the C
drive. Figure 92 demonstrates this.

Figure 92: Configuring Shared Drives for Docker

When ready, click Apply and close the dialog.

Setting up Azure resources

As you will see shortly, Visual Studio 2017 allows you to quickly
and easily publish a containerized application to a Linux system on Microsoft
Azure. In order to accomplish this, the IDE needs you to supply the Azure
subscription ID and some cloud service instances. You can see Figure 96 as a reference. More specifically, Visual Studio
needs the following information:

	Web App Name: Represents the subdomain name in the application
URL.

	Subscription: The target Azure subscription.

	Resource Group: A container that holds resources related to an
Azure solution. This includes SQL servers, web applications, mobile services,
and much more.

	App Service Plan: A collection of physical resources required to
host an application.

	Container Registry: A new resource that allows for hosting and
managing Docker containers.

The IDE allows you to select existing resources and create
new ones. However, if you want to create new resources from Visual Studio,
there is a problem—for new resource groups it does not allow for specifying the
Azure region. Currently, Docker on Azure is a preview service and only the Western
region of the U.S. supports hosting Docker containers on Linux. Also, publishing
containers to Azure requires an app service plan and a container registry that
must both be located in the Western U.S. and associated with a specific
resource group. For these reasons, and until additional regions allow hosting
Docker containers, I recommend that you set up the required resources in the Azure Portal rather than with Visual
Studio. When you log into the Portal, enable services in the following order
(hyperlinks point to the documentation):

	Create a resource
group located in the Western U.S. Once created, it will be visible in the
list of resource groups. Click it to view its details.

	While in the details of the new resource group, create a new App
Service plan located in the Western U.S.

	Go back to the resource group details and add a new Linux-based container
registry located in the Western U.S. A storage account located in the same
region and associated with the container registry will be created
automatically.

You now have everything needed to deploy your application
packaged into a Docker container hosted on Azure.

 	
 [image:]

 	
 Note: Make sure you delete all your Azure resources when you no
 longer need them—for instance, at the end of your experiments and tests. This
 avoids the risk of unexpected charges on your credit card.

 [bookmark: _Toc469678950]Enabling Docker on .NET projects

At the time of writing, the Docker tools for Visual Studio
support .NET Core applications (including console applications) and classic ASP.NET
applications. To enable Docker support in a project, you have three options:

	In the case of new ASP.NET Core web applications, you can select
the Enable Container (Docker) Support flag in the New ASP.NET Core Web
Application dialog, as you can see in Figure 89.

	Select Project > Docker Solution Support (or Docker
Project Support if you only need to enable Docker at the project level).

	Right-click the project name in Solution Explorer and
select Add > Docker Solution Support (or Docker Project
Support).

For instance, you can easily enable Docker support for the
ASP.NET Core web application created in the previous section with Project
> Docker Project Support. This will add a few files that Docker needs
to configure a new container (and that you don’t really need to change):

	Dockerfile: This specifies the image and the application output.
For ASP.NET Core, the image is called microsoft/aspnetcore and already includes
all the native images of the necessary NuGet packages.

	docker-compose.yml: This file defines the collection of images to
be built and run within the container.

	docker-compose.override.yml: This file defines the environment
for the application (in this case ASPNETCORE_ENVIRONMENT)
and the port (80) that is exposed and mapped to a dynamically assigned port for
the development web server (localhost). The port number is determined by the
Docker host and can be queried using Docker scripts.

	docker-compose.dev.debug.yml: This file contains additional
settings when the build configuration is set to Debug. This is used by
the Visual Studio development tools.

	docker-compose.dev.release.yml: This file contains settings to
optimize the production image for Release configuration.

In the standard toolbar, you will notice the selected host
for debugging is Docker, and a new button labeled Docker: Debug
Solution is present (see Figure 93).

Figure 93: Buttons to Start an Application in a Docker Container

If you click this new button, Visual Studio 2017 will
first package the application into a Docker container, invoke Docker to host
the container, and then launch the application, offering the usual, powerful
debugging support. Behind the scenes, Visual Studio 2017 invokes the Docker command-line
interface to produce containers so that, while packaging, the Output
window shows messages coming from command-line tools. When you switch to the Release
configuration and build the solution, Visual Studio and the Docker tools
generate an optimized image that is ready for production and for publishing.

[bookmark: _Toc469678951]Running a Docker container on Azure

Microsoft Azure can host Docker containers on Linux, and
Visual Studio 2017 makes it extremely simple to publish a container to your
Azure workspace. To accomplish this, right-click the project’s name in Solution
Explorer, then select Publish. You will be asked to specify a
publish profile (see Figure 94). Assuming no publish profiles have yet been created,
click Create.

Figure 94: Specifying a Publish Profile

You will be asked to specify a publish target immediately.
Select Azure App Service Linux (see Figure 95), then click OK.

Figure 95: Selecting Linux on Azure as the Publish Target

At this point, the Create App Service dialog
appears. Here you must supply some important information that Visual Studio
2017 needs in order to publish a Docker container to Azure, such as the web
application name, the Azure subscription, a resource group, an App Service
plan, and a container registry. Some fields will be automatically filled in,
including the Azure subscription if Visual Studio detects one associated with the
Microsoft account you used for login (see Figure 96).

[bookmark: Figure96]

Figure 96: Providing Information Required
to Publish a Docker Container to Azure

Select the resources you previously created in the Azure
Portal, then click Create. At this point, Visual Studio 2017 will set up
all the necessary services on Azure. When the setup completes, you will see a
summary including the URL that you will use to launch the containerized
application (see Figure 97). After reviewing the summary, simply click Publish.
Visual Studio 2017 will package and deploy the Docker container with your
application to your Azure subscription. The progress of publishing will be
visible in the Web Publish tool window.

Figure 97: VS Summary Before Publishing the App to Docker

While publishing, Docker will open a console window that
you must not close and that will shut down automatically. When Visual Studio
2017 ends publishing your web application, you will be able to launch it in
your favorite browser using the URL you received in the summary. You’ll do this
exactly as you would with any other website or application.

[bookmark: _Toc475441688][bookmark: _Toc469678952]Introducing Service
Capabilities

For web and mobile apps, Visual Studio 2017 has introduced
a feature called Service Capabilities. This is a new way of connecting
to a service, and it supplements the older Add Connected Service and Add
Service Reference mechanisms. In Solution Explorer, you will see Service
Capabilities under a project name. Right-click it, then select Add Service
Capability (you can still use the sample ASP.NET Core web application
created previously). The number of available services varies depending on your
configuration, but Visual Studio 2017 shows a new tool window called Service
Capabilities where you can find a list of available services (see Figure 98).

Figure 98: The List of Available Connected Services

If you click the Find more services hyperlink,
Visual Studio shows the Extensions and Updates dialog—more specifically,
it opens a new node called Connected Services and shows the list of
additional connections you can download from either the Visual Studio
Marketplace (formerly Visual Studio Gallery) or a vendor’s website (see Figure
99).

Figure 99: Additional Connected Services to Download as Extensions

You can download and install one or more additional
services. Remember that the list shown in Figure 99 is only an example. Go back
to the Service Capabilities window. In the next steps, I’ll show how the
connection wizard works against an Azure storage account. This will require you
to have an active Azure subscription (the free trial is fine). If you do not
have that (or do not want to set one up), you can skip to the next section. Generally
speaking, with Service Capabilities, Visual Studio 2017 simplifies establishing
a connection to a service, and it takes care of downloading the NuGet packages
that are required to work against the selected service. If you click Azure
Storage, a wizard appears and requires you to specify whether you want to
connect to an existing storage account or if you want to create a new one (see
Figure 100).

Figure 100: The Azure Storage Wizard

If you click Create a New Storage Account, the Create
Storage Account dialog appears (see Figure 101). Here you will specify your
Azure subscription, the storage account name, and required information such as
the pricing tier, location, and resource group.

Figure 101: Creating a New Storage Account

When you click Create, or if you select Add
in the Azure Storage dialog for an existing account, Visual Studio 2017
will connect to Azure, perform the necessary operations, and download and
install the NuGet packages your application needs to interact with the selected
service from C#. Figure 102 demonstrates this.

Figure 102: Downloading the Appropriate NuGet Packages

The referenced NuGet packages are also visible in Solution
Explorer, as expected. Figure 103 shows how Solution Explorer
displays the downloaded NuGet packages (in this case WindowsAzure.Storage)
and a new folder, which has the name of your storage account plus the
AzureStorage suffix. This folder contains a ConnectedService.json file, which holds
dependency information, and a Getting Started information file that
points to the appropriate documentation page for the selected service.

Figure 103: Solution Explorer Displays NuGet Package and a New
Support Folder

In this particular case, if you double-click Getting
Started, Visual Studio will open a page called Get
started with Azure blob storage and Visual Studio Connected Services (ASP.NET).
Here you will find code examples in C# that you can use to interact with the
newly created storage account from within your applications. It is worth
remembering that regardless of the connected service you choose, Visual Studio
2017 takes care of setting up a connection and downloading and installing the
proper NuGet packages.

