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A Note To The Instructor... 

The solutions here are somewhat brief, as they are designed for the instructor, not for the student. 

Check with the publishers before electronically posting any part of these solutions; website, ftp, or server access must be restricted to your students. 

I have been somewhat casual about subscripts whenever it is obvious that a problem is one

dimensional, or that the choice of the coordinate system is irrelevant to the numerical solution. 

Although this does not change the validity of the answer, it will sometimes obfuscate the approach

if viewed by a novice. 

There are some traditional formula, such as

v2 = v2 + 2a

x

0x

xx, 

which are not used in the text. The worked solutions use only material from the text, so there may

be times when the solution here seems unnecessarily convoluted and drawn out. Yes, I know an

easier approach existed. But if it was not in the text, I did not use it here. 

I also tried to avoid reinventing the wheel. There are some exercises and problems in the text

which build upon previous exercises and problems. Instead of rederiving expressions, I simply refer

you to the previous solution. 

I adopt a different approach for rounding of significant figures than previous authors; in partic-

ular, I usually round intermediate answers. As such, some of my answers will differ from those in

the back of the book. 

Exercises and Problems which are enclosed in a box also appear in the Student’s Solution Manual

with considerably more detail and, when appropriate, include discussion on any physical implications

of the answer. These student solutions carefully discuss the steps required for solving problems, point out the relevant equation numbers, or even specify where in the text additional information can be

found. When two almost equivalent methods of solution exist, often both are presented. You are

encouraged to refer students to the Student’s Solution Manual for these exercises and problems. 

However, the material from the Student’s Solution Manual must not be copied. 

Paul Stanley

Beloit College

stanley@clunet.edu
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E25-1

The charge transferred is

Q = (2.5 × 104 C/s)(20 × 10−6 s) = 5.0 × 10−1 C. 

E25-2

Use Eq. 25-4:

s

(8.99×109N·m2/C2)(26.3×10−6C)(47.1×10−6C)

r =

= 1.40 m

(5.66 N)

E25-3

Use Eq. 25-4:

(8.99×109N·m2/C2)(3.12×10−6C)(1.48×10−6C)

F =

= 2.74 N. 

(0.123 m)2

E25-4

(a) The forces are equal, so m1a1 = m2a2, or

m2 = (6.31×10−7kg)(7.22 m/s2)/(9.16 m/s2) = 4.97×10−7kg. 

(b) Use Eq. 25-4:

s

(6.31×10−7kg)(7.22 m/s2)(3.20×10−3m)2

q =

= 7.20×10−11C

(8.99×109N·m2/C2)

E25-5

(a) Use Eq. 25-4, 

1

q1q2

1

(21.3 µC)(21.3 µC)

F =

=

= 1.77 N

4π0 r2

4π(8.85

(1.52 m)2

12

×10−12 C2/N · m2)

(b) In part (a) we found F12; to solve part (b) we need to first find F13. Since q3 = q2 and

r13 = r12, we can immediately conclude that F13 = F12. 

We must assess the direction of the force of q3 on q1; it will be directed along the line which

connects the two charges, and will be directed away from q3. The diagram below shows the directions. 

 F 23

 F
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 12

 F 23
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 12

 net

From this diagram we want to find the magnitude of the net force on q1. The cosine law is

appropriate here:

F

2

net

=

F 2 + F 2

12

13 − 2F12F13 cos θ, 

=

(1.77 N)2 + (1.77 N)2 − 2(1.77 N)(1.77 N) cos(120◦), 

=

9.40 N2, 

F net

=

3.07 N. 

2

E25-6

Originally F0 = CQ2 = 0.088 N, where C is a constant. When sphere 3 touches 1 the

0

charge on both becomes Q0/2. When sphere 3 the touches sphere 2 the charge on each becomes

(Q0 + Q0/2)/2 = 3Q0/4. The force between sphere 1 and 2 is then

F = C(Q0/2)(3Q0/4) = (3/8)CQ2 = (3/8)F

0

0 = 0.033 N. 

E25-7

The forces on q3 are ~

F31 and ~

F32. These forces are given by the vector form of Coulomb’s

Law, Eq. 25-5, 

~

1

q3q1

1

q3q1

F31

=

ˆ

r31 =

ˆ

r31, 

4π0 r2

4π (2d)2

31

0

~

1

q3q2

1

q3q2

F32

=

ˆ

r32 =

ˆ

r32. 

4π0 r2

4π (d)2

32

0

These two forces are the only forces which act on q3, so in order to have q3 in equilibrium the forces must be equal in magnitude, but opposite in direction. In short, 

~

F31

=

−~F32, 

1

q3q1

1

q

ˆ

3q2

r31

=

−

ˆ

r32, 

4π0 (2d)2

4π0 (d)2

q1

q

ˆ

2

r31

=

−

ˆ

r32. 

4

1

Note that ˆ

r31 and ˆr32 both point in the same direction and are both of unit length. We then get

q1 = −4q2. 

E25-8

The horizontal and vertical contributions from the upper left charge and lower right charge

are straightforward to find. The contributions from the upper left charge require slightly more work. 

√

√

The diagonal distance is

2a; the components will be weighted by cos 45◦ =

2/2. The diagonal

charge will contribute

√

√

1

(q)(2q)

2

2 q2

F

ˆ

ˆ

x

=

√

i =

i, 

4π0 ( 2a)2 2

8π0 a2

√

√

1

(q)(2q)

2

2 q2

F

ˆ

ˆ

y

=

√

j =

j. 

4π0 ( 2a)2 2

8π0 a2

(a) The horizontal component of the net force is then

√

1

(2q)(2q)

2 q2

F

ˆ

ˆ

x

=

i +

i, 

4π0

a2

8π0 a2

√

4 +

2/2 q2

=

î, 

4π0

a2

=

(4.707)(8.99×109N · m2/C2)(1.13×10−6C)2/(0.152 m)2î = 2.34 Nî. 

(b) The vertical component of the net force is then

√

1

(q)(2q)

2 q2

F

ˆ

ˆ

y

=

−

j +

j, 

4π0

a2

8π0 a2

√

−2 + 2/2 q2

=

ˆj, 

8π0

a2

=

(−1.293)(8.99×109N · m2/C2)(1.13×10−6C)2/(0.152 m)2ˆj = −0.642 Nˆj. 

3

E25-9

The magnitude of the force on the negative charge from each positive charge is

F = (8.99×109N · m2/C2)(4.18×10−6C)(6.36×10−6C)/(0.13 m)2 = 14.1 N. 

The force from each positive charge is directed along the side of the triangle; but from symmetry

only the component along the bisector is of interest. This means that we need to weight the above

answer by a factor of 2 cos(30◦) = 1.73. The net force is then 24.5 N. 

E25-10

Let the charge on one sphere be q, then the charge on the other sphere is Q = (52.6 ×

10−6C) − q. Then

1

qQ

=

F, 

4π0 r2

(8.99×109N·m2/C2)q(52.6×10−6C − q) = (1.19 N)(1.94 m)2. 

Solve this quadratic expression for q and get answers q1 = 4.02×10−5C and q2 = 1.24×10−6N. 

E25-11

This problem is similar to Ex. 25-7. There are some additional issues, however. It is

easy enough to write expressions for the forces on the third charge

~

1

q3q1

F31

=

ˆ

r31, 

4π0 r231

~

1

q3q2

F32

=

ˆ

r32. 

4π0 r232

Then

~

F31

=

−~F32, 

1

q3q1

1

q

ˆ

3q2

r31

=

−

ˆ

r32, 

4π0 r2

4π

r2

31

0

32

q1

q

ˆ

2

r31

=

−

ˆ

r32. 

r2

r2

31

32

The only way to satisfy the vector nature of the above expression is to have ˆ

r31 = ±ˆr32; this means

that q3 must be collinear with q1 and q2. q3 could be between q1 and q2, or it could be on either

side. Let’s resolve this issue now by putting the values for q1 and q2 into the expression:

(1.07 µC)

(−3.28 µC)

ˆ

r31

=

−

ˆ

r32, 

r2

r2

31

32

r2 ˆ

r

ˆ

r

32 31

=

(3.07)r231 32. 

Since squared quantities are positive, we can only get this to work if ˆ

r31 = ˆr32, so q3 is not between

q1 and q2. We are then left with

r2 = (3.07)r2 , 

32

31

so that q3 is closer to q1 than it is to q2. Then r32 = r31 + r12 = r31 + 0.618 m, and if we take the square root of both sides of the above expression, 

p

r31 + (0.618 m)

=

(3.07)r31, 

p

(0.618 m)

=

(3.07)r31 − r31, 

(0.618 m)

=

0.752r31, 

0.822 m

=

r31

4

E25-12

The magnitude of the magnetic force between any two charges is kq2/a2, where a =

0.153 m. The force between each charge is directed along the side of the triangle; but from symmetry

only the component along the bisector is of interest. This means that we need to weight the above

answer by a factor of 2 cos(30◦) = 1.73. The net force on any charge is then 1.73kq2/a2. 

The length of the angle bisector, d, is given by d = a cos(30◦). 

The distance from any charge to the center of the equilateral triangle is x, given by x2 =

(a/2)2 + (d − x)2. Then

x = a2/8d + d/2 = 0.644a. 

The angle between the strings and the plane of the charges is θ, given by

sin θ = x/(1.17 m) = (0.644)(0.153 m)/(1.17 m) = 0.0842, 

or θ = 4.83◦. 

The force of gravity on each ball is directed vertically and the electric force is directed horizontally. 

The two must then be related by

tan θ = F E/F G, 

so

1.73(8.99×109N · m2/C2)q2/(0.153 m)2 = (0.0133 kg)(9.81 m/s2) tan(4.83◦), 

or q = 1.29×10−7C. 

E25-13

On any corner charge there are seven forces; one from each of the other seven charges. 

The net force will be the sum. Since all eight charges are the same all of the forces will be repulsive. 

We need to sketch a diagram to show how the charges are labeled. 

2

1

4

6

7

3

8

5

The magnitude of the force of charge 2 on charge 1 is

1

q2

F12 =

, 

4π0 r212

where r12 = a, the length of a side. Since both charges are the same we wrote q2. By symmetry we

expect that the magnitudes of F12, F13, and F14 will all be the same and they will all be at right

angles to each other directed along the edges of the cube. Written in terms of vectors the forces

5

would be

~

1

q2

F

ˆ

12

=

i, 

4π0 a2

~

1

q2

F

ˆ

13

=

j, 

4π0 a2

~

1

q2

F

ˆ

14

=

k. 

4π0 a2

The force from charge 5 is

1

q2

F15 =

, 

4π0 r215

and is directed along the side diagonal away from charge 5. The distance r15 is also the side diagonal distance, and can be found from

r2 = a2 + a2 = 2a2, 

15

then

1

q2

F15 =

. 

4π0 2a2

By symmetry we expect that the magnitudes of F15, F16, and F17 will all be the same and they will

all be directed along the diagonals of the faces of the cube. In terms of components we would have

√

√

~

1

q2 



F

ˆ

15

=

j/ 2 + ˆ

k/ 2 , 

4π0 2a2

√

√

~

1

q2 



F

ˆ

16

=

i/ 2 + ˆ

k/ 2 , 

4π0 2a2

√

√

~

1

q2 



F

ˆ

17

=

i/ 2 + ˆj/ 2 . 

4π0 2a2

The last force is the force from charge 8 on charge 1, and is given by

1

q2

F18 =

, 

4π0 r218

and is directed along the cube diagonal away from charge 8. The distance r18 is also the cube

diagonal distance, and can be found from

r2 = a2 + a2 + a2 = 3a2, 

18

then in term of components

√

√

√

~

1

q2 



F

ˆ

18 =

i/ 3 + ˆj/ 3 + ˆ

k/ 3 . 

4π0 3a2

We can add the components together. By symmetry we expect the same answer for each com-

ponents, so we’ll just do one. How about î. This component has contributions from charge 2, 6, 7, 

and 8:

1

q2  1

2

1 

+ √ + √

, 

4π0 a2

1

2 2

3 3

or

1

q2 (1.90)

4π0 a2

√

The three components add according to Pythagoras to pick up a final factor of

3, so

q2

F net = (0.262)

. 

0a2

6

E25-14

(a) Yes. Changing the sign of y will change the sign of Fy; since this is equivalent to

putting the charge q0 on the “other” side, we would expect the force to also push in the “other” 

direction. 

(b) The equation should look Eq. 25-15, except all y’s should be replaced by x’s. Then

1

q0 q

Fx =

. 

4π0 xpx2 + L2/4

(c) Setting the particle a distance d away should give a force with the same magnitude as

1

q0 q

F =

. 

4π0 dpd2 + L2/4

This force is directed along the 45◦ line, so Fx = F cos 45◦ and Fy = F sin 45◦. 

p

(d) Let the distance be d =

x2 + y2, and then use the fact that Fx/F = cos θ = x/d. Then

x

1

x q0 q

Fx = F

=

. 

d

4π0 (x2 + y2 + L2/4)3/2

and

y

1

y q0 q

Fy = F

=

. 

d

4π0 (x2 + y2 + L2/4)3/2

E25-15

(a) The equation is valid for both positive and negative z, so in vector form it would read

~

1

q0 q z

F = F ˆ

ˆ

z k =

k. 

4π0 (z2 + R2)3/2

(b) The equation is not valid for both positive and negative z. Reversing the sign of z should

√

reverse the sign of Fz, and one way to fix this is to write 1 = z/ z2. Then





~

1

2q0 qz

1

1

F = F ˆ

ˆ

z k =

√

− √

k. 

4π0 R2

z2

z2

E25-16

Divide the rod into small differential lengths dr, each with charge dQ = (Q/L)dr. Each

differential length contributes a differential force

1

q dQ

1

qQ

dF =

=

dr. 

4π0 r2

4π0 r2L

Integrate:

Z

Z

x+L

1

qQ

F

=

dF =

dr, 

x

4π0 r2L

1

qQ  1

1



=

−

4π0 L

x

x + L

E25-17

You must solve Ex. 16 before solving this problem! q0 refers to the charge that had been

called q in that problem. In either case the distance from q0 will be the same regardless of the sign of q; if q = Q then q will be on the right, while if q = −Q then q will be on the left. 

Setting the forces equal to each other one gets

1

qQ  1

1



1

qQ

−

=

, 

4π0 L

x

x + L

4π0 r2

or

p

r =

x(x + L). 

7

E25-18

You must solve Ex. 16 and Ex. 17 before solving this problem. 

If all charges are positive then moving q0 off axis will result in a net force away from the axis. 

That’s unstable. 

If q = −Q then both q and Q are on the same side of q0. Moving q0 closer to q will result in the

attractive force growing faster than the repulsive force, so q0 will move away from equilibrium. 

E25-19

We can start with the work that was done for us on Page 577, except since we are

concerned with sin θ = z/r we would have

1

q0λ dz

z

dFx = dF sin θ =

. 

4π

p

0 (y2 + z2)

y2 + z2

We will need to take into consideration that λ changes sign for the two halves of the rod. Then



! 

q

Z

0

Z

L/2

0λ

−z dz

+z dz

Fx

=

+

, 

4π0

−L/2 (y2 + z2)3/2

0

(y2 + z2)3/2

q

Z

L/2

0λ

z dz

=

, 

2π0 0

(y2 + z2)3/2

L/2

q0λ

−1



=



, 

2π

p



0

y2 + z2 0



! 

q0λ

1

1

=

−

. 

2π

p

0

y

y2 + (L/2)2

E25-20

Use Eq. 25-15 to find the magnitude of the force from any one rod, but write it as

1

q Q

F =

, 

4π0 rpr2 + L2/4

where r2 = z2 + L2/4. The component of this along the z axis is Fz = F z/r. Since there are 4 rods, 

we have

1

q Q z

1

q Q z

F =

, =

, 

π0 r2pr2 + L2/4

π0 (z2 + L2/4)pz2 + L2/2

Equating the electric force with the force of gravity and solving for Q, 

π0mg

p

Q =

(z2 + L2/4)

z2 + L2/2; 

qz

putting in the numbers, 

π(8.85×10−12C2/N·m2)(3.46×10−7kg)(9.8m/s2)

p

((0.214m)2+(0.25m)2/4)

(0.214m)2 +(0.25m)2/2

(2.45×10−12C)(0.214 m)

so Q = 3.07×10−6C. 

E25-21

In each case we conserve charge by making sure that the total number of protons is the

same on both sides of the expression. We also need to conserve the number of neutrons. 

(a) Hydrogen has one proton, Beryllium has four, so X must have five protons. Then X must be

Boron, B. 

(b) Carbon has six protons, Hydrogen has one, so X must have seven. Then X is Nitrogen, N. 

(c) Nitrogen has seven protons, Hydrogen has one, but Helium has two, so X has 7 + 1 − 2 = 6

protons. This means X is Carbon, C. 

8

E25-22

(a) Use Eq. 25-4:

(8.99×109N·m2/C2)(2)(90)(1.60×10−19C)2

F =

= 290 N. 

(12×10−15m)2

(b) a = (290 N)/(4)(1.66×10−27kg) = 4.4×1028m/s2. 

E25-23

Use Eq. 25-4:

(8.99×109N·m2/C2)(1.60×10−19C)2

F =

= 2.89×10−9N. 

(282×10−12m)2

E25-24

(a) Use Eq. 25-4:

s

(3.7×10−9N)(5.0×10−10m)2

q =

= 3.20×10−19C. 

(8.99×109N·m2/C2)

(b) N = (3.20×10−19C)/(1.60×10−19C) = 2. 

E25-25

Use Eq. 25-4, 

1

q1q2

( 1 1.6 × 10−19 C)( 1 1.6 × 10−19 C)

F =

=

3

3

= 3.8 N. 

4π0 r2

4π(8.85

12

× 10−12 C2/N · m2)(2.6 × 10−15 m)2

E25-26

(a) N = (1.15×10−7C)/(1.60×10−19C) = 7.19×1011. 

(b) The penny has enough electrons to make a total charge of −1.37×105C. The fraction is then

(1.15×10−7C)/(1.37×105C) = 8.40×10−13. 

E25-27

Equate the magnitudes of the forces:

1

q2 = mg, 

4π0 r2

so

s

(8.99×109N·m2/C2)(1.60×10−19C)2

r =

= 5.07 m

(9.11×10−31kg)(9.81 m/s2)

E25-28

Q = (75.0 kg)(−1.60×10−19C)/(9.11×10−31kg) = −1.3×1013C. 

E25-29

The mass of water is (250 cm3)(1.00 g/cm3) = 250 g. The number of moles of water is

(250 g)/(18.0 g/mol) = 13.9 mol. The number of water molecules is (13.9 mol)(6.02×1023mol−1) =

8.37×1024. Each molecule has ten protons, so the total positive charge is

Q = (8.37×1024)(10)(1.60×10−19C) = 1.34×107C. 

E25-30

The total positive charge in 0.250 kg of water is 1.34×107C. Mary’s imbalance is then

q1 = (52.0)(4)(1.34×107C)(0.0001) = 2.79×105C, 

while John’s imbalance is

q2 = (90.7)(4)(1.34×107C)(0.0001) = 4.86×105C, 

The electrostatic force of attraction is then

1

q1q2

(2.79×105)(4.86×105)

F =

= (8.99×109N · m2/C2)

= 1.6×1018N. 

4π0 r2

(28.0 m)2

9

E25-31

(a) The gravitational force of attraction between the Moon and the Earth is

GM EM M

F G =

, 

R2

where R is the distance between them. If both the Earth and the moon are provided a charge q, 

then the electrostatic repulsion would be

1

q2

F E =

. 

4π0 R2

Setting these two expression equal to each other, 

q2

= GM EM M, 

4π0

which has solution

p

q

=

4π0GM EM M, 

q

=

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(5.98×1024kg)(7.36×1022kg), 

=

5.71 × 1013 C. 

(b) We need

(5.71 × 1013 C)/(1.60 × 10−19 C) = 3.57 × 1032

protons on each body. The mass of protons needed is then

(3.57 × 1032)(1.67 × 10−27 kg) = 5.97 × 1065 kg. 

Ignoring the mass of the electron (why not?) we can assume that hydrogen is all protons, so we

need that much hydrogen. 

P25-1

Assume that the spheres initially have charges q1 and q2. The force of attraction between

them is

1

q1q2

F1 =

= −0.108 N, 

4π0 r212

where r12 = 0.500 m. The net charge is q1 + q2, and after the conducting wire is connected each

sphere will get half of the total. The spheres will have the same charge, and repel with a force of

1

1 (q1 + q2) 1 (q1 + q2)

F

2

2

2 =

= 0.0360 N. 

4π0

r212

Since we know the separation of the spheres we can find q1 + q2 quickly, 

q

q1 + q2 = 2

4π0r2 (0.0360 N) = 2.00 µC

12

We’ll put this back into the first expression and solve for q2. 

1

(2.00 µC − q

−

2)q2

0.108 N

=

, 

4π0

r212

−3.00 × 10−12 C2 = (2.00 µC − q2)q2, 

0

=

−q2 + (2.00 µC)q

2

2 + (1.73 µC)2. 

The solution is q2 = 3.0 µC or q2 = −1.0 µC. Then q1 = −1.0 µC or q1 = 3.0 µC. 
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P25-2

The electrostatic force on Q from each q has magnitude qQ/4π0a2, where a is the length

of the side of the square. The magnitude of the vertical (horizontal) component of the force of Q on

√

Q is

2Q2/16π0a2. 

(a) In order to have a zero net force on Q the magnitudes of the two contributions must balance, 

so

√2Q2

qQ

=

, 

16π0a2

4π0a2

√

or q =

2Q/4. The charges must actually have opposite charge. 

(b) No. 

P25-3

(a) The third charge, q3, will be between the first two. The net force on the third charge

will be zero if

1

q q3

1

4q q3

=

, 

4π0 r2

4π

r2

31

0

32

which will occur if

1

2

=

r31

r32

The total distance is L, so r31 + r32 = L, or r31 = L/3 and r32 = 2L/3. 