[bookmark: _Toc475441689][bookmark: _Toc469678953]Building Node.js
applications

Visual Studio 2017 has full support for building Node.js applications. Node.js is a very popular
open source, cross-platform, and event-driven JavaScript runtime for developing
a variety of applications. Visual Studio 2017 includes project templates you
can use to quickly build a number of Node.js apps, including web apps, console
apps, and Azure-enabled applications.

 	
 [image:]

 	
 Note: Node.js support and integration is only available if you
 install the Node.js development workload.

Project templates for Node.js are available under the JavaScript
node in the New Project dialog, as shown in Figure 104.

Figure 104: Project Templates for Node.js

The template names are fairly self-explanatory, and the New
Project dialog provides a good description when you select one. Just a
quick note on the template called From Existing Node.js code: this
allows you to import existing code or assets from files on disk with different
extensions. Figure 105 shows the import wizard with the list of supported
files. You can include additional extensions in the text box at the bottom, and
you can specify the startup item in the second page of the wizard. Finally, you
import the specified folder.

Figure 105: Dialog that Imports Existing Node.js Code

 	
 [image:]

 	
 Note: Some project templates support Express 4. This is a
 Node.js framework for web applications that provides a set of features,
 utilities, and APIs for web and mobile apps. You can learn more about Express
 4 at expressjs.com.

Whatever template you choose, Visual Studio 2017 generates
a project that contains the following items visible in Solution Explorer:

	A JavaScript file (app.js for console apps or server.js for web
apps) that contains minimal startup code.

	A package.json file that contains information about the
application.

	An empty README.md file that you can use to write documentation
using the Markdown markup language.

	The Node Package Manager (npm) node, which you can right-click to
manage, download, and install npm packages for Node.js. The command you select
is Install New npm Packages.

 	
 [image:]

 	
 Tip: npm is the package manager for JavaScript applications. If
 you are new to JavaScript development, you can compare npm to NuGet in .NET
 development.

Figure 106 shows the Install New npm Packages dialog
in action. Start typing package names in the search box and the dialog will
list matching packages as you type.

Figure 106: Managing npm Packages

With any template, you can write JavaScript code and take advantage
of well-known and powerful integrated tools in Visual Studio such as:

	Full IntelliSense availability.

	Diagnostic and profiling tools.

	Unit testing.

	Source control based on Git.

	Integration with TypeScript.

	Debugging tools, including breakpoints and debugging windows.

As an example, Figure 107 shows the debugger in action
over a blank web application in break mode after a breakpoint is hit.

Figure 107: Full Debugging Support in Node.js Applications

As you can see, Node.js receives full debugging support
with breakpoints, data tips, and debugging windows such as Locals. More
about the Visual Studio 2017 tooling for Node.js can be found at www.visualstudio.com/vs/node-js.

[bookmark: _Toc475441690][bookmark: _Toc469678954]Updated tools for
Microsoft Azure

Azure is the cloud solution from Microsoft, and it’s
growing fast with new and updated services. When you select the Azure
development workload, the Visual Studio Installer downloads and installs the
latest Azure SDK for .NET, which extends Visual Studio 2017 with integrated
tools, windows, and project templates that allow developers to work against the
majority of the Azure services from within the IDE without opening the Azure portal. Cloud Explorer is one
of the integrated tools that the SDK brings to Visual Studio 2017. At the time
of writing, the Azure SDK for .NET provides the same functionalities to Visual
Studio 2015, Visual Studio 2013 Update 4, and Visual Studio 2012 Update 2.
Because the number of Azure services that Visual Studio integrates with has
grown so much, and because the Azure tools are not specific to Visual Studio
2017, this chapter only summarizes the tools you have with the Azure SDK for
.NET. You can later learn more about Azure services and tools in the official documentation.
Notice that the list of services and tools may vary in future releases of the
Azure SDK and of Visual Studio.

Here’s a summary of what’s new:

	Support for Azure Data Lake,
the new cloud service for big data from Microsoft. This is offered through the
Azure Data Lake Tools for Visual Studio. In Visual Studio 2017, these are
available when you install the data storage and processing workload. More
specifically, the tools allow you to manage your Data Lake resources from Cloud
Explorer and offer a number of templates, such as for U-SQL,
HDInsight, and Apache
Storm projects.

	Support for Azure Service
Fabric, a platform that allows you to build, debug, test, and deploy
microservice-based applications. In addition to the Azure SDK, you need to
install the Azure Service Fabric SDK, which includes integrated tools for
Visual Studio. The SDK can be downloaded from the Azure Downloads page
and allows you to manage a Service Fabric account from Cloud Explorer.

	Support for the Azure
Resource Manager, which is available with the Azure Resource Group project
template that you can use to create, configure, and deploy resource groups to
Azure. With the Visual Studio tools, you can now manage resource groups within
the IDE with the help of the JSON Outline tool window. Regarding the
Azure Resource Manager tools for Visual Studio, you can follow an official tutorial
online.

The previous points highlight, once again, the importance
of Cloud Explorer as the integrated tool you use to work with your Azure
resources. The next section describes updates to Cloud Explorer in more detail.

[bookmark: _Toc469678955]Cloud Explorer updates

Cloud Explorer is a tool window that interacts with one or
more Azure subscriptions from within Visual Studio. With Cloud Explorer, you
can view and manage a number of resources without leaving the IDE. For
instance, you can create new storage accounts, blobs, tables, queues, and you
can even manage SQL databases with the integration of the SQL Server Object
Explorer tool window. Starting with the Azure SDK for .NET v. 2.9.6, Cloud
Explorer gets important updates. First, you can group the view by resource
types or resource groups via the drop-down under the Microsoft Azure
label. In Figure 108, you can see how the view appears with the Resource
Groups option selected, while Figure 109 shows how the view appears with
the Resource Types option selected. Notice that the number and type of
items may vary on your machine, depending on which kinds of cloud services you
have enabled in your subscription.

 Figure 108: Resource Groups View in Cloud Explorer

 Figure 109: Resource Types View in Cloud Explorer

When you select a resource, the Actions tab at the
bottom of the window will show a list of available actions against that
resource. For instance, if you select a SQL database, available actions will
open the database in the Azure portal, then open the database in Visual Studio
via SQL Server Object Explorer, then refresh the view. Available actions
vary depending on the selected resource. The Properties tab shows
information about the selected resource (if available). If you have installed
the data storage and processing workload and you have subscribed the Azure Data
Lake service, you will see a node called Data Lake Analytics. This
allows you to manage Data Lake resources easily, create databases, insert
tables, and write scripts. Figure 110 provides a sample view of a database
created within Cloud Explorer and a table currently in design mode with
specific, integrated tools and editors.

Figure 110: Managing Azure Data Lake Resources

Similarly, if you have installed the Azure Service Fabric
SDK, you will be able to manage resources related to this service directly from
within Cloud Explorer.

[bookmark: _Toc475441691][bookmark: _Toc469678956]Chapter summary

Visual Studio 2017 introduces important tools for
cross-platform development and the cloud—two things that often go hand in hand.
Probably the most important addition is tooling for .NET Core, the modular,
cross-platform, open source runtime that developers can use to build console
and web apps for Linux, Mac, and Windows using C#. With the integrated tools,
you can build .NET Core solutions the same way as with classic .NET development.
Another fundamental addition is tools for Docker, a de facto standard in
deploying applications to containers. Docker containers can be hosted on Linux
in Azure, and Visual Studio 2017 does the entire job of packaging and deploying
a container for you. In conjunction with its aim to be the development
environment for any developer on any platform, Visual Studio 2017 has full
support for Node.js, including advanced editing, debugging, and testing
features. Finally, Visual Studio 2017 supports all the most recent Azure
services, including Data Lake and Service Fabric, and it provides an option for
interacting with more services from within the IDE through the Cloud
Explorer tool window. This avoids the need for opening the Azure portal
every time.

 Table of Contents

 	
 The Story behind the Succinctly Series of Books

 	
 About the Author

 	
 Introduction

 	
 Chapter 1 A New Installation Experience

 	
 Solving the complexity of the Visual Studio installation

 	
 Installing Visual Studio 2017

 	
 Customizing the installation with individual components

 	
 Installing multiple editions

 	
 Modifying the Visual Studio 2017 installation

 	
 Launching Visual Studio 2017

 	
 Chapter summary

 	
 Chapter 2 The Start Page Revisited

 	
 Optimized start experience

 	
 Staying up to date: Announcements and news

 	
 Shortcuts for solutions, projects, and folders

 	
 Working with most recently used projects

 	
 Accessing project templates

 	
 Opening projects, folders, and repositories from source control

 	
 Chapter summary

 	
 Chapter 3 Code Editor Improvements

 	
 IntelliSense improvements

 	
 Code navigation made easier

 	
 Find All References

 	
 Navigating code with Go To

 	
 Structure guide lines

 	
 Roslyn code analysis

 	
 More Roslyn refactorings

 	
 Controlling live analysis with code style

 	
 Editing improvements for C++ and F#

 	
 Chapter summary

 	
 Chapter 4 XAML Improvements

 	
 XAML Edit and Continue

 	
 XAML code editor improvements

 	
 Navigating code with Go To

 	
 IntelliSense filtering

 	
 Refactoring namespaces

 	
 XAML Diagnostics

 	
 Chapter summary

 	
 Chapter 5 Working with Solutions, Folders, and Languages

 	
 Lightweight Solution Load

 	
 Extended language support

 	
 Open Folder: Working with any codebase

 	
 Setting up the demo

 	
 Basic language support in Visual Studio 2017

 	
 Extensive language support through workloads and tools

 	
 What’s new for source control and team projects

 	
 Chapter summary

 	
 Chapter 6 Extensions and Extensibility

 	
 What’s new with extensions in Visual Studio 2017

 	
 Roaming Extension Manager

 	
 Scheduling operations over extensions

 	
 What’s new with extensibility

 	
 Creating a blank extension for demo purposes

 	
 Specifying extension prerequisites

 	
 Ngen support and custom file installation

 	
 Chapter summary

 	
 Chapter 7 Debugging and Testing Improvements

 	
 Introducing Run to Click

 	
 Updated diagnostic windows

 	
 Analyzing exceptions with the Exception Helper

 	
 Introducing Live Unit Testing

 	
 Miscellaneous improvements

 	
 Accessibility improvements

 	
 IntelliTrace events for .NET Core

 	
 Profiling tools updates

 	
 Support for Chrome with JavaScript

 	
 Chapter summary

 	
 Chapter 8 Visual Studio 2017 for Mobile Development

 	
 Visual Studio 2017 and the Universal Windows Platform

 	
 Updates to .NET Native

 	
 Updated NuGet packages

 	
 XAML improvements for UWP

 	
 Updated Manifest Designer

 	
 UI Analysis tool

 	
 Cross-platform development with Apache Cordova

 	
 Supported versions and platforms

 	
 In-browser simulation with Cordova Simulate

 	
 Message colorization

 	
 In-product acquisition of development tools

 	
 Cross-platform development with Xamarin

 	
 Automatic fix for missing Android dependencies

 	
 Updates to project templates

 	
 Unified .plist editor for iOS

 	
 Chapter summary

 	
 Chapter 9 Visual Studio 2017 for Cloud and Web Development

 	
 Building cross-platform apps with .NET Core 1.1

 	
 Introducing tools for Docker containers

 	
 Setting up the development environment

 	
 Enabling Docker on .NET projects

 	
 Running a Docker container on Azure

 	
 Introducing Service Capabilities

 	
 Building Node.js applications

 	
 Updated tools for Microsoft Azure

 	
 Cloud Explorer updates

 	
 Chapter summary

 Landmarks

 	
 Copyright Page

 	
 Table of Contents

 	
 Body Matter

OEBPS/Images/image00185.jpeg
Crese Storage Account X

Microsoft account

hotmsicom
sobscpton:

Windows Acure MSON - Vsl Studio Utimote B
tome.
=

“corewindowant

Brcing e

e Redundant (Standad G85) 7
Besource roup

Detou Sorage WestEurope (Wes Evrope) o
Location

Ve Eope 9

OEBPS/Images/image00186.jpeg
Azure Storage:

‘Adding connected senviceto prject..

Instaling NuGet package WindowsAzure Storage version 721

OEBPS/Images/image00183.jpeg
preceeTampits
Progumming nguige:

scoting
secuny

Sep 8 epoyment
Shaapom

+ tpanat)
© Reuming o g
Cungeyou s s s setings

Sony Mot gt 3
TrsanRa

TFSIR s st -y cemmuncation e which bds
M TFS VoSt T Sences od S5 15, -

) VTS syme Migraton oot
5] VST Sy gt Tot o youto bk e ot TFS TS,
ool ot e e, 1 e e T, .

S Vi

sy o)

Cenedy: Do st
Doweeste 2
Ratng: vt

Schedded Foc ot

ScheddedorUpise:

Schetled orUnetae

s

OEBPS/Images/image00184.jpeg
Azure Storage
Store anaccessc with Azure Storagesenics e o, Queves and
Ties

Sectn g orge secount et nwane by cking h ok b,

Subscpien fegen

steuimmetsts Windows e NSON -

o S Ute St CentalUS

[P ——

Reen

OEBPS/Images/image00189.jpeg
Create New Project from Exsting Nodejs Code. o x

Welcome to the Create New Project from Existing Node.js Code
Wizard

Enter or browse to the folder containing your Nodejs code.

We wori move any files from where they are no

€ \users\proga\documents\visual studio 2017\Projects\FronéxistingCodel

Enter the fitr for files to include.

Files with the Js extension are aways included.

X3 hm;® NtaL; %55 png;®. J9B; L BEF3 % bD; . 1c03 . 5v3 ™. Js0n; .03 ®. e85 sty L xml

Net | | Fsh | | Cancel

OEBPS/Images/image00109.jpeg
Options.

Search Options (Cui+£) 5

9] Leave block on single e
7] Leavesttements and member declaations o the same fine

[public Int Foo { get; sets J

e

OEBPS/Images/image00187.jpeg
co@E-lo-50eB| s
Search Solution Explorer (Cti+&) K

b &8 Microzot Extensions Configuration User ~
Microso Etensions Logging (1.00]

MicrsoftEtensions Logging Console 1

8 Microsoft Extensions Logging Debug (1.

1 Microsoft Extensions Optons Configurat

8 MicrosofLNET Sk Vel (1.0-2Ipha-201

o1 Microsoft NETCore App (10.1)

8 Microsot ViuslStudio Web Browsertink

8 MicrozofVisusltudio Web CodeGenera

8 Windowsazure Storage (12.1)

b Propertes

4 G Senice Capabities

Jessandrodelsoleizuresto 3

& Connectedsenvcejson
b @ wwwroot

b Contollers
e
b
3
b

= Models
o Sencer

5 Views

0D bowerc

T sppttings o

T bowerjson

7 bundieconfigjzon

© programcs

e Stuper

D web.config L

OEBPS/Images/image00108.jpeg
static void Ma)n(strmg[] args)

{

var p1 = new Person("")

14 s e ypeimstendof vor | @ 102008 s xpctype mted of var

12 uppres ncons

Eror

et Sotion =@ 08w |4 C i unges s

Cote Description .
0 DEE Use expict type nstead of var C s T At

ioccurences i Document | Frjct | Sltion Supprssion e

OEBPS/Images/image00188.jpeg
NewProgect
» et
4 s

+vas
wer
o
+ VasiCee
satsemer
+ AeDunake
2 et
e i
Vindows Uit
Heses
Somarial
+ yton
+ Ipescret
+ Gt e
DependncyVicion
S

» onime

e Hosapteie
et proghdocumers e o 27
Sotonmme Nodgenipp!

Locrion

T Famencrk 461 < Son by Dt

1 O romcnisens
[

[

T X
Sewh st Temptr €115, P

P—
gy Nodejs e pplcsin.

| B smermscommipionn
S Tr—

[T teiiambnbon i

1 Gt ety st
) e Gt epestory

[k][cma |

OEBPS/Images/image00107.jpeg
<% Concietoprpenen |0 pe ».mm....,in.m.,

j‘ var number = 10;

1S ottt e 3|

26 suppress 02008

1060008 e ot type esd of vor

Grorti

- 110 0o |4 | prevew changes fortit 5-

Code Descrpton il accumences e Docuent | rojct | Solation Supprssionsute

et Sotion

& DEIO0S Use explict ype msesd of o prmrrry Py 6 Adve

OEBPS/Images/image00106.jpeg
Descption
predefined ype preferences:

Forlocals, porametersand
members

For member access exprssions
ar prfesences:
Forbui

Eseuhere

Expression references.

Preference

severty

prterpredefnedty < [O None -
Preter redeinedty * | O Nore -

prees eplct type

Prees eplct type

Prees plict type

OEBPS/Images/image00105.jpeg
[Peont.cs = x [N Modulel. b Progra
& Comsoetpp | % Comotezprareen ~[© pesonting ame)

public Person(string name) 4

{

Firstiane = name;

1 Add quatficaton. | ©) 106000 Mamber e shovid e auafid.
1€ suppress 1060008 »

17 ¥ S—
i | B

Fcolaccurences e Documert | Prject | Soluion

et Solation -1 @ 0t | 4 owarmings | Buid- liSense | SevchErr Lt 2
Code Descrpton P e Une. supprsionsute
o Membersccs shoud b quaified. Comolergp perentcs W aane

outp

OEBPS/Images/image00104.jpeg
Descrpton
i preerences
sty i sccess with s

Prefer this” | @ suggestion -
T Pe————T
oty vt sces it Dot i || D
Eae B
s et oty <[o
oo o eprasos [Pty <[Wera =

Prference

severty

Donotpreter i | O None

I

OEBPS/Images/image00103.jpeg
& ConsoleApp?. ~| " Consoleapp2 Program -] @. unsamam»yﬂ

™]

P
19 @ private void
20 || {

29| double result;

T Y ——

23 suppress 00018 B
24 b

25 '
2 ¥
27

Preview changes
0 v Fixall occuences in: Document | Prject | Soluion

2 = public string KeadFile(string fileName)

OEBPS/Images/image00102.jpeg
Animal1.vb - PRSP peisoncs s Moduielb®
& Consolesp? -] % Conscleapp2person <] # Fisthame
1 using System;