Now that we have found the position of the third charge we need to find the magnitude. The

second and third charges both exert a force on the first charge; we want this net force on the first

charge to be zero, so

1

q q3

1

q 4q

=

, 

4π0 r2

4π r2

13

0

12

or

q3

4q

=

, 

(L/3)2

L2

which has solution q3 = −4q/9. The negative sign is because the force between the first and second

charge must be in the opposite direction to the force between the first and third charge. 

(b) Consider what happens to the net force on the middle charge if is is displaced a small distance

z. If the charge 3 is moved toward charge 1 then the force of attraction with charge 1 will increase. 

But moving charge 3 closer to charge 1 means moving charge 3 away from charge 2, so the force of

attraction between charge 3 and charge 2 will decrease. So charge 3 experiences more attraction to

ward the charge that it moves toward, and less attraction to the charge it moves away from. Sounds

unstable to me. 

P25-4

(a) The electrostatic force on the charge on the right has magnitude

q2

F =

, 

4π0x2

The weight of the ball is W = mg, and the two forces are related by

F/W = tan θ ≈ sin θ = x/2L. 

Combining, 2Lq2 = 4π0mgx3, so

 q2L 1/3

x =

. 

2π0

(b) Rearrange and solve for q, 

s

2π(8.85×10−12C2/N · m2)(0.0112 kg)(9.81 m/s2)(4.70×10−2m)3

q =

= 2.28×10−8C. 

(1.22 m)

11

P25-5

(a) Originally the balls would not repel, so they would move together and touch; after

touching the balls would “split” the charge ending up with q/2 each. They would then repel again. 

(b) The new equilibrium separation is

 (q/2)2L 1/3

 1 1/3

x0 =

=

x = 2.96 cm. 

2π0mg

4

P25-6

Take the time derivative of the expression in Problem 25-4. Then

dx

2 x dq

2 (4.70×10−2m)

=

=

(−1.20×10−9C/s) = 1.65×10−3m/s. 

dt

3 q dt

3 (2.28×10−8C)

P25-7

The force between the two charges is

1

(Q − q)q

F =

. 

4π0

r212

We want to maximize this force with respect to variation in q, this means finding dF/dq and setting

it equal to 0. Then

dF

d  1

(Q − q)q 

1

Q − 2q

=

=

. 

dq

dq

4π0

r2

4π

r2

12

0

12

This will vanish if Q − 2q = 0, or q = 1 Q. 

2

P25-8

Displace the charge q a distance y. The net restoring force on q will be approximately

qQ

1

y

qQ 16

F ≈ 2

=

y. 

4π0 (d/2)2 (d/2)

4π0 d3

Since F/y is effectively a force constant, the period of oscillation is

r m

 

1/2

0mπ3d3

T = 2π

=

. 

k

qQ

P25-9

Displace the charge q a distance x toward one of the positive charges Q. The net restoring

force on q will be

qQ 

1

1



F

=

−

, 

4π0

(d/2 − x)2

(d/2 + x)2

qQ 32

≈

x. 

4π0 d3

Since F/x is effectively a force constant, the period of oscillation is

r m

 

1/2

0mπ3d3

T = 2π

=

. 

k

2qQ

12

P25-10

(a) Zero, by symmetry. 

(b) Removing a positive Cesium ion is equivalent to adding a singly charged negative ion at that

same location. The net force is then

F = e2/4π0r2, 

where r is the distance between the Chloride ion and the newly placed negative ion, or

p

r =

3(0.20×10−9m)2

The force is then

(1.6×10−19C)2

F =

= 1.92×10−9N. 

4π(8.85×10−12C2/N · m2)3(0.20×10−9m)2

P25-11

We can pretend that this problem is in a single plane containing all three charges. The

magnitude of the force on the test charge q0 from the charge q on the left is

1

q q0

F l =

. 

4π0 (a2 + R2)

A force of identical magnitude exists from the charge on the right. we need to add these two forces

as vectors. Only the components along R will survive, and each force will contribute an amount

R

F l sin θ = F l √

, 

R2 + a2

so the net force on the test particle will be

2

q q0

R

√

. 

4π0 (a2 + R2)

R2 + a2

We want to find the maximum value as a function of R. This means take the derivative, and set it

equal to zero. The derivative is

2q q 



0

1

3R2

−

, 

4π0

(a2 + R2)3/2

(a2 + R2)5/2

which will vanish when

a2 + R2 = 3R2, 

√

a simple quadratic equation with solutions R = ±a/ 2. 
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E26-1

E = F/q = ma/q. Then

E = (9.11×10−31kg)(1.84×109m/s2)/(1.60×10−19C) = 1.05×10−2N/C. 

E26-2

The answers to (a) and (b) are the same! 

F = Eq = (3.0×106N/C)(1.60×10−19C) = 4.8×10−13N. 

E26-3

F = W , or Eq = mg, so

mg

(6.64 × 10−27 kg)(9.81 m/s2)

E =

=

= 2.03 × 10−7 N/C. 

q

2(1.60 × 10−19 C)

The alpha particle has a positive charge, this means that it will experience an electric force which

is in the same direction as the electric field. Since the gravitational force is down, the electric force, and consequently the electric field, must be directed up. 

E26-4

(a) E = F/q = (3.0×10−6N)/(2.0×10−9C) = 1.5×103N/C. 

(b) F = Eq = (1.5×103N/C)(1.60×10−19C) = 2.4×10−16N. 

(c) F = mg = (1.67×10−27kg)(9.81 m/s2) = 1.6×10−26N. 

(d) (2.4×10−16N)/(1.6×10−26N) = 1.5×1010. 

E26-5

Rearrange E = q/4π0r2, 

q = 4π(8.85×10−12C2/N · m2)(0.750 m)2(2.30 N/C) = 1.44×10−10C. 

E26-6

p = qd = (1.60×10−19C)(4.30×10−9) = 6.88×10−28C · m. 

E26-7

Use Eq. 26-12 for points along the perpendicular bisector. Then

1

p

(3.56 × 10−29 C · m)

E =

= (8.99 × 109N · m2/C2)

= 1.95 × 104N/C. 

4π0 x3

(25.4 × 10−9 m)3

E26-8

If the charges on the line x = a where +q and −q instead of +2q and −2q then at the

center of the square E = 0 by symmetry. This simplifies the problem into finding E for a charge +q

at (a, 0) and −q at (a, a). This is a dipole, and the field is given by Eq. 26-11. For this exercise we have x = a/2 and d = a, so

1

qa

E =

, 

4π0 [2(a/2)2]3/2

or, putting in the numbers, E = 1.11×105N/C. 

E26-9

The charges at 1 and 7 are opposite and can be effectively replaced with a single charge of

−6q at 7. The same is true for 2 and 8, 3 and 9, on up to 6 and 12. By symmetry we expect the

field to point along a line so that three charges are above and three below. That would mean 9:30. 

E26-10

If both charges are positive then Eq. 26-10 would read E = 2E+ sin θ, and Eq. 26-11

would look like

1

q

x

E

=

2

, 

4π

p

0 x2 + (d/2)2

x2 + (d/2)2

1

q

x

≈ 2

√

4π0 x2

x2

when x  d. This can be simplified to E = 2q/4π0x2. 
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E26-11

Treat the two charges on the left as one dipole and treat the two charges on the right as

a second dipole. Point P is on the perpendicular bisector of both dipoles, so we can use Eq. 26-12

to find the two fields. 

For the dipole on the left p = 2aq and the electric field due to this dipole at P has magnitude

1

2aq

El = 4π0 (x + a)3

and is directed up. 

For the dipole on the right p = 2aq and the electric field due to this dipole at P has magnitude

1

2aq

Er = 4π0 (x − a)3

and is directed down. 

The net electric field at P is the sum of these two fields, but since the two component fields point

in opposite directions we must actually subtract these values, 

E

=

Er − El, 

2aq 

1

1



=

−

, 

4π0

(x − a)3

(x + a)3

aq

1 

1

1



=

−

. 

2π0 x3

(1 − a/x)3

(1 + a/x)3

We can use the binomial expansion on the terms containing 1 ± a/x, 

aq

1

E

≈

((1 + 3a/x) − (1 − 3a/x)) , 

2π0 x3

aq

1

=

(6a/x) , 

2π0 x3

3(2qa2)

=

. 

2π0x4

E26-12

Do a series expansion on the part in the parentheses

1



1 R2 

R2

1 −

≈ 1 − 1 −

=

. 

p1 + R2/z2

2 z2

2z2

Substitute this in, 

σ R2 π

Q

Ez ≈

=

. 

20 2z2 π

4π0z2

E26-13

At the surface z = 0 and Ez = σ/20. Half of this value occurs when z is given by

1

z

= 1 − √

, 

2

z2 + R2

√

which can be written as z2 + R2 = (2z)2. Solve this, and z = R/ 3. 

E26-14

Look at Eq. 

26-18. 

The electric field will be a maximum when z/(z2 + R2)3/2 is a

maximum. Take the derivative of this with respect to z, and get

1

3

2z2

z2 + R2 − 3z2

−

=

. 

(z2 + R2)3/2

2 (z2 + R2)5/2

(z2 + R2)5/2

√

This will vanish when the numerator vanishes, or when z = R/ 2. 
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E26-15

(a) The electric field strength just above the center surface of a charged disk is given by

Eq. 26-19, but with z = 0, 

σ

E = 20

The surface charge density is σ = q/A = q/(πR2). Combining, 

q = 20πR2E = 2(8.85 × 10−12 C2/N · m2)π(2.5 × 10−2m)2(3 × 106 N/C) = 1.04 × 10−7C. 

Notice we used an electric field strength of E = 3 × 106 N/C, which is the field at air breaks down

and sparks happen. 

(b) We want to find out how many atoms are on the surface; if a is the cross sectional area of

one atom, and N the number of atoms, then A = N a is the surface area of the disk. The number

of atoms is

A

π(0.0250 m)2

N =

=

= 1.31 × 1017

a

(0.015 × 10−18 m2)

(c) The total charge on the disk is 1.04 × 10−7C, this corresponds to

(1.04 × 10−7C)/(1.6 × 10−19C) = 6.5 × 1011

electrons. (We are ignoring the sign of the charge here.) If each surface atom can have at most one

excess electron, then the fraction of atoms which are charged is

(6.5 × 1011)/(1.31 × 1017) = 4.96 × 10−6, 

which isn’t very many. 

E26-16

Imagine switching the positive and negative charges. The electric field would also need

to switch directions. By symmetry, then, the electric field can only point vertically down. Keeping

only that component, 

Z

π/2

1

λdθ

E

=

2

sin θ, 

0

4π0 r2

2

λ

=

. 

4π0 r2

But λ = q/(π/2), so E = q/π20r2. 

E26-17

We want to fit the data to Eq. 26-19, 

σ 

z



Ez =

1 − √

. 

20

z2 + R2

There are only two variables, R and q, with q = σπR2. 