2
3 Einamespace ConsoleApp2
4 {

q

-k
Cheme AeroPasma >

public class Person : IPerson

Sasing persan.cx 5o “Coniasest” W contant
ring acen;
Rename type o Person!
Pl sameice conseleers
Etract nterfce.. §

Pl ctass soron ¢ aen
t

8 PU - i serig rirsoane € g et)
P sirng Lavan (66 261 1
r Foic e oot { v e)
9 DU et i s oy sy
10 put
1 Preview changes

12 }

OEBPS/Images/image00101.jpeg
Consolespg2Perion

;3 *
var content = Systen.10.File.ReadAllText (fileName~
return content;

1
else
throw new ArgumentException(nameof(fileName));
+
}

4 references | 0 changes |0 suthors, 0 char

public class Person : IPerson

OEBPS/Images/image00100.jpeg
5 Consoeion * Conslchpp2Progam)
R i i e g
12 { x
13 var p1 = new Person();
14 pl.Firsthame = "Alessandro”;
pl.LastName = “Del Sole”;
pl.Age = 39;

pl.Date0fBirth = new DateTine(1977, 5, 10);

string demo = string.Format("Hi {0}", pl.FirstName);

——

5 e
u | f

» la if (fileName

Al

OEBPS/Images/cover00196.jpeg
Visual Studio
2017

Succinctly®

by Alessandro Del Sole

OEBPS/Images/image00192.jpeg
B Microsoft Azure

e)

oo »
<o
pRCp—
& Seve e
» B Stonge s
© Widows A MSON Vi S Ut |
e ————
- e S rervtore
P peta—
T —
b D Qs
b m
» © e e estcpe
R p——

Sretmsicon)

O feken

ittt T —

OEBPS/Images/image00193.jpeg
 Microsoft Azure
R < B O

o o et P

Y
Fr—

P o e —

OEBPS/Images/image00190.jpeg
Instal New nprm Packages.

ot »

gitt001 Bruno Santes
gitowtol
95006 ChistopherJeffrey

gitkin yourteminal

git0010 Bt Cordon
gitshortcuts

gitb002
Does gt checkout b abranch

Cotlog Updated Today at3320M Refrein

Opm st Output: Resdy

gitors

age has no eywords
Author: Chistian Amr Kyathem
Descrption: A nodejs brryfo it

Options
Dependencytype |Sundard

Addto packagejion v/ (1ecommended)
Sdectedversion | (atest) 5

Other npm arguments

InstalPackage | Feset Options

Gose

OEBPS/Images/image00191.jpeg
54 Nodjebipp! (Debugging - Microsoft Vil S Yo £ £ - B x
M G Vew Poka Buld Debg Tm Took Adcue Tat Anbe Wdow Hop Aesansoousole -

ETEE b Cotimn G+ | M 11t @ O] 6> ¢
e (13528 mdere 5 < Ths e v

var http = require(‘http’);
var port = process.env.port || 1337; »
& pas
htp.createserver(function (req, res) (
res uiteeadtats, {“Conterty
res.end("Hello borld\a');
)).]iste"(pnr()‘

Vaue Tipe
et uses progadocument\iua s 20T Prjects Ndealebigp T Nodsiebd & - Sting
s e proga documentviua o 01T Prject Ndeslebig\odeebdy & - Sting
pors Oject
hep Onect

onect
- stong

ot ¢
e (Fnction)

A

OEBPS/Images/image00174.jpeg
aB|s=2
SenchSoltion plores (Ctte) »-
ebppicaton? (1 prject

8 Dependencies
F Propeties
& winwroct

= Controllrs

& AccountControlercs
& HomeControlecs
© ManageControlercs

4 o

b Migaton:
<= ApplcationDbContert.s
4 Models
b AccountiienModel
b MansgeVieModel:
< Applcationtisercs

4 senees
o Emaiendercs
< IsmsSendercs
© MessageSenicess

b Views

D owerc

T sppettingsjson
T bowerjzon

T bundieconfgjzon
© Progiames

o Strupes

D webconfi

Python Environments IR NAAIIOY Team E

OEBPS/Images/image00175.jpeg
3 Home page - webdoph X [- o x

<)

Application How to Overview Run & Deploy
uses . . 1

OEBPS/Images/image00172.jpeg
New Preect T X
» Rt

e S CITT TR
pro
[[N [—
pre . ot —
Pt B vremmeatrtrcon e

‘Windows Classc Desktop. . st et Project (NET Core) Visual Co
%= B

e [— v
e & e sann

s

e

vl
L
ol

=
o
e
R

e esgpart

Loonen: merrogedocumriimat 5ot B - [

sowonroge wesgponara @ e trssin
ot Gt sty

[|[ama |

OEBPS/Text/nav.xhtml

 Guide

 		Body Matter

 		Table of Contents

 		Cover

 Table of contents

 		The Story behind the Succinctly Series of Books

 		About the Author

 		Introduction

 		Chapter 1 A New Installation Experience

 		Solving the complexity of the Visual Studio installation

 		Installing Visual Studio 2017

 		Customizing the installation with individual components

 		Installing multiple editions

 		Modifying the Visual Studio 2017 installation

 		Launching Visual Studio 2017

 		Chapter summary

 		Chapter 2 The Start Page Revisited

 		Optimized start experience

 		Staying up to date: Announcements and news

 		Shortcuts for solutions, projects, and folders

 		Working with most recently used projects

 		Accessing project templates

 		Opening projects, folders, and repositories from source control

 		Chapter summary

 		Chapter 3 Code Editor Improvements

 		IntelliSense improvements

 		Code navigation made easier

 		Find All References

 		Navigating code with Go To

 		Structure guide lines

 		Roslyn code analysis

 		More Roslyn refactorings

 		Controlling live analysis with code style

 		Editing improvements for C++ and F#

 		Chapter summary

 		Chapter 4 XAML Improvements

 		XAML Edit and Continue

 		XAML code editor improvements

 		Navigating code with Go To

 		IntelliSense filtering

 		Refactoring namespaces

 		XAML Diagnostics

 		Chapter summary

 		Chapter 5 Working with Solutions, Folders, and Languages

 		Lightweight Solution Load

 		Extended language support

 		Open Folder: Working with any codebase

 		Setting up the demo

 		Basic language support in Visual Studio 2017

 		Extensive language support through workloads and tools

 		What’s new for source control and team projects

 		Chapter summary

 		Chapter 6 Extensions and Extensibility

 		What’s new with extensions in Visual Studio 2017

 		Roaming Extension Manager

 		Scheduling operations over extensions

 		What’s new with extensibility

 		Creating a blank extension for demo purposes

 		Specifying extension prerequisites

 		Ngen support and custom file installation

 		Chapter summary

 		Chapter 7 Debugging and Testing Improvements

 		Introducing Run to Click

 		Updated diagnostic windows

 		Analyzing exceptions with the Exception Helper

 		Introducing Live Unit Testing

 		Miscellaneous improvements

 		Accessibility improvements

 		IntelliTrace events for .NET Core

 		Profiling tools updates

 		Support for Chrome with JavaScript

 		Chapter summary

 		Chapter 8 Visual Studio 2017 for Mobile Development

 		Visual Studio 2017 and the Universal Windows Platform

 		Updates to .NET Native

 		Updated NuGet packages

 		XAML improvements for UWP

 		Updated Manifest Designer

 		UI Analysis tool

 		Cross-platform development with Apache Cordova

 		Supported versions and platforms

 		In-browser simulation with Cordova Simulate

 		Message colorization

 		In-product acquisition of development tools

 		Cross-platform development with Xamarin

 		Automatic fix for missing Android dependencies

 		Updates to project templates

 		Unified .plist editor for iOS

 		Chapter summary

 		Chapter 9 Visual Studio 2017 for Cloud and Web Development

 		Building cross-platform apps with .NET Core 1.1

 		Introducing tools for Docker containers

 		Setting up the development environment

 		Enabling Docker on .NET projects

 		Running a Docker container on Azure

 		Introducing Service Capabilities

 		Building Node.js applications

 		Updated tools for Microsoft Azure

 		Cloud Explorer updates

 		Chapter summary

OEBPS/Images/image00173.jpeg
New ASP.NET Core Web Applicstion (NET Core) - WebAppication?

Seect s templte:
ASENET Coe Templtes

0 =

ey Weosn

23 e Continr Decker Suppot
Regutes Do Wondows
Conines sppor an aio b ensbied e L s

Aprjecttemplte o cetng a0 SPNET Coe
ppicaion wih eample ASP NET MVC Views and
Contales.Tistempse canaliobeuid forRESTIl
FTTP s

Leammere

|

Athenicato: ndhidun Vs Accounts

 Microsot e
< Hetinthecood

oK

OEBPS/Images/image00178.jpeg
D Webappication2 - icrosot Visul Studio v kLaunch (Ctk+Q) Ple o x
Be £ Yoo Dot Bud Deg Tom ook Achedwe Tet Amvie Wndow Hdp Aesndoddsol - i
0|88 @]9 [ose lamcw -|bispesc G o] B,

Ovenien

Connected Senvices Publish

Grete s pofie todeploy your 3pp o anyweh hostinchcing e,
Whst pubiing optons e gt for me?