We can find σ very easily if we assume that the measurements have no error because then at the

surface (where z = 0), the expression for the electric field simplifies to

σ

E =

. 

20

Then σ = 20E = 2(8.854 × 10−12 C2/N · m2)(2.043 × 107 N/C) = 3.618 × 10−4 C/m2. 

Finding the radius will take a little more work. We can choose one point, and make that the

reference point, and then solve for R. Starting with

σ 

z



Ez =

1 − √

, 

20

z2 + R2

16

and then rearranging, 

20Ez

z

=

1 − √

, 

σ

z2 + R2

20Ez

1

=

1 −

, 

σ

p1 + (R/z)2

1

20Ez

=

1 −

, 

p1 + (R/z)2

σ

1

1 + (R/z)2

=

, 

(1 − 20Ez/σ)2

s

R

1

=

− 1. 

z

(1 − 20Ez/σ)2

Using z = 0.03 m and Ez = 1.187 × 107 N/C, along with our value of σ = 3.618 × 10−4 C/m2, we

find

s

R

1

=

− 1, 

z

(1 − 2(8.854×10−12C2/Nm2)(1.187×107N/C)/(3.618×10−4C/m2))2

R

=

2.167(0.03 m) = 0.065 m. 

(b) And now find the charge from the charge density and the radius, 

q = πR2σ = π(0.065 m)2(3.618 × 10−4 C/m2) = 4.80 µC. 

E26-18

(a) λ = −q/L. 

(b) Integrate:

Z

L+a

1

E

=

λ dxx2, 

a

4π0

λ

 1

1



=

−

, 

4π0

a

L + a

q

1

=

, 

4π0 a(L + a)

since λ = q/L. 

(c) If a  L then L can be replaced with 0 in the above expression. 

E26-19

A sketch of the field looks like this. 
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E26-20

(a) F = Eq = (40 N/C)(1.60×10−19C) = 6.4×10−18N

(b) Lines are twice as far apart, so the field is half as large, or E = 20N/C. 

E26-21

Consider a view of the disk on edge. 

E26-22

A sketch of the field looks like this. 
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E26-23

To the right. 

E26-24

(a) The electric field is zero nearer to the smaller charge; since the charges have opposite

signs it must be to the right of the +2q charge. Equating the magnitudes of the two fields, 

2q

5q

=

, 

4π0x2

4π0(x + a)2

or

√

√

5x =

2(x + a), 

which has solution

√2a

x = √

√ = 2.72a. 

5 −

2

E26-25

This can be done quickly with a spreadsheet. 

E

x

d

E26-26

(a) At point A, 

1



q

−2q 

1

−q

E =

−

−

=

, 

4π0

d2

(2d)2

4π0 2d2

19

where the negative sign indicates that ~

E is directed to the left. 

At point B, 

1



q

−2q 

1

6q

E =

−

=

, 

4π0

(d/2)2

(d/2)2

4π0 d2

where the positive sign indicates that ~

E is directed to the right. 

At point C, 

1



q

−2q 

1

−7q

E =

+

=

, 

4π0

(2d)2

d2

4π0 4d2

where the negative sign indicates that ~

E is directed to the left. 

E26-27

(a) The electric field does (negative) work on the electron. The magnitude of this work

is W = F d, where F = Eq is the magnitude of the electric force on the electron and d is the distance through which the electron moves. Combining, 

W = ~

F · ~d = q~

E · ~d, 

which gives the work done by the electric field on the electron. The electron originally possessed a

kinetic energy of K = 1 mv2, since we want to bring the electron to a rest, the work done must be

2

negative. The charge q of the electron is negative, so ~

E and ~

d are pointing in the same direction, 

and ~

E · ~d = Ed. 

By the work energy theorem, 

1

W = ∆K = 0 − mv2. 

2

We put all of this together and find d, 

W

−mv2

−(9.11×10−31kg)(4.86 × 106 m/s)2

d =

=

=

= 0.0653 m. 

qE

2qE

2(−1.60×10−19C)(1030 N/C)

(b) Eq = ma gives the magnitude of the acceleration, and vf = vi + at gives the time. But

vf = 0. Combining these expressions, 

mvi

(9.11×10−31kg)(4.86 × 106 m/s)

t = −

= −

= 2.69×10−8 s. 

Eq

(1030 N/C)(−1.60×10−19C)

(c) We will apply the work energy theorem again, except now we don’t assume the final kinetic

energy is zero. Instead, 

W = ∆K = Kf − Ki, 

and dividing through by the initial kinetic energy to get the fraction lost, 

W

Kf − Ki

=

= fractional change of kinetic energy. 

Ki

Ki

But Ki = 1 mv2, and W = qEd, so the fractional change is

2

W

qEd

(−1.60×10−19C)(1030 N/C)(7.88×10−3m)

=

=

= −12.1%. 

K

1

1

i

mv2

(9.11×10−31kg)(4.86 × 106 m/s)2

2

2

E26-28

(a) a = Eq/m = (2.16×104N/C)(1.60×10−19C)/(1.67×10−27kg) = 2.07×1012m/s2. 

√

(b) v =

2ax = p2(2.07×1012m/s2)(1.22×10−2m) = 2.25×105m/s. 

20

E26-29

(a) E = 2q/4π0r2, or

(1.88×10−7C)

E =

= 5.85×105N/C. 

2π(8.85×10−12C2/N · m2)(0.152 m/2)2

(b) F = Eq = (5.85×105N/C)(1.60×10−19C) = 9.36×10−14N. 

E26-30

(a) The average speed between the plates is (1.95×10−2m)/(14.7×10−9s) = 1.33×106m/s. 

The speed with which the electron hits the plate is twice this, or 2.65×106m/s. 

(b) The acceleration is a = (2.65×106m/s)/(14.7×10−9s) = 1.80×1014m/s2. The electric field

then has magnitude E = ma/q, or

E = (9.11×10−31kg)(1.80×1014m/s2)/(1.60×10−19C) = 1.03×103N/C. 

E26-31

The drop is balanced if the electric force is equal to the force of gravity, or Eq = mg. 

The mass of the drop is given in terms of the density by

4

m = ρV = ρ πr3. 

3

Combining, 

mg

4πρr3g

4π(851 kg/m3)(1.64×10−6m)3(9.81 m/s2)

q =

=

=

= 8.11×10−19C. 

E

3E

3(1.92×105N/C)

We want the charge in terms of e, so we divide, and get

q

(8.11×10−19C)

=

= 5.07 ≈ 5. 

e

(1.60×10−19C)

E26-32

(b) F = (8.99×109N · m2/C2)(2.16×10−6C)(85.3×10−9C)/(0.117m)2 = 0.121 N. 

(a) E2 = F/q1 = (0.121 N)/(2.16×10−6C) = 5.60×104N/C. 

E1 = F/q2 = (0.121 N)/(85.3×10−9C) = 1.42×106N/C. 

E26-33

If each value of q measured by Millikan was a multiple of e, then the difference between

any two values of q must also be a multiple of q. The smallest difference would be the smallest

multiple, and this multiple might be unity. The differences are 1.641, 1.63, 1.60, 1.63, 3.30, 3.35, 

3.18, 3.24, all times 10−19 C. This is a pretty clear indication that the fundamental charge is on the order of 1.6 × 10−19 C. If so, the likely number of fundamental charges on each of the drops is shown below in a table arranged like the one in the book:

4

8

12

5

10

14

7

11

16

The total number of charges is 87, while the total charge is 142.69 × 10−19 C, so the average charge

per quanta is 1.64 × 10−19 C. 
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E26-34

Because of the electric field the acceleration toward the ground of a charged particle is

not g, but g ± Eq/m, where the sign depends on the direction of the electric field. 

(a) If the lower plate is positively charged then a = g − Eq/m. Replace g in the pendulum period

expression by this, and then

s

L

T = 2π

. 

g − Eq/m

(b) If the lower plate is negatively charged then a = g + Eq/m. Replace g in the pendulum

period expression by this, and then

s

L

T = 2π

. 

g + Eq/m

E26-35

The ink drop travels an additional time t0 = d/vx, where d is the additional horizontal

distance between the plates and the paper. During this time it travels an additional vertical distance y0 = vyt0, where vy = at = 2y/t = 2yvx/L. Combining, 

2yvxt0

2yd

2(6.4×10−4m)(6.8×10−3m)

y0 =

=

=

= 5.44×10−4m, 

L

L

(1.6×10−2m)

so the total deflection is y + y0 = 1.18×10−3m. 

E26-36

(a) p = (1.48×10−9C)(6.23×10−6m) = 9.22×10−15C · m. 

(b) ∆U = 2pE = 2(9.22×10−15C · m)(1100 N/C) = 2.03×10−11J. 

E26-37

Use τ = pE sin θ, where θ is the angle between ~

p and ~

E. For this dipole p = qd = 2ed

or p = 2(1.6 × 10−19 C)(0.78 × 10−9 m) = 2.5 × 10−28 C · m. For all three cases

pE = (2.5 × 10−28 C · m)(3.4 × 106N/C) = 8.5 × 10−22 N · m. 

The only thing we care about is the angle. 

(a) For the parallel case θ = 0, so sin θ = 0, and τ = 0. 

(b) For the perpendicular case θ = 90◦, so sin θ = 1, and τ = 8.5 × 10−22 N · m.. 

(c) For the anti-parallel case θ = 180◦, so sin θ = 0, and τ = 0. 

E26-38

(c) Equal and opposite, or 5.22×10−16N. 

(d) Use Eq. 26-12 and F = Eq. Then

4π0x3F

p

=

, 

q

4π(8.85×10−12C2/N · m2)(0.285m)3(5.22×10−16N)

=

, 

(3.16×10−6C)

=

4.25×10−22C · m. 

E26-39

The point-like nucleus contributes an electric field

1

Ze

E+ =

, 

4π0 r2

while the uniform sphere of negatively charged electron cloud of radius R contributes an electric

field given by Eq. 26-24, 

1

−Zer

E− =

. 

4π0 R3

22

The net electric field is just the sum, 

Ze  1

r 

E =

−

4π0

r2

R3

E26-40

The shell theorem first described for gravitation in chapter 14 is applicable here since both

electric forces and gravitational forces fall off as 1/r2. The net positive charge inside the sphere of radius d/2 is given by Q = 2e(d/2)3/R3 = ed3/4R3. 

The net force on either electron will be zero when

e2

eQ

4e2 d3

e2d

=

=

=

, 

d2

(d/2)2

d2 4R3

R3

which has solution d = R. 

P26-1

(a) Let the positive charge be located closer to the point in question, then the electric

field from the positive charge is

1

q

E+ = 4π0 (x − d/2)2

and is directed away from the dipole. 

The negative charge is located farther from the point in question, so

1

q

E− = 4π0 (x + d/2)2

and is directed toward the dipole. 

The net electric field is the sum of these two fields, but since the two component fields point in

opposite direction we must actually subtract these values, 

E

=

E+ − E−, 

1

q

1

q

=

−

, 

4π0 (z − d/2)2

4π0 (z + d/2)2

1

q 

1

1



=

−

4π0 z2

(1 − d/2z)2

(1 + d/2z)2

We can use the binomial expansion on the terms containing 1 ± d/2z, 

1

q

E

≈

((1 + d/z) − (1 − d/z)) , 

4π0 z2

1

qd

=

2π0 z3

(b) The electric field is directed away from the positive charge when you are closer to the positive

charge; the electric field is directed toward the negative charge when you are closer to the negative charge. In short, along the axis the electric field is directed in the same direction as the dipole

moment. 

P26-2

The key to this problem will be the expansion of

1

1



3

zd



≈

1 ∓

. 

(x2 + (z ± d/2)2)3/2

(x2 + z2)3/2

2 x2 + z2
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√

for d 

x2 + z2. Far from the charges the electric field of the positive charge has magnitude

1

q

E+ =

, 

4π0 x2 + (z − d/2)2

the components of this are

1

q

x

Ex,+

=

, 

4π

p

0 x2 + z2

x2 + (z − d/2)2

1

q

(z − d/2)

Ez,+

=

. 

4π

p

0 x2 + z2

x2 + (z − d/2)2

Expand both according to the first sentence, then

1

xq



3

zd



Ex,+

≈

1 +

, 

4π0 (x2 + z2)3/2

2 x2 + z2

1

(z − d/2)q 

3

zd



Ez,+

=

1 +

. 

4π0 (x2 + z2)3/2

2 x2 + z2

Similar expression exist for the negative charge, except we must replace q with −q and the + in the

parentheses with a −, and z − d/2 with z + d/2 in the Ez expression. All that is left is to add the

expressions. Then

1

xq



3

zd



1

−xq



3

zd



Ex

=

1 +

+

1 −

, 

4π0 (x2 + z2)3/2

2 x2 + z2

4π0 (x2 + z2)3/2

2 x2 + z2

1

3xqzd

=

, 

4π0 (x2 + z2)5/2

1

(z − d/2)q 

3

zd



1

−(z + d/2)q 

3

zd



Ez

=

1 +

+

1 −

, 

4π0 (x2 + z2)3/2

2 x2 + z2

4π0 (x2 + z2)3/2

2 x2 + z2

1

3z2dq

1

dq

=

−

, 

4π0 (x2 + z2)5/2

4π0 (x2 + z2)3/2

1

(2z2 − x2)dq

=

. 

4π0 (x2 + z2)5/2

√

P26-3

(a) Each point on the ring is a distance

z2 + R2 from the point on the axis in question. 

Since all points are equal distant and subtend the same angle from the axis then the top half of the

ring contributes

q1

z

E1z =

√

, 

4π0(x2 + R2)

z2 + R2

while the bottom half contributes a similar expression. Add, and

q1 + q2

z

q

z

Ez =

=

, 

4π0 (z2 + R2)3/2

4π0 (z2 + R2)3/2

which is identical to Eq. 26-18. 

(b) The perpendicular component would be zero if q1 = q2. It isn’t, so it must be the difference

q1 − q2 which is of interest. Assume this charge difference is evenly distributed on the top half of

the ring. If it is a positive difference, then E⊥ must point down. We are only interested then in the vertical component as we integrate around the top half of the ring. Then

Z

π

1

(q1 − q2)/π

E⊥ =

cos θ dθ, 

0

4π0

z2 + R2

q1 − q2

1

=

. 

2π20 z2 + R2
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P26-4

Use the approximation 1/(z ± d)2 ≈ (1/z2)(1 ∓ 2d/z + 3d2/z2). 

Add the contributions:

1



q

2q

q



E

=

−

+

, 

4π0

(z + d)2

z2

(z − d)2

q



2d

3d2

2d

3d2 

≈

1 −

+

− 2 + 1 +

+

, 

4π0z2

z

z2

z

z2

q

6d2

3Q

=

=

, 

4π0z2 z2

4π0z4

where Q = 2qd2. 

P26-5

A monopole field falls off as 1/r2. A dipole field falls off as 1/r3, and consists of two

oppositely charge monopoles close together. A quadrupole field (see Exercise 11 above or read

Problem 4) falls off as 1/r4 and (can) consist of two otherwise identical dipoles arranged with anti-

parallel dipole moments. Just taking a leap of faith it seems as if we can construct a 1/r6 field

behavior by extending the reasoning. 

First we need an octopole which is constructed from a quadrupole. We want to keep things as

simple as possible, so the construction steps are

1. The monopole is a charge +q at x = 0. 

2. The dipole is a charge +q at x = 0 and a charge −q at x = a. We’ll call this a dipole at

x = a/2

3. The quadrupole is the dipole at x = a/2, and a second dipole pointing the other way at

x = −a/2. The charges are then −q at x = −a, +2q at x = 0, and −q at x = a. 

4. The octopole will be two stacked, offset quadrupoles. There will be −q at x = −a, +3q at

x = 0, −3q at x = a, and +q at x = 2a. 

5. Finally, our distribution with a far field behavior of 1/r6. There will be +q at x = 2a, −4q at

x = −a, +6q at x = 0, −4q at x = a, and +q at x = 2a. 

P26-6

The vertical component of ~

E is simply half of Eq. 26-17. The horizontal component is

given by a variation of the work required to derive Eq. 26-16, 

1

λ dz

z

dEz = dE sin θ =

, 

4π

p

0 y2 + z2

y2 + z2

which integrates to zero if the limits are −∞ to +∞, but in this case, 

Z

∞

λ

1

Ez =

dEz =

. 

0

4π0 z

Since the vertical and horizontal components are equal then ~

E makes an angle of 45◦. 

P26-7

(a) Swap all positive and negative charges in the problem and the electric field must reverse

direction. But this is the same as flipping the problem over; consequently, the electric field must

point parallel to the rod. This only holds true at point P , because point P doesn’t move when you

flip the rod. 
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(b) We are only interested in the vertical component of the field as contributed from each point

on the rod. We can integrate only half of the rod and double the answer, so we want to evaluate

Z

L/2

1

λ dz

z

Ez

=

2

, 

p

0

4π0 y2 + z2

y2 + z2

2λ p(L/2)2 + y2 − y

=

. 

4π0 yp(L/2)2 + y2

(c) The previous expression is exact. If y  L, then the expression simplifies with a Taylor

expansion to

λ

L2

Ez =

, 

4π0 y3

which looks similar to a dipole. 

P26-8

Evaluate

Z

R

1

z dq

E =

, 

0

4π0 (z2 + r2)3/2

where r is the radius of the ring, z the distance to the plane of the ring, and dq the differential

charge on the ring. But r2 + z2 = R2, and dq = σ(2πr dr), where σ = q/2πR2. Then

√

Z

R

q

R2 − r2 r dr

E

=

, 

0

4π0

R5

q

1

=

. 

4π0 3R2

P26-9

The key statement is the second italicized paragraph on page 595; the number of field

lines through a unit cross-sectional area is proportional to the electric field strength. If the exponent is n, then the electric field strength a distance r from a point charge is

kq

E =

, 

rn

and the total cross sectional area at a distance r is the area of a spherical shell, 4πr2. Then the

number of field lines through the shell is proportional to

kq

EA =

4πr2 = 4πkqr2−n. 

rn

Note that the number of field lines varies with r if n 6= 2. This means that as we go farther from

the point charge we need more and more field lines (or fewer and fewer). But the field lines can only start on charges, and we don’t have any except for the point charge. We have a problem; we really

do need n = 2 if we want workable field lines. 

P26-10

The distance traveled by the electron will be d1 = a1t2/2; the distance traveled by the

proton will be d2 = a2t2/2. a1 and a2 are related by m1a1 = m2a2, since the electric force is the

same (same charge magnitude). Then d1 + d2 = (a1 + a2)t2/2 is the 5.00 cm distance. Divide by

the proton distance, and then

d1 + d2

a1 + a2

m2

=

=

+ 1. 

d2

a2

m1

Then

d2 = (5.00×10−2m)/(1.67×10−27/9.11×10−31 + 1) = 2.73×10−5m. 
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P26-11

This is merely a fancy projectile motion problem. vx = v0 cos θ while vy,0 = v0 sin θ. The

x and y positions are x = vxt and

1

ax2

y =

at2 + vy,0t =

+ x tan θ. 

2

2v2 cos2 θ

0

The acceleration of the electron is vertically down and has a magnitude of

F

Eq

(1870 N/C)(1.6×10−19C)

a =

=

=

= 3.284×1014m/s2. 

m

m

(9.11×10−31kg)

We want to find out how the vertical velocity of the electron at the location of the top plate. If

we get an imaginary answer, then the electron doesn’t get as high as the top plate. 

q

v

2

y

=

vy,0 + 2a∆y, 

p

=

(5.83×106m/s)2 sin(39◦)2 + 2(−3.284×1014m/s2)(1.97×10−2m), 

=

7.226×105m/s. 

This is a real answer, so this means the electron either hits the top plate, or it misses both plates. 

The time taken to reach the height of the top plate is

∆vy

(7.226×105m/s) − (5.83×106m/s) sin(39◦)

t =

=

= 8.972×10−9s. 

a

(−3.284×1014m/s2)

In this time the electron has moved a horizontal distance of

x = (5.83×106m/s) cos(39◦)(8.972×10−9s) = 4.065×10−2m. 

This is clearly on the upper plate. 

P26-12

Near the center of the ring z  R, so a Taylor expansion yields

λ

z

E =

. 

20 R2

The force on the electron is F = Ee, so the effective “spring” constant is k = eλ/20R2. This means

r k

r

eλ

r

eq

ω =

=

=

. 

m

20mR2

4π0mR3

P26-13

U = −pE cos θ, so the work required to flip the dipole is

W = −pE [cos(θ0 + π) − cos θ0] = 2pE cos θ0. 

P26-14

If the torque on a system is given by |τ | = κθ, where κ is a constant, then the frequency

of oscillation of the system is f = pκ/I/2π. In this case τ = pE sin θ ≈ pEθ, so

p

f =

pE/I/2π. 
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P26-15

Use the a variation of the exact result from Problem 26-1. The two charge are positive, 

but since we will eventually focus on the area between the charges we must subtract the two field

contributions, since they point in opposite directions. Then

q



1

1



Ez =

−

4π0

(z − a/2)2

(z + a/2)2

and then take the derivative, 

dE





z

q

1

1

= −

−

. 

dz

2π0

(z − a/2)3

(z + a/2)3

Applying the binomial expansion for points z  a, 

dE





z

8q

1

1

1

=

−

−

, 

dz

2π0 a3

(2z/a − 1)3

(2z/a + 1)3

8q

1

≈ −

(−(1 + 6z/a) − (1 − 6z/a)) , 

2π0 a3

8q 1

=

. 

π0 a3

There were some fancy sign flips in the second line, so review those steps carefully! 