Profiles

To deplo your sp o Asure o sncther host creste s pubichprofe
Creseormport setings e

OEBPS/Images/image00099.jpeg
5 Conriion2 [N Conoegitogm 8

e OSSR . —
2| ¢ t
e -] var p1 = new Person();

1 : J s
BE e e ——

SRR >
o=

17 pl.Dat

18

b i e sty

2 o |

2 public str e

2 ¢ e ey

23 = if (fi

2 R

: = Locs:

Fixaloccurence s Document | Prject | Sotion
2 el

OEBPS/Images/image00179.jpeg
Pick a publish target

What pubihing targets can you deploy your agp 157

Targets
%
< ™] |
conre d e

e

OEBPS/Images/image00098.jpeg
5 conions | Conowarregin 10 faiseng

7t Var people = new LISEVErSOTS 0T
2 people.Add(p1); g
» people.Add(p2.
2 b
% 4 public string ReadFile(string Filellane)
27 i

e B IF (filename 1= null)

T e ety i

e var content = System.10.Filc. ReadALlText (FileNiane)

n return content;
2)

n else

4 throw new AngumentExcept ion(nancof (filetiane));
5)

)

OEBPS/Images/image00176.jpeg
Network

brosies

Docker Daemon

Diagnose & Feedback

Reset

Shared Drives

Select the ocaldrives you want o be avaiable to
Jour contaners.

Shared orive
@ c
oo
1 e

e

Apply

OEBPS/Images/image00097.jpeg
tperon %)
2 Person

| projec Conscienpp

Peson
projetConsoesgp
<o iperson

project Conseetpp
<o lperson

projet Conseton?
Frojeck Conolppl —
e cluseiproga documents sl todio 2017 et Consolehppl

\ConsaidippPesoncs

e s

Uit

Showdeais

Gl ot

OEBPS/Images/image00177.jpeg
| Debug - AnyCPU ~ P Docker ~ b Docker: Debug Solution ~

OEBPS/Images/image00096.jpeg
& Penoncs

“namespace ConsoleAppl g Dscmar

€ = pesonst

public class FRREEH : 17 oo punen
oo
o pnns
s Dscumes
= reons
rogecume

public string Name {

St 217Pcjcts Conclepp!\Cons

Prejcte Conslehpp\Conso

Projct Contlepp\Consol

OEBPS/Images/image00095.jpeg
Entre Soluton. <1 @] % % % | Groupby ProjectthenDefintion - | 8 KeepRess seorchfnd Al feferences P

cote e e Coproet
+ Comichgpt 0)
%% s ()

1 i e s w0t i) Moueist 3 Cometer
48 pencapensmd @

Dim i £ ew P Consieon

peson [9 1 Comoletpr

Progames 23 Comoletpn
Feen Peoncs 9 1 Comlergpt
Progames N Comoleir2

._rv,.. 3 Progomes VB Comolsrt

OEBPS/Images/image00094.jpeg
< |G % %% | Groupby: ProjectthenDeintion - | @ KeepResuts sesich find Al Refeences

Fie ne ol prject

i peopi s e L(OF P Modiel b 35 Comoleippl

40 Personrersond @)
Dim 1 s New P Moduel b 7B Conletopt
Dim 2 s New P Modsel b N B Comolerppt
+ Conseepp2)
4% dssPerson @)
public s D e perencs 9 1 Concietort
o people = new LBt - Prognmes 23 Coletop
40 Fersonersond B)
public s P Pesin Pesoncs 5 1 comeletee
Bl = new PeenC: Progumes B% Comoietor
Progmes V% Comolipr

OEBPS/Images/image00093.jpeg
3 ebappicatont
103 |
108 ‘
w05 ||
1069 | |

proptu

Code snippet for propery snd backing field_ [7 propg

S [T o mr—— e —

Y

return View(new VerifyCodeViewodel { Provider = pro

Not: T twce o nert the proptll SPPE. gy 10

Tou e
1m0 =

m |
112
13
114

15
116
117
18
% <4

% Queotie
11 g querysingiatueproider

11 P % Queysunguueroidetacioy

[HEE S Rndom

[ALL% Rorgeubuteisoter

(Va1 % antscepien o

o @@ 4o QB 7 o 0 =Moo

public async Task<ActionResult> VerifyCode(VerifyCodeVie

{

if (IModelstate.Isvalid)
i -

OEBPS/Images/image00092.jpeg
%

114
15
116
17
118

Feturn View(new VerifyCodeViewtiodel { Provider = pro |

L.
}F Reoer

Resporse
1 % ReubecedConet
17 ol Remacangceies

[HEE 01 retum

[ALL % Roansgeres
[Vall* Rolansgettensions
et Roeiduore>
publ@ @ £ 0 0 w0 % s o
{

[0 \de(VerifyCodevie

o

if (IHodelstate.IsValid)
{

return View(model); =

OEBPS/Images/image00091.jpeg
O DecieXambites - Micosoh Vous St

¥ £ 0wt Launch cn

Be 8 Yo boe B Dbw Tom Dubie Db Amseire Tt Bleck Ane Wedor Hep

coln -t | b soscsumphn. +

Get Started

Recent

o Detsoxamuties

7 Comsionorsn

o wmsn

New project

[m——
oot op 461 o

D wtsop rETsamenot
[N —
T —
o (4T et
P —

P - B x
Ao -

T

OEBPS/Images/image00090.jpeg
Get Started

Recent

Swan 1adojanaq

OEBPS/Images/image00181.jpeg
D Webappications - icrosot Visul Stuio ¥ £ aucklaunch ChQ) P - 8 x
Be £ Yoo Dot Bud Deg Tom ook Achedwe Tet Amve Wdow Hdp Aesandoddsol - i
0[S M| D - | Oy - amCPU - b Docker - b DockerDebugSoton - G - | 5 .

Connected Senvices Publish

Grete s pofie todeploy your 3pp o anyweh hostinchcing e,
st puishing opons e gt for me?

Profiles

B Webdppicaton 216121308011 - Web Oepioy || Publah

Summary

seewRL ssppic 213081
RegiteyURL #//dockenest-on suecrio
image ame webapplcation 2016130214
Resource Group. Dedketest

Coniguaton Relesse

OEBPS/Images/image00182.jpeg
9 P -8

O Websgpicaons - Mcroeh Vo Su Ya &
B G e foe B Gew Tom T e Tt Aow Medow Hop Aandoddsoe - i
T I T

Senvice Capabilities

Aaresorsge

OEBPS/Images/image00180.jpeg
Create App Service

Host your web and mobile appliations, REST APIs, and more in Azure

Microsoft account .
ot com

e App Neme
WebApplcatons20T61213080111

Subsrpton
Windows Azure MSON - VisulStcio Uimate -

Besource Group

DockerTest (westus) Z
sop Sencelan
dockersnicepton 8, West uropel g
Coniner ity
dockenct (s S

Clcking the Creste button willcreste the folwing Azure resources

Eplore addtionsl Azure senices

‘App Senice - WebApplicatons 0161213080111

youhave emovedyour spending it o youae singPay 35 You Go, there may be monetary impactf you prevsion addtional resources
Lok More

OEBPS/Images/image00129.jpeg
14
s
16
1w
18
15
120

1/ Gat r
=fune (h

i o

)

retu

i

1/ Deletes empty strings from slice
“fune celeceEmpey(s ...string) [lstring {

: var ¢ [Jstring

2
124

18

andon string from 5132
“Haikunator) randorst” Sinty.

1en(s) et

ize <0 T

return * ER S

B e

i s(h.Randos. Inta(size)]

Str = range s (
st ta g
© = append(r, str)

OEBPS/Images/image00128.jpeg
0 rokumtage - Moo Vo S L Ple B %
Do G ot G T G et A s b s+
T TR Py

package haikunator .

sco-n
by b 1 -

<import (

nath/rand T
“reges” S
“casting” SR

Sfune Testoefaultlie(t *testing.T) {
10 haikonstor = hew()
haiku := haikunator. Haskunate()

matched, err = regexp.atchstring("((?:[3-2](a-210)) () ((:[a-21(s

1 ifere bxnil

15 t.Error(err)

s [)

2.5 imatched (

1 . Error(*Regex did not match with: *, haiks)

3

func Testessa(t *testing.T) {
25 haikonator = Heu()
Raikunator Tokenex = true

haiku := haikunator Haikunate()

OEBPS/Images/image00127.jpeg
Options.