(b) The electrostatic force on a dipole is the difference in the magnitudes of the electrostatic

forces on the two charges that make up the dipole. Near the center of the above charge arrangement

the electric field behaves as

dE 

z

E



z ≈ Ez (0) +



z + higher ordered terms. 

dz z=0

The net force on a dipole is



dE 





z

dEz

F





+ − F− = q(E+ − E−) = q

Ez(0) +



z+ − Ez(0) −



z

dz

−



dz

z=0

z=0

where the “+” and “-” subscripts refer to the locations of the positive and negative charges. This

last line can be simplified to yield

dE 



z

dEz

q







(z+ − z



. 

dz

−) = qd



dz

z=0

z=0
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E27-1

ΦE = (1800 N/C)(3.2×10−3m)2 cos(145◦) = −7.8×10−3N · m2/C. 

E27-2

The right face has an area element given by ~

A = (1.4 m)2ˆj. 

(a) ΦE = ~

A · ~

E = (2.0 m2)ˆj · (6 N/C)î = 0. 

(b) ΦE = (2.0 m2)ˆj · (−2 N/C)ˆj = −4N · m2/C. 

(c) ΦE = (2.0 m2)ˆj · [(−3 N/C)î + (4 N/C)ˆ

k] = 0. 

(d) In each case the field is uniform so we can simply evaluate ΦE = ~

E · ~

A, where ~

A has six

parts, one for every face. The faces, however, have the same size but are organized in pairs with

opposite directions. These will cancel, so the total flux is zero in all three cases. 

E27-3

(a) The flat base is easy enough, since according to Eq. 27-7, 

Z

Φ

~

E =

E · d ~

A. 

There are two important facts to consider in order to integrate this expression. ~

E is parallel to the

axis of the hemisphere, ~

E points inward while ~

dA points outward on the flat base. ~

E is uniform, so

it is everywhere the same on the flat base. Since ~

E is anti-parallel to d ~

A, ~

E · d ~

A = −E dA, then

Z

Z

Φ

~

E =

E · d ~

A = −

E dA. 

Since ~

E is uniform we can simplify this as

Z

Z

ΦE = −

E dA = −E

dA = −EA = −πR2E. 

The last steps are just substituting the area of a circle for the flat side of the hemisphere. 

(b) We must first sort out the dot product

E

dA

 R

θ

φ

We can simplify the vector part of the problem with ~

E · d ~

A = cos θE dA, so

Z

Z

Φ

~

E =

E · d ~

A =

cos θE dA

Once again, ~

E is uniform, so we can take it out of the integral, 

Z

Z

ΦE =

cos θE dA = E

cos θ dA

Finally, dA = (R dθ)(R sin θ dφ) on the surface of a sphere centered on R = 0. 
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We’ll integrate φ around the axis, from 0 to 2π. We’ll integrate θ from the axis to the equator, 

from 0 to π/2. Then

Z

Z

2π Z π/2

ΦE = E

cos θ dA = E

R2 cos θ sin θ dθ dφ. 

0

0

Pulling out the constants, doing the φ integration, and then writing 2 cos θ sin θ as sin(2θ), 

Z

π/2

Z

π/2

ΦE = 2πR2E

cos θ sin θ dθ = πR2E

sin(2θ) dθ, 

0

0

Change variables and let β = 2θ, then we have

Z

π

1

ΦE = πR2E

sin β dβ = πR2E. 

0

2

E27-4

Through S1, ΦE = q/0. Through S2, ΦE = −q/0. Through S3, ΦE = q/0. Through S4, 

ΦE = 0. Through S5, ΦE = q/0. 

E27-5

By Eq. 27-8, 

q

(1.84 µC)

ΦE =

=

= 2.08×105 N · m2/C. 

0

(8.85×10−12 C2/N · m2)

E27-6

The total flux through the sphere is

ΦE = (−1 + 2 − 3 + 4 − 5 + 6)(×103N · m2/C) = 3×103N · m2/C. 

The charge inside the die is (8.85×10−12C2/N · m2)(3×103N · m2/C) = 2.66×10−8C. 

E27-7

The total flux through a cube would be q/0. Since the charge is in the center of the cube

we expect that the flux through any side would be the same, or 1/6 of the total flux. Hence the flux

through the square surface is q/60. 

E27-8

If the electric field is uniform then there are no free charges near (or inside) the net. The

flux through the netting must be equal to, but opposite in sign, from the flux through the opening. 

The flux through the opening is Eπa2, so the flux through the netting is −Eπa2. 

E27-9

There is no flux through the sides of the cube. The flux through the top of the cube is

(−58 N/C)(100 m)2 = −5.8×105N · m2/C. The flux through the bottom of the cube is

(110 N/C)(100 m)2 = 1.1×106N · m2/C. 

The total flux is the sum, so the charge contained in the cube is

q = (8.85×10−12C2/N · m2)(5.2×105N · m2/C) = 4.60×10−6C. 

E27-10

(a) There is only a flux through the right and left faces. Through the right face

ΦR = (2.0 m2)ˆj · (3 N/C · m)(1.4 m)ˆj = 8.4 N · m2/C. 

The flux through the left face is zero because y = 0. 
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E27-11

There are eight cubes which can be “wrapped” around the charge. Each cube has three

external faces that are indistinguishable for a total of twenty-four faces, each with the same flux

ΦE. The total flux is q/0, so the flux through one face is ΦE = q/240. Note that this is the flux

through faces opposite the charge; for faces which touch the charge the electric field is parallel to the surface, so the flux would be zero. 

E27-12

Use Eq. 27-11, 

λ = 2π0rE = 2π(8.85×10−12C2/N · m2)(1.96 m)(4.52×104N/C) = 4.93×10−6C/m. 

E27-13

(a) q = σA = (2.0×10−6C/m2)π(0.12 m)(0.42 m) = 3.17×10−7C. 

(b) The charge density will be the same! q = σA = (2.0 × 10−6C/m2)π(0.08 m)(0.28 m) =

1.41×10−7C. 

E27-14

The electric field from the sheet on the left is of magnitude El = σ/20, and points directly

away from the sheet. The magnitude of the electric field from the sheet on the right is the same, 

but it points directly away from the sheet on the right. 

(a) To the left of the sheets the two fields add since they point in the same direction. This means

that the electric field is ~

E = −(σ/0)î. 

(b) Between the sheets the two electric fields cancel, so ~

E = 0. 

(c) To the right of the sheets the two fields add since they point in the same direction. This

means that the electric field is ~

E = (σ/0)î. 

E27-15

The electric field from the plate on the left is of magnitude El = σ/20, and points directly

toward the plate. The magnitude of the electric field from the plate on the right is the same, but it points directly away from the plate on the right. 

(a) To the left of the plates the two fields cancel since they point in the opposite directions. This means that the electric field is ~

E = 0. 

(b) Between the plates the two electric fields add since they point in the same direction. This

means that the electric field is ~

E = −(σ/0)î. 

(c) To the right of the plates the two fields cancel since they point in the opposite directions. 

This means that the electric field is ~

E = 0. 

E27-16

The magnitude of the electric field is E = mg/q. The surface charge density on the plates

is σ = 0E = 0mg/q, or

(8.85×10−12C2/N · m2)(9.11×10−31kg)(9.81 m/s2)

σ =

= 4.94×10−22C/m2. 

(1.60×10−19C)

E27-17

We don’t really need to write an integral, we just need the charge per unit length in the

cylinder to be equal to zero. This means that the positive charge in cylinder must be +3.60nC/m. 

This positive charge is uniformly distributed in a circle of radius R = 1.50 cm, so

3.60nC/m

3.60nC/m

ρ =

=

= 5.09µC/m3. 

πR2

π(0.0150 m)2
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E27-18

The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell. 

The ~

E field will be perpendicular to the surface, so Gauss’ law will simplify to

I

I

I

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 4πr2E. 

(a) For point P1 the charge enclosed is qenc = 1.26×10−7C, so

(1.26×10−7C)

E =

= 3.38×106N/C. 

4π(8.85×10−12C2/N · m2)(1.83×10−2m)2

(b) Inside a conductor E = 0. 

E27-19

The proton orbits with a speed v, so the centripetal force on the proton is FC = mv2/r. 

This centripetal force is from the electrostatic attraction with the sphere; so long as the proton is outside the sphere the electric field is equivalent to that of a point charge Q (Eq. 27-15), 

1

Q

E =

. 

4π0 r2

If q is the charge on the proton we can write F = Eq, or

mv2

1

Q

= q

r

4π0 r2

Solving for Q, 

4π0mv2r

Q

=

, 

q

4π(8.85×10−12 C2/N · m2)(1.67×10−27kg)(294×103m/s)2(0.0113 m)

=

, 

(1.60×10−19C)

=

−1.13×10−9C. 

E27-20

The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell. 

The ~

E field will be perpendicular to the surface, so Gauss’ law will simplify to

I

I

I

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 4πr2E. 

(a) At r = 0.120 m qenc = 4.06×10−8C. Then

(4.06×10−8C)

E =

= 2.54×104N/C. 

4π(8.85×10−12C2/N · m2)(1.20×10−1m)2

(b) At r = 0.220 m qenc = 5.99×10−8C. Then

(5.99×10−8C)

E =

= 1.11×104N/C. 

4π(8.85×10−12C2/N · m2)(2.20×10−1m)2

(c) At r = 0.0818 m qenc = 0 C. Then E = 0. 
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E27-21

The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical

shell. The ~

E field will be perpendicular to the curved surface and parallel to the end surfaces, so

Gauss’ law will simplify to

I

Z

Z

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 2πrLE, 

where L is the length of the cylinder. Note that σ = q/2πrL represents a surface charge density. 

(a) r = 0.0410 m is between the two cylinders. Then

(24.1×10−6C/m2)(0.0322 m)

E =

= 2.14×106N/C. 

(8.85×10−12C2/N · m2)(0.0410 m)

It points outward. 

(b) r = 0.0820 m is outside the two cylinders. Then

(24.1×10−6C/m2)(0.0322 m) + (−18.0×10−6C/m2)(0.0618 m)

E =

= −4.64×105N/C. 

(8.85×10−12C2/N · m2)(0.0820 m)

The negative sign is because it is pointing inward. 

E27-22

The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical

shell. The ~

E field will be perpendicular to the curved surface and parallel to the end surfaces, so

Gauss’ law will simplify to

I

Z

Z

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 2πrLE, 

where L is the length of the cylinder. The charge enclosed is

Z

qenc =

ρdV = ρπL r2 − R2

The electric field is given by

ρπL r2 − R2

ρ r2 − R2

E =

=

. 

2π0rL

20r

At the surface, 

ρ (2R)2 − R2

3ρR

Es =

=

. 

202R
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Solve for r when E is half of this:

3R

r2 − R2

=

, 

8

2r

3rR

=

4r2 − 4R2, 

0

=

4r2 − 3rR − 4R2. 

The solution is r = 1.443R. That’s (2R − 1.443R) = 0.557R beneath the surface. 

E27-23

The electric field must do work on the electron to stop it. The electric field is given by

E = σ/20. The work done is W = F d = Eqd. d is the distance in question, so

20K

2(8.85×10−12C2/N · m2)(1.15×105 eV)

d =

=

= 0.979 m

σq

(2.08×10−6C/m2)e
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E27-24

Let the spherical Gaussian surface have a radius of R and be centered on the origin. 

Choose the orientation of the axis so that the infinite line of charge is along the z axis. The electric field is then directed radially outward from the z axis with magnitude E = λ/2π0ρ, where ρ is the

perpendicular distance from the z axis. Now we want to evaluate

I

Φ

~

E =

E · d ~

A, 

over the surface of the sphere. In spherical coordinates, dA = R2 sin θ dθ dφ, ρ = R sin θ, and

~

E · d ~

A = EA sin θ. Then

I

λ

2λR

ΦE =

sin θR dθ dφ =

. 

2π0

0

E27-25

(a) The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical

shell. The ~

E field will be perpendicular to the curved surface and parallel to the end surfaces, so

Gauss’ law will simplify to

I

Z

Z

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 2πrLE, 

where L is the length of the cylinder. Now for the qenc part. If the (uniform) volume charge density

is ρ, then the charge enclosed in the Gaussian cylinder is

Z

Z

qenc =

ρdV = ρ

dV = ρV = πr2Lρ. 

Combining, πr2Lρ/0 = E2πrL or E = ρr/20. 

(b) Outside the charged cylinder the charge enclosed in the Gaussian surface is just the charge

in the cylinder. Then

Z

Z

qenc =

ρdV = ρ

dV = ρV = πR2Lρ. 

and

πR2Lρ/0 = E2πrL, 

and then finally

R2ρ

E =

. 

20r

E27-26

(a) q = 4π(1.22 m)2(8.13×10−6C/m2) = 1.52×10−4C. 

(b) ΦE = q/0 = (1.52×10−4C)/(8.85×10−12C2/N · m2) = 1.72×107N · m2/C. 

(c) E = σ/0 = (8.13×10−6C/m2)/(8.85×10−12C2/N · m2) = 9.19×105N/C

E27-27

(a) σ = (2.4×10−6C)/4π(0.65 m)2 = 4.52×10−7C/m2. 

(b) E = σ/0 = (4.52×10−7C/m2)/(8.85×10−12C2/N · m2) = 5.11×104N/C. 

E27-28

E = σ/0 = q/4πr20. 

E27-29

(a) The near field is given by Eq. 27-12, E = σ/20, so

(6.0×10−6C)/(8.0×10−2 m)2

E ≈

= 5.3×107N/C. 

2(8.85×10−12 C2/N · m2)

(b) Very far from any object a point charge approximation is valid. Then

1

q

1

(6.0×10−6C)

E =

=

= 60N/C. 

4π0 r2

4π(8.85×10−12 C2/N · m2)

(30 m)2
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P27-1

For a spherically symmetric mass distribution choose a spherical Gaussian shell. Then

I

I

I

~

g · d ~

A =

g dA = g

dA = 4πr2g. 

Then

Φg

gr2

=

= −m, 

4πG

G

or

Gm

g = −

. 

r2

The negative sign indicates the direction; ~

g point toward the mass center. 

P27-2

(a) The flux through all surfaces except the right and left faces will be zero. Through the

left face, 

√

Φl = −EyA = −b aa2. 

Through the right face, 

√

Φr = EyA = b 2aa2. 

The net flux is then

√

√

Φ = ba5/2( 2 − 1) = (8830 N/C · m1/2)(0.130 m)5/2( 2 − 1) = 22.3 N · m2/C. 

(b) The charge enclosed is q = (8.85×10−12C2/N · m2)(22.3 N · m2/C) = 1.97×10−10C. 

P27-3

The net force on the small sphere is zero; this force is the vector sum of the force of gravity

W , the electric force FE, and the tension T . 

θ

 T

 F E

 W

These forces are related by Eq = mg tan θ. We also have E = σ/20, so

20mg tan θ

σ

=

, 

q

2(8.85×10−12 C2/N · m2)(1.12×10−6kg)(9.81 m/s2) tan(27.4◦)

=

, 

(19.7×10−9C)

=

5.11×10−9C/m2. 
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P27-4

The materials are conducting, so all charge will reside on the surfaces. The electric field

inside any conductor is zero. The problem has spherical symmetry, so use a Gaussian surface which

is a spherical shell. The ~

E field will be perpendicular to the surface, so Gauss’ law will simplify to

I

I

I

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 4πr2E. 

Consequently, E = qenc/4π0r2. 

(a) Within the sphere E = 0. 

(b) Between the sphere and the shell qenc = q. Then E = q/4π0r2. 

(c) Within the shell E = 0. 

(d) Outside the shell qenc = +q − q = 0. Then E = 0. 

(e) Since E = 0 inside the shell, qenc = 0, this requires that −q reside on the inside surface. This

is no charge on the outside surface. 

P27-5

The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical

shell. The ~

E field will be perpendicular to the curved surface and parallel to the end surfaces, so

Gauss’ law will simplify to

I

Z

Z

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 2πrLE, 

where L is the length of the cylinder. Consequently, E = qenc/2π0rL. 

(a) Outside the conducting shell qenc = +q − 2q = −q. Then E = −q/2π0rL. The negative sign

indicates that the field is pointing inward toward the axis of the cylinder. 

(b) Since E = 0 inside the conducting shell, qenc = 0, which means a charge of −q is on the

inside surface of the shell. The remaining −q must reside on the outside surface of the shell. 

(c) In the region between the cylinders qenc = +q. Then E = +q/2π0rL. The positive sign

indicates that the field is pointing outward from the axis of the cylinder. 

P27-6

Subtract Eq. 26-19 from Eq. 26-20. Then

σ

z

E =

√

. 

20

z2 + R2

P27-7

This problem is closely related to Ex. 27-25, except for the part concerning qenc. We’ll

set up the problem the same way: the Gaussian surface will be a (imaginary) cylinder centered on

the axis of the physical cylinder. For Gaussian surfaces of radius r < R, there is no charge enclosed while for Gaussian surfaces of radius r > R, qenc = λl. 

We’ve already worked out the integral

Z

~

E · d ~

A = 2πrlE, 

tube

for the cylinder, and then from Gauss’ law, 

Z

q

~

enc = 0

E · d ~

A = 2π0rlE. 

tube

(a) When r < R there is no enclosed charge, so the left hand vanishes and consequently E = 0

inside the physical cylinder. 

(b) When r > R there is a charge λl enclosed, so

λ

E =

. 

2π0r
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P27-8

This problem is closely related to Ex. 27-25, except for the part concerning qenc. We’ll set

up the problem the same way: the Gaussian surface will be a (imaginary) cylinder centered on the

axis of the physical cylinders. For Gaussian surfaces of radius r < a, there is no charge enclosed while for Gaussian surfaces of radius b > r > a, qenc = λl. 

We’ve already worked out the integral

Z

~

E · d ~

A = 2πrlE, 

tube

for the cylinder, and then from Gauss’ law, 

Z

q

~

enc = 0

E · d ~

A = 2π0rlE. 

tube

(a) When r < a there is no enclosed charge, so the left hand vanishes and consequently E = 0

inside the inner cylinder. 

(b) When b > r > a there is a charge λl enclosed, so

λ

E =

. 

2π0r

P27-9

Uniform circular orbits require a constant net force towards the center, so F = Eq =

λq/2π0r. The speed of the positron is given by F = mv2/r; the kinetic energy is K = mv2/2 =

F r/2. Combining, 

λq

K

=

, 


4π0

(30×10−9C/m)(1.6×10−19C)

=

, 

4π((8.85 × 10−12 C2/N · m2)

=

4.31×10−17 J = 270 eV. 

P27-10

λ = 2π0rE, so

q = 2π(8.85×10−12C2/N · m2)(0.014 m)(0.16 m)(2.9×104N/C) = 3.6×10−9C. 

P27-11

(a) Put a spherical Gaussian surface inside the shell centered on the point charge. Gauss’

law states

I

~

qenc

E · d ~

A =

. 

0

Since there is spherical symmetry the electric field is normal to the spherical Gaussian surface, and it is everywhere the same on this surface. The dot product simplifies to ~

E · d ~

A = E dA, while since

E is a constant on the surface we can pull it out of the integral, and we end up with

I

q

E

dA =

, 

0

where q is the point charge in the center. Now H dA = 4πr2, where r is the radius of the Gaussian

surface, so

q

E =

. 

4π0r2

(b) Repeat the above steps, except put the Gaussian surface outside the conducting shell. Keep

it centered on the charge. Two things are different from the above derivation: (1) r is bigger, and
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(2) there is an uncharged spherical conducting shell inside the Gaussian surface. Neither change will affect the surface integral or qenc, so the electric field outside the shell is still

q

E =

, 

4π0r2

(c) This is a subtle question. With all the symmetry here it appears as if the shell has no effect; 

the field just looks like a point charge field. If, however, the charge were moved off center the field inside the shell would become distorted, and we wouldn’t be able to use Gauss’ law to find it. So

the shell does make a difference. 

Outside the shell, however, we can’t tell what is going on inside the shell. So the electric field

outside the shell looks like a point charge field originating from the center of the shell regardless of where inside the shell the point charge is placed! 

(d) Yes, q induces surface charges on the shell. There will be a charge −q on the inside surface

and a charge q on the outside surface. 

(e) Yes, as there is an electric field from the shell, isn’t there? 

(f) No, as the electric field from the outside charge won’t make it through a conducting shell. 

The conductor acts as a shield. 

(g) No, this is not a contradiction, because the outside charge never experienced any electrostatic

attraction or repulsion from the inside charge. The force is between the shell and the outside charge. 

P27-12

The repulsive electrostatic forces must exactly balance the attractive gravitational forces. 

Then

1

q2

m2

= G

, 

4π0 r2

r2

√

or m = q/ 4π0G. Numerically, 

(1.60×10−19C)

m =

= 1.86×10−9kg. 

q

4π(8.85×10−12C2/N · m2)(6.67×10−11N · m2/kg2)

P27-13

The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell. 

The ~

E field will be perpendicular to the surface, so Gauss’ law will simplify to

I

I

I

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 4πr2E. 

Consequently, E = qenc/4π0r2. 

qenc = q + 4π R ρ r2dr, or

Z

r

qenc = q + 4π

Ar dr = q + 2πA(r2 − a2). 

a

The electric field will be constant if qenc behaves as r2, which requires q = 2πAa2, or A = q/2πa2. 

P27-14

(a) The problem has spherical symmetry, so use a Gaussian surface which is a spherical

shell. The ~

E field will be perpendicular to the surface, so Gauss’ law will simplify to

I

I

I

q

~

enc/0 =

E · d ~

A =

E dA = E

dA = 4πr2E. 

Consequently, E = qenc/4π0r2. 

qenc = 4π R ρ r2dr = 4πρr3/3, so

E = ρr/30
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and is directed radially out from the center. Then ~

E = ρ~r/30. 

(b) The electric field in the hole is given by ~

Eh = ~

E − ~

Eb, where ~

E is the field from part (a) and

~

Eb is the field that would be produced by the matter that would have been in the hole had the hole

not been there. Then

~

Eb = ρ~

b/30, 

where ~

b is a vector pointing from the center of the hole. Then

~

ρ~r

ρ~

b

ρ

Eh =

−

=

(~r − ~b). 