»

Search Opions (Cr

G o
4 Projects and Solutions
Genent
Suidsnd R
@Dt
Souce Contrl.
Woreme
Tottdtor
Dinizing
PedamakeTook
s Tos
ook
Gitibfor Vs St
Lve Uit Testing
Nodejs Tools.
NuGet acage Manages
PewsshllToos
WebPefomanceTest Tols
Wk Fors Deigie
S

Bojcsocaton
[Clserproge DocumentViuat S Prject]

Use projecttemplates location:
CAUsers\proge\ Documents\VisuslStudio 2017 Templates ProjectTemplates
090

Ui o brpltd s
[CAUsertproge\Documenta Vi Sdio 17 TempatedtermTempts |

2 Aways show Eto it b finishes ith ers
[Track Agtive tem in Solution Explorer

[Show advanced buid configurtions

A Absey sow sokion

[Save new projects when created

EAWorn yser whentheprcec ocation s not trsted
2 Show Qutput window when build stats

when ensming fles

Cancel

OEBPS/Images/image00126.jpeg
Appt

Enter your name:

OEBPS/Images/image00125.jpeg
e
el v b M g T
oo emwin-

e st

OP@E =54 00

et

PR

TR TE"

Pa B x
s -

R

plicationpagetack;
Center™>

name:/>
idth="200"/>

OEBPS/Images/image00124.jpeg
ot your name:

OEBPS/Images/image00123.jpeg
= — s
i %= HEtp3 /5 chemas microsof . con/winfx/ 2006/ xaml"

e tingiopi
el 6 oo mcrosoft. conexpress on/blend/ 008"
i mc e chene opamenLfoemo s o B iR compat AL/ 2906
kv controloeusing Herosort Toolkt-p.uT Controte-
||| S
L —
mappipesmie ikey-“pecple/>
Kipage.Resources>
KGrie bacapount (Thessesorce pplicationpagedackgroundThemsbrish} s
i
<sories
[amaser

OEBPS/Images/image00122.jpeg
EBPogeResiumcni] O %gtewne -
7 Sl ="ty /schenas. microsof con/expression/b1end/ 006"]
8 xnlns mc="http: //schenas. openxnl formats..org/markup- compat ibility/ 2006" £
9 nc:Ignorable="d">
0
1 <wage.Resources>
1 <oyapp:People x:Key="People”/>
13| eage.resourcess
1 <Grid Background"(TheneResource Applicat ionPageBackgroundThemetrush)®s
15 Bladecontrol />
w | e)

17 [</Poges st et e | 5 N i
1

] et s e e M— e

OEBPS/Images/image00121.jpeg
—d L L

% i ehenas microsaft. confuind

s 4 /47" Rename: local x
o 1| e - osie N e

) Lo "N/ schenss microsett.confexsrU LI

4 s ="ttt chenss openenlovasts. oy SRS

5 acigorablortics

"] rviewchanges

<Page.Resources> Rename wilupdate 2 eferences i 1 fle
4 eople xiKey="People”/>

</page.Resources> aopty | |

OEBPS/Images/image00120.jpeg
. | £ smiestocsl E

7 s e icresof comint (L =
. GG s ing: Ao Modtyany highighed oatonto begin renamig.

7 "Ntp:/schenas. microsoft..con/exp [e or

s {/5chenas .openxalforaats .o [ke

: sc:Tgnorable="d"> Briin e

15 cage.Resources>

Rename wilupdate 2 eferences n 1 fle-

</page Resources> dony_| -
e

OEBPS/Images/image00194.jpeg
G Crese Toie - ecrosch Vs St TR Ot Lonch 11 Pl= 8 x
Be 4 der bt B G Tum Oabbe Db Ao T Ao Mode b Anserion ol
GetEwo- b (B

Qe W
T [e [
CReATE TABLE [VS2o17succinctly]. dbel. HioinTable)
¢

(0] int,
{Chapter] char

OEBPS/Images/image00119.jpeg
| minsys

T
2 "App1.HainPage”
3 ‘http://schemas..microsoft . con/winfx/2006/xaml /presentation”

xmlns :x="http://schemas.microsoft.com/winfx/2006/xanl"
xmins: sys="using: System.Col Lections.Generic

Lend/2008"
compatibility/2006"

8 xmlns :mc:
9 e Tgnorabl e e v s

1B <Grid Backg TS “kgroundTheneBrush}">
12

13 </Grid>

14 [</page>

OEBPS/Images/image00118.jpeg
10
11
12
13

| </Page>

e S B
http://schemas.openxmlformats.org/markup®
mc:Ignorable="d"> i

<Grid Background="{ThemeResource ApplicationPageB:

<5
</Gri _ [

Spltview

136 % <] < AsssararsDaiSoi, Lo hansmins 4 &

OEBPS/Images/image00117.jpeg
04 WptApp1 (Running) - Microsoft VisuslStudio X
e G Vew Pt Bud Daup Tem Toos Achiecs Tt Rk A Wodw Hop
c- sR9-c-| Cotoce <[B, 5 0 ©

Process: (6332 Wpfapp1.exe |) fecycle Evens < Thes

| # Background
=I<Window x:Class="MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xar -
xmlns:x="http://schemas.microsoft.com/winfx/2006/x
xmlns:d="http://schemas.microsoft.com/expression/t:
xmlns:mc="http://schemas.openxmlformats .org/marku
mc:Ignorable="d"
Title="Mainkindow" Height Width="525">
<Grid Background="Red">
<StackPanel Ve &' Duifed anter”>
<Button Wif e ‘Click!” />

& Onngeted
2 PulelioleRed

O Locis Watch | QRN Gcsiocint Excepion setn

OEBPS/Images/image00116.jpeg
0 Consleapp2 - Micresot Vil St
Fe tt Vew Pried Bl Debig Tam Tk Adiscise Tet Rlook Aubie Widow Hep
- B-2BP| 9 = | Debug - AnyCPU | ConsoleApp2 - b St~

persont.cs Pesoncs Personcs Modulelvb

|
-k private enum TestEnum i

© FxName Violtion:testEnum | » | 4, IDE1005 Naming ol ilation: The fist word, TestEnumy, must begin
1 e witha lower case chaacter
11 Move type to Program TestEnum.ce

196 % - Suppress IDE1006 by

Srivate enm feriinn

i
Erivesouton - || Ofor | 4, 1wal
: e

Sesrch rror
Code Description Project Fie Line Suppresion Sate

Naming e violtin:
The it word,

4 IDEIO0S Testum, must begin Consalepp2 Progam.cs & Aave
withalower case
char

OEBPS/Images/image00115.jpeg
Options.

Search Options (Cue

b Basic
ace
General
ScrolBars
Tobs
Advanced
4 Codestyle
Geners!
b Formatting
Naming
Inteliense
=S
Coffeescipt
css
Django Template
Dockerfle
r
Fsharpnteractve
HaL
HIML
HIML (Web Forms)

Reorder Specication

Interface ~
[2]0¢] [vwes =
| AyncMethod -

Non-Fied Membe,

soie
Seginsvith
Puscal e
Ende with Aoy
Puscal Cae

[+1 roctnms [condcane

] i | (]

Cancel

OEBPS/Images/image00114.jpeg
Naming Style
Naming Sty Tate: Camel Case
Reaquired Prefc
Required Sufoc
Word Separstor:

Coptatnion [St

S et [sarsietoenivier

OEBPS/Images/image00113.jpeg
Symbol Specifcation

Symbol Specicaton Tt PrivateEnums ’

Symbol Kinds (can match any)

s
Ol
O imeace
Zlenom
O ropety
O menod
Cfes
et
O s

Accesibiities (can match any)

0 public
Clintemal
 pre

[protected

] proteced ntemal

Modifers (must match)

[abstnct
Casyne
Oeomt
[resdenty
Csutic

[setect "] [[Deselectan |

[seectai | [peselectan |

[ox] [Cene]

OEBPS/Images/image00112.jpeg
Manage Specifcations X

Eent

Method
Prvate Method
Rosact ethod
SuicMethed B
Ao iethod

Propery

Putiic o rotected ied
SttcField
Privateornternal ied
Prvate orntemal Static ied

EEEEE®

Tpe:
Non-Field Members

5]

OEBPS/Images/image00111.jpeg
Options.

Search Options (Cut

b Basic
ace
General
ScrollBars
Tobs
Advanced
4 Codestyle
Geners!
b Formatting
Naming
Inteliense
s
Coffeescipt
css
Django Template
Dockerfile
"
Fsharpnteractve
HaL
HIML
HIML (Web Forms)

Specicton sy
e T

[[oe= ~[Pascicese
Aoctiaod | Endswin e

Non-Field Membe. | Pascal Case

] s e

Cancel

OEBPS/Images/image00110.jpeg
Options

Search Options (Cu-E) £ | [eweblockonsingielne
Leave stotements and member decarations on the ame ine

[public nt Foo
€

i

Bt set;

Namina v

OEBPS/Images/image00149.jpeg
O Wotage! Debuggos) - Mcrosh Vo o Ya £ SRR
B b Yo Domd B Dy Tom Tes e Y Aon e e Mmtusson - il
° cawo- b Coten- |, L0 8 6] 6] %7 $5E
e (570 oo e e 8t B

[Wl Marindon [Cutonttonad

private async void button Click(object sender, Routect

anait LoadAsync();
i

private async Task LoadAsync()

{

string url

HetpClient client = new HttpClient();

string result

OEBPS/Images/image00148.jpeg
h ERCE]

O Wptagp! Debugges) - Macroseh Vs St
B G Yoo foxa B4 Qe Ton b Apete Tt A Wk Hp Aenobdioe
° BT N
Fncas 57 Wpigpioe - Tt 908t T v

rivate async vold Bitton_Click(object sandir, Rovtel

¢ 1

await LoadAsync();
3

private asyne [fazk Losdasync()
<
string url

HetpClient client = new HetpClient();

string result = await client.GetstringAsync(url);

[31] XDocunent doc = Xbocunent. Parse(result);

OEBPS/Images/image00147.jpeg
VSIXProjectt Projec Propetes B

‘Copy Buid Output to Output True

Copy Debug Symbols to Ouy Fase
= Misc

Proect File VSitProject cprej

ProjectFoder Cusesiproga\documentsviual
& Ngen

Ngen Fabie

Ngen Application

Naen Archtecture NotSpeciied

Ngen Priory 3
& vsix

Generste phodefFle Toe

Include Assemblyn VX Cor True
Include Debug Symboks n Lo True
Include Debug Symbolsin VS True.
IntallRoot Detault
VSIXSub Path

Advanced

OEBPS/Images/image00146.jpeg
‘Add New Prerequisite

Nome:

Yerson:

115025%042,160)

=

OEBPS/Images/image00145.jpeg
o]

Fe e
o-

prodctame:

Product:

Metsgts
ot Targts

Dependencies

VPt

vspcict

Vew Projet Buld
-t

| £
Tt Anabe
b osune|

T Tooi

ey -

Detug Aenectae Vindow Help

< bebug -

At New Preceunite

Name |
e Compi Bt
Ao Dt ok Toe
Ao s o NET
e Rescuce Managetols
Aewe Stnge Emultor
Bendfor VS
& Vs Basic
& and Vs Basic Rosyncempiers
ClosDesger
ClckOnce Pulihing
Cloudbplres
L8 dt pesor S Sener
CodeCane
Cotebop
Common e tecs
Contiuous DeineyTo for Vol St
Cookiscuteremple suppet
Cordova 631 tooket

£ - B x
Heansovesee - il

OEBPS/Images/image00144.jpeg
D VSOXPrject! - McrosotVisul St YR &£ QuckLovnch (o P - B x
Be G Yoo Pt G Deg Tem ook Achetwe Tt Amie Wdow Hop AesandoDaso - il
©-0/ 8- M9 [omg [amou - bsws| g,

fndowiConrosaml Gt Stated

Producttame, V800t pan Ao Daso

Produetp VSIPiectAlesondro O Sledck3s3-S3c-Ae b2 1ZETISS 1

oo

Mesdis

\esionfange e

(g g ——1
o

A

Dependencies N

OEBPS/Images/image00143.jpeg
tenions snd Updotes
+ s
4 oine
© Vot o Gy
+ Sample aery
+ g)
+ Rosming Etion Mg

ey i i Upbs i

Sony Mot gl =

SQLie for Universl Windows Patform
Salkes s slte by ot mplements s cntined
e et oy e L o 550t

Image Optimizer
sy oo et oy FEG NG 3 s
e e G o 4 e g s pemion

Bundier &t Miniier [
s gyl oy i 5

File cons
e Con o e ot e ot iy et Gl

Syntax Highighting Pack
syt gt s gt gt o s vide oy o
Drsenmng oo o ot g G e Lo St R

Open Command Line
Gpene o I st ot f e gt Soppn o s
o 1 D, P B P P

SLie for Windows Runtime
Sl sevwe Wt e e cotied
R

X

i iy e B+

P —
Ve 18
Dot 155
e

v

Schetted For ot
Mukdountter X
Schetled orUpioe:
it Gtensan o VSt X
[

P PR e ——y o]

OEBPS/Images/image00142.jpeg
‘tensons and Updates

+ sates

+ onine

+ tpaes)

4 Rouring aemion anagr
n

gl o s U i

Sonty Mot =

S5 Workflow Manager Actities
L T puctage ot the s s S
Componn o Weri Mg

egon

BB VAT S e e

‘Asure 4D Authentication Comnactad Service
Proideshe wasdtocobigu e A0 stheracson oie
SonOn b et

| Asure Data Lake Tool for Visual Studio
B3 by s e o

Command Bus, EventStream and Async Manager
Prorses Commandbo enSuca nd hyncanogr VEE
e o oo S o componets .

Developer Ansiytics Tools
Sopicton s A5 Sttt o Hocke

1, s eonfor Vi suie
P st eron s o b o ot Vil
S

=] Live Unt Testing Package
5 Commoous e o o Vil B

. Locayvtted exterion

X%

YR

Coldnetnetoond ot sy

OEBPS/Images/image00141.jpeg
Connect to a Project

i i
% I 0ok com (st ccoom)

Add TFS Server | Refresh

Enter server URL
19268140

hitp//19268.1405080fs

i

it b

suslstudio com

< B VyFes bt
223/ st et

> © [<oocom

Cancel

OEBPS/Images/image00140.jpeg
Connect to a Project

Showing hosted repositories for:

% I oo ookcom (Moot ceount -

Add TFS Server | Refresh
to filter the list P

[-

 First Projct
95/My First Projct

Y ——

Cancel

OEBPS/Images/image00139.jpeg
Show outputfrom: Build
hello world from Visual Studio 2017

Buid succeeded.|

Error List Kooy

OEBPS/Images/image00138.jpeg
From haikunator inport Haikunator #

snal seed

default usage
name = haikunator. haikunate()

print(name)

OEBPS/Images/image00137.jpeg
0 e B AVt e B Pl= @i
Bk G e e em e e e doue e el
o caw #{> e 1m0 D

S Oetpmne s s T i e e it

et random elenent from sering or list

paran s: Elesent
type ¢ ste or list
rtype: str

if len(s)
return

return 2e1f.randon.choice(:)
T o e i et v ik N e it A 7

OEBPS/Images/image00136.jpeg
O Dby P W o e B S
cuwo .

Fron haikunater fnport Waikunater

Raikunator = Haikunator()
haikunator - Hoikunator(seed='randon seed") # optional sesd

» default usage
nane = hathunstor. haikuns

print (nsne)]

OEBPS/Images/image00135.gif
| P Current Document(Startup.py) ~

OEBPS/Images/image00134.jpeg
Python Envir -

Anaconds 420 =
Comtium Ansytcs, nc

Go i and help me find ather enironments

+ Custom.
Ovenven @

1 Tisis the defalt enironmen for new projects

@ vt the dsibuors wesste

Openinteactvewindow
£ Bplorenteracive scrpts
0] Use Python iterctive mde.

B0 Open in Pomesshell
88 CProgram Fie\Pythonsh

3 CaPragiam Fles\Python3python.cie
3 CaPragram Fles\Python3sigythonw.cre

Python Environments [Tz

OEBPS/Images/image00133.jpeg
Q) hikunstopy - Micreso Vsl Stucio L

Be

s

o D Tam Tk Tt Aviae Medow Hp

DS B|D - B b ConeeDscamenteise -

import sys
import unittest

#rom haikunator import Haikunator

|

I et Inittest.TestCase):
P ks ez 0
o oon ‘Regexp = self assertReger
et d ‘Regexp = self.assertRege)
mmmnmmmnmum
o moce e,
“ger test_general runctionality(self):
tests = [

[}, ‘[a-2]+-[a-z]+-[0-9]{4}$"],

[{'token hex': True}. ‘fa-zl4-fa-214~

OEBPS/Images/image00132.jpeg
0 ooy Mo iy

class paunstorrests nittese Testcase):
Gt satip(icin)
i syavarsion info > (3,
L eeserineges
oo
o1t asserchagep = selt assartRegepitches

sssartagex

a0t et _genars]_functionaity(:e10):
ey
10, “Ta-s1e-la
1 token_hex

True), anzle- (ool
105')

[{"token_lengen': o, “selinicer
token ehars's '), “lavalosfaszio- (a8)

Scow -0

OEBPS/Images/image00131.jpeg
Q) bt - Mresh Ve S Ld
Be 4 Yo bt Dom Tem Dok e Ao der Mo
00 Bt MM D St [

package haikunator

3 cimport (
3 “math/rand”
s “regexp”
s

esting”

)

s
9 =func init() {

b

OEBPS/Images/image00130.jpeg
O heiunatorg - Micresot Vs St ¥ £ o
Be 9 Yer Powt Do Tem Ik Ter A Mndew b
098-S MWD || sekaspten - . n x

package haikunator +

1
2

3 =import (

a “math/rand"
s “regexp”

s “testing"
7

8

s

1o, =N

e ing.T) {
2 [Qm
1B o= «unate()

OEBPS/Images/image00089.jpeg
Quek Lounch (-3 P I=S O

B st e Mcroseh Y st
Do G G Dot G Tem I Agaee Tot o Weier Hop etmisn - o]
geeaw e

Get Started Opan)
=SS ST Developer News.
e — SRR

breepogemsae:

[Ep——— e

OEBPS/Images/image00088.gif

OEBPS/Images/image00087.jpeg
o4 Visual Studio
e
€9 Visual Studio Enterprise 2017 RC.
o
i

sattle

€3 Vi St Commonty 20175

€9 Vi St rfesions 207 R

Welcome!

oo I

St

sl

OEBPS/Images/image00086.jpeg

OEBPS/Images/image00085.jpeg

OEBPS/Images/image00084.jpeg
» odejs deopmers
> B storge s prcesivg

 Nobie deiopment it .
[

OEBPS/Images/image00083.gif

OEBPS/Images/image00082.gif

OEBPS/Images/image00081.jpeg

OEBPS/Images/image00169.jpeg
New Cros Pltform App - App3

Sdecta Tempie

UlTechoiony Sharing
+ ShwedPrjecs

A mster dtsiempewih XamainForms.
rty e on o o ot O, g
Code ing a shred vt projct.

s s s e st h

ReguresVun S 201 Updte 2.1
e

Microott Asre
[Hostinthe deud

OEBPS/Images/image00168.jpeg
NewProgect T X

» et T Famencrk 461 < Sy D g Sewch nsaied Tmpins €U, P

— ERE— -
4 Templates 1 @

e o o appnciing
ics B oty Damainsoms) Viuica Ao 105 nd Wados
¥ Offcesit

Vindows Unnesal [GR] e camsnute cross st Vil G
Vindous i Detep
s
o e
ooy
e
wer
orton
+ Vi

-
menpropdocamrit woto B - [oom]
= @ e g e stin

) e Gt epestory

[][cma |

OEBPS/Images/image00167.gif
|#M.ieox¢A

b Rippl - News (Gaary)

Install Android build tool...
VS Emulator 7" KitKat (44) XHDP! Tablet
VS Emulator 5° Ktk (4.4) XXHOPI Phone
| Ripple - News (Galaxy)

A Ripple - News 7 (Tablet)

o Ripple- Newss

OEBPS/Images/image00166.jpeg
e port Adp\acreeont. (spates hie)
et sapi\Rcr e uobetes fe)

OEBPS/Images/image00165.jpeg
0 Westbrigp Bammio) - Mirsch Voo (0 & £ =0 x

o e e e S
Anthze Window Help. -~

P IER .

F
< |- :

2

OEBPS/Images/image00164.jpeg
8 dop Anays ovenew| X

o

[—————————— |

Z o -
Accessibility: UIA elements with no name

KA you canproveea name by setingAvomstonoperes e,
Mary atomaton pets prove s detat name o UA
Automacrcpaiestome s eset.

Impact
143 esch i ent it 1 e,y e il v 50 vy
g e dment e

Cause

Bements A name s o empty. T ke chcks wht Ui sees o the
e ot he AomstonSopertes ame.

Solution

St the Automatondroperte Name popery n h contrors AML 130
sopoptat coes s,

P ————————
Ut st o Yoo Bt 00 by
Mmoot ot

OEBPS/Images/image00163.jpeg
£ Select Tools ~ | & Zoomin & Zoom Ot
Disgnostic sssion: 44 seconds

[e 1
vents

o[T
4

8]
Summay e

Search Events

Event Time Durati

Element of type ListView is
using an item: panel o type
StackPanel n ltemsPanel that

@ does not support 3208
virtualization.

More information on this

Element of type

Windows.Ul XamlControls i

StView has ULA name that is

ull or empty.

More information on this

3300

OEBPS/Images/image00162.jpeg
[seectTols = | & Zoomin & 2Zoom Ot Tt Vi

OEBPS/Images/image00161.jpeg
0 g2 Mcroroh Ve st Yo & Ll=TiEg

BooG fe boe e Qe Ten Do gwese Te Ao dndos b esaseoasie - ol
0.5 -t ae D - - b Lot 5

] Aopiication Visual Assets Capabilies Declrations Content URIs _ Packaging

Sranie

Mediom Tie
s

OEBPS/Images/image00160.jpeg
O 2ep2 - Mhccrot ot S Yo &
B oG Ge e e G Ten Do gwese Te Ao dndos b oot =
0-cla-t e D - - b Looitirme < 5

Application. _ Visual Assets Capablties _ Declarations Content URIs _ Packaging

Al Visual Assets

inton S s shd e s o St hns Wi

« Asset Generator

soen [P e——

P e

setogs
+ Dislay Setings

Somvane] e P

> Previen images

OEBPS/Images/image00170.jpeg
New CrossPlatiorm App - Appé x

St Tempe

A cross o templt fr b s

- i

MaserDets Bk g

UlTechiogy Sharing Microsoft Arre
 fomrs O S projcts Hostinthe doud

OEBPS/Images/image00171.jpeg
85| = | osonim
Pepeny
PRy

Pre R —

Prrwowme——y

a

M e i
Sl ey e
Bundeverion

ee
Nomber

g

sy
g
g
sung

sung
i

peid
sng
i
sing
sung
i
s
g
et

s B
sttt
Lndsap o)
Lonscap s o)
P ——
et tep bt
Loap e o)
Undicap 5 i)

“
sost
comyoucampan 352
stz

Py

e

[

oo

oo sngc
[

Ot orrassze
Pty

Jeon St 0021

o Smat 095

con St

e St

o Smae3e

OEBPS/Images/image00159.jpeg
Taostions (cotecion) (]
Uetopoutoundog a
UseSystemFocusVisuals a
Vercaigrment W .
VericalContentalge.. TF [##] 11 1T a
vy I
wan I ——T1]
Wrocdom [elo
Hibocsiet [Eele ¢
Xffocuight [elo |
ot [enle ¥

OEBPS/Images/image00158.gif
Device Preview Settings

High Contrast
Theme.

Clip to display

[Default

Light

oK

Cancel

OEBPS/Images/image00157.jpeg
New Universal Windows Project

Choose thetarget and minimum platform versions thatyour Universal Windows applicaton willsupport.

Targt Version Windows 10 Anniversary Editon (100 Build 14393) Y]
Minimum Version | Windows 10 (10,0, Build 10596) 5

Which version should | chooze?

=

OEBPS/Images/image00156.jpeg
0 Comalp! - Mt Vo Sk

0SB ERRID S Lo Loy bl L3RR
[Dcomsien e ooy
s eTass Pesgrin 4
" ¢ g
n static void Main(stringl] args)
2 i
% var th = new Rectanglenelpers();
- dousle result = rh.Calculatearea(19, 10);
)
3
e public class Rectangleneipers
1 B
ZB 1/ carcutate the area of 3 recta
1 fex public double CalculateArea(double width, douslc
2 t
3 ||x return width * height;
b
s ¥

OEBPS/Images/image00155.jpeg
O Conolenpp! - Mcroi ous St
e G Gew e R4 Qe Tem Jeh Mwese Tt e ledor bt

050 S B 0w Oy b i3 a0
cencio! B przmerm——— 5

75 namespace Consolenppi

i { &

o & class progras

" {

0 ge static void ain(string(] args)

1 (|

i | var o = new Rectanglevelpers();

u |[= double result = rh.Calculaterrea(1o, 10);

it }

s)

s public class Rectanglenelpers

j

o 1/ Calculate the area of a rectangle

a i public double Calculaterrea(double width, double height)

(

return width * helght;

OEBPS/Images/image00154.jpeg
Create Unit Tests

TestFamevor

TestProject:
Name Formatfo Test Project:
Namespace:

OutpuFie

Name Formotfor TestClss.

Name Formatfor Tst Method:

Code forTest Mot

MTesn2

e Tet Projects
ProjecTets
[Nomespacel Tests
NewTes Fie>
(Clossests
MethodiTet

Basertfiure

o e

OEBPS/Images/image00153.jpeg
Edit Conditions

Break executon when the exception “Type" s thiown and thefollowing conditions aresatisfed fo thelocation o th thrown
exception. You can use wildeards () to broaden the condition, €3 *AppModule

Type: System.O FileNotFoundException

Bresk When:
Module Name “| | Not Equals ~] [Comscleapplcationt.exe x
And | Module Neme. ~| [€qu | [MyLibrary.dil x
Add Conition.

ok | [conce

OEBPS/Images/image00152.jpeg
QuickWatch

e
Value:

Name Tvaise
Sexception

— — (e
£ FieName | null
£ Fusionlog | null
F Rt |

¥ Helplink——nul L
M

OEBPS/Images/image00151.jpeg
D ConsoleApp (Debugging) - Microsot Visul St LR Q P - B x
Be [Ver Buet Bud Doug Tom Dok Ao Tat A Wnde b Aeandoddsoe - i
0.0 i-mmw[9-c- > Sonime- [4,0 1 m OG>t 7

Procss: (6140]Conslenppl.xc - ot = Thied: [508] Moin Thesd -

5 Comoldge |5 Comoesgp1 ragm
3 IF (File.Exists("c:\\test. txt")

31 {
® 32

33 ¥
3% Excepton Unhandied -x

= - REadLIAG0)S SOt et s et
36 o acegtion
5 ArgunenEsception Value doss ot fl itk the xpected ange.

38

39 4 Eucepionsetings

Beskwnen s exeption e s o
@ Exceptwhen e o,

Open ExceptionSttnge | it Conditions

OEBPS/Images/image00150.jpeg
mﬁ

Diagnostics session: 19 seconds (19,347 5 selected)

L. e |

4 vents
n/

| |
. | |
&) |]

4 Process Memory (MB)
T S

”

o 0
all processors)

Summary Events Memory Usage CPU Usage
Events

= Show Events (6016)
@ Exceptions (301 3)
@ InteliTrace Events 2 of2)
3 Ul Anaysis Events (1 0f 1)
Memory Usage
8 Toke Snapshot
CPUUsage
 Disable CPU Profiing.