30

30

30

But ~r − ~b = ~a, so ~

Eh = ρ~a/30. 

P27-15

If a point is an equilibrium point then the electric field at that point should be zero. 

If it is a stable point then moving the test charge (assumed positive) a small distance from the

equilibrium point should result in a restoring force directed back toward the equilibrium point. In

other words, there will be a point where the electric field is zero, and around this point there will be an electric field pointing inward. Applying Gauss’ law to a small surface surrounding our point P , 

we have a net inward flux, so there must be a negative charge inside the surface. But there should

be nothing inside the surface except an empty point P , so we have a contradiction. 

P27-16

(a) Follow the example on Page 618. By symmetry E = 0 along the median plane. The

charge enclosed between the median plane and a surface a distance x from the plane is q = ρAx. 

Then

E = ρAx/0A = ρA/0. 

(b) Outside the slab the charge enclosed between the median plane and a surface a distance x

from the plane is is q = ρAd/2, regardless of x. The

E = ρAd/2/0A = ρd/20. 

P27-17

(a) The total charge is the volume integral over the whole sphere, 

Z

Q =

ρ dV. 

This is actually a three dimensional integral, and dV = A dr, where A = 4πr2. Then

Z

Q

=

ρ dV, 

Z

R  ρSr 

=

4πr2 dr, 

0

R

4πρS 1

=

R4, 

R

4

=

πρSR3. 

(b) Put a spherical Gaussian surface inside the sphere centered on the center. We can use Gauss’

law here because there is spherical symmetry in the entire problem, both inside and outside the

Gaussian surface. Gauss’ law states

I

~

qenc

E · d ~

A =

. 

0
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Since there is spherical symmetry the electric field is normal to the spherical Gaussian surface, and it is everywhere the same on this surface. The dot product simplifies to ~

E · d ~

A = E dA, while since

E is a constant on the surface we can pull it out of the integral, and we end up with

I

qenc

E

dA =

, 

0

Now H dA = 4πr2, where r is the radius of the Gaussian surface, so

qenc

E =

. 

4π0r2

We aren’t done yet, because the charge enclosed depends on the radius of the Gaussian surface. We

need to do part (a) again, except this time we don’t want to do the whole volume of the sphere, we

only want to go out as far as the Gaussian surface. Then

Z

qenc

=

ρ dV, 

Z

r  ρSr 

=

4πr2 dr, 

0

R

4πρS 1

=

r4, 

R

4

r4

=

πρS

. 

R

Combine these last two results and

πρS r4

E

=

, 

4π0r2 R

πρS r2

=

, 

4π0 R

Q

r2

=

. 

4π0 R4

In the last line we used the results of part (a) to eliminate ρS from the expression. 

P27-18

(a) Inside the conductor E = 0, so a Gaussian surface which is embedded in the conductor

but containing the hole must have a net enclosed charge of zero. The cavity wall must then have a

charge of −3.0 µC. 

(b) The net charge on the conductor is +10.0 µC; the charge on the outer surface must then be

+13.0 µC. 

P27-19

(a) Inside the shell E = 0, so the net charge inside a Gaussian surface embedded in the

shell must be zero, so the inside surface has a charge −Q. 

(b) Still −Q; the outside has nothing to do with the inside. 

(c) −(Q + q); see reason (a). 

(d) Yes. 
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Throughout this chapter we will use the convention that V (∞) = 0 unless explicitly stated

otherwise. Then the potential in the vicinity of a point charge will be given by Eq. 28-18, 

V = q/4π0r. 

E28-1

(a) Let U12 be the potential energy of the interaction between the two “up” quarks. Then

(2/3)2e(1.60×10−19C)

U12 = (8.99×109N · m2/C2)

= 4.84×105eV. 

(1.32×10−15m)

(b) Let U13 be the potential energy of the interaction between an “up” quark and a “down” 

quark. Then

(−1/3)(2/3)e(1.60×10−19C)

U13 = (8.99×109N · m2/C2)

= −2.42×105eV

(1.32×10−15m)

Note that U13 = U23. The total electric potential energy is the sum of these three terms, or zero. 

E28-2

There are six interaction terms, one for every charge pair. Number the charges clockwise

from the upper left hand corner. Then

U12

=

−q2/4π0a, 

U23

=

−q2/4π0a, 

U34

=

−q2/4π0a, 

U41

=

−q2/4π0a, √

U13

=

(−q)2/4π0( 2a), 

√

U24

=

q2/4π0( 2a). 

Add these terms and get



2



q2

q2

U =

√ − 4

= −0.206

2

4π0a

0a

The amount of work required is W = U . 

E28-3

(a) We build the electron one part at a time; each part has a charge q = e/3. Moving the

first part from infinity to the location where we want to construct the electron is easy and takes no work at all. Moving the second part in requires work to change the potential energy to

1

q1q2

U12 =

, 

4π0 r

which is basically Eq. 28-7. The separation r = 2.82 × 10−15 m. 

Bringing in the third part requires work against the force of repulsion between the third charge

and both of the other two charges. Potential energy then exists in the form U13 and U23, where all

three charges are the same, and all three separations are the same. Then U12 = U13 = U12, so the

total potential energy of the system is

1

(e/3)2

3

(1.60×10−19 C/3)2

U = 3

=

= 2.72×10−14 J

4π0

r

4π(8.85×10−12 C2/N · m2) (2.82×10−15 m)

(b) Dividing our answer by the speed of light squared to find the mass, 

2.72 × 10−14 J

m =

= 3.02 × 10−31 kg. 

(3.00 × 108 m/s)2
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E28-4

There are three interaction terms, one for every charge pair. Number the charges from the

left; let a = 0.146 m. Then

(25.5×10−9C)(17.2×10−9C)

U12

=

, 

4π0a

(25.5×10−9C)(−19.2×10−9C)

U13

=

, 

4π0(a + x)

(17.2×10−9C)(−19.2×10−9C)

U23

=

. 

4π0x

Add these and set it equal to zero. Then

(25.5)(17.2)

(25.5)(19.2)

(17.2)(19.2)

=

+

, 

a

a + x

x

which has solution x = 1.405a = 0.205 m. 

E28-5

The volume of the nuclear material is 4πa3/3, where a = 8.0×10−15m. Upon dividing in

√

half each part will have a radius r where 4πr3/3 = 4πa3/6. Consequently, r = a/ 3 2 = 6.35×10−15m. 

Each fragment will have a charge of +46e. 

(a) The force of repulsion is

(46)2(1.60×10−19C)2

F =

= 3000 N

4π(8.85×10−12C2/N · m2)[2(6.35×10−15m)]2

(b) The potential energy is

(46)2e(1.60×10−19C)

U =

= 2.4×108eV

4π(8.85×10−12C2/N · m2)2(6.35×10−15m)

E28-6

This is a work/kinetic energy problem: 1 mv2 = q∆V . Then

2

0

s

2(1.60×10−19C)(10.3×103V)

v0 =

= 6.0×107m/s. 

(9.11×10−31kg)

E28-7

(a) The energy released is equal to the charges times the potential through which the

charge was moved. Then

∆U = q∆V = (30 C)(1.0 × 109 V) = 3.0 × 1010 J. 

(b) Although the problem mentions acceleration, we want to focus on energy. The energy will

change the kinetic energy of the car from 0 to Kf = 3.0 × 1010 J. The speed of the car is then

r

s

2K

2(3.0 × 1010 J)

v =

=

= 7100 m/s. 

m

(1200 kg)

(c) The energy required to melt ice is given by Q = mL, where L is the latent heat of fusion. 

Then

Q

(3.0 × 1010 J)

m =

=

= 90, 100kg. 

L

(3.33×105J/kg)
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E28-8

(a) ∆U = (1.60×10−19C)(1.23×109V) = 1.97×10−10J. 

(b) ∆U = e(1.23×109V) = 1.23×109eV. 

E28-9

This is an energy conservation problem: 1 mv2 = q∆V ; ∆V = q/4π

2

0(1/r1 − 1/r2). Com-

bining, 

s

q2

 1

1 

v

=

−

, 

2π0m

r1

r2

s

(3.1×10−6C)2



1

1



=

−

, 

2π(8.85×10−12C2/N · m2)(18×10−6kg)

(0.90×10−3m)

(2.5×10−3m)

=

2600 m/s. 

E28-10

This is an energy conservation problem:

1

q2

1

m(2v)2 −

=

mv2. 

2

4π0r

2

Rearrange, 

q2

r

=

, 

6π0mv2

(1.60×10−19C)2

=

= 1.42×10−9m. 

6π(8.85×10−12C2/N · m2)(9.11×10−31kg)(3.44×105m/s)2)

E28-11

(a) V = (1.60×10−19C)/4π(8.85×10−12C2/N · m2)(5.29×10−11m) = 27.2 V. 

(b) U = qV = (−e)(27.2 V) = −27.2 eV. 

(c) For uniform circular orbits F = mv2/r; the force is electrical, or F = e2/4π0r2. Kinetic

energy is K = mv2/2 = F r/2, so

e2

(1.60×10−19C)

K =

=

= 13.6 eV. 

8π0r

8π(8.85×10−12C2/N · m2)(5.29×10−11m)

(d) The ionization energy is −(K + U ), or

Eion = −[(13.6 eV) + (−27.2 eV)] = 13.6 eV. 

E28-12

(a) The electric potential at A is

1

 q







1

q2

(−5.0×10−6C)

(2.0×10−6C)

VA =

+

= (8.99×109N · m2/C)

+

= 6.0×104V. 

4π0

r1

r2

(0.15 m)

(0.05 m)

The electric potential at B is

1

 q







1

q2

(−5.0×10−6C)

(2.0×10−6C)

VB =

+

= (8.99×109N · m2/C)

+

= −7.8×105V. 

4π0

r2

r1

(0.05 m)

(0.15 m)

(b) W = q∆V = (3.0×10−6C)(6.0×104V − −7.8×105V) = 2.5 J. 

(c) Since work is positive then external work is converted to electrostatic potential energy. 
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E28-13

(a) The magnitude of the electric field would be found from

F

(3.90 × 10−15 N)

E =

=

= 2.44 × 104 N/C. 

q

(1.60 × 10−19 C)

(b) The potential difference between the plates is found by evaluating Eq. 28-15, 

Z

b

∆V = −

~

E · d~s. 

a

The electric field between two parallel plates is uniform and perpendicular to the plates. Then

~

E · d~s = E ds along this path, and since E is uniform, 

Z

b

Z

b

Z

b

∆V = −

~

E · d~s = −

E ds = −E

ds = E∆x, 

a

a

a

where ∆x is the separation between the plates. Finally, ∆V = (2.44 × 104 N/C)(0.120 m) = 2930 V. 

E28-14

∆V = E∆x, so

20

2(8.85×10−12C2/N · m2)

∆x =

∆V =

(48 V) = 7.1×10−3m

σ

(0.12×10−6C/m2)

E28-15

The electric field around an infinitely long straight wire is given by E = λ/2π0r. The

potential difference between the inner wire and the outer cylinder is given by

Z

b

∆V = −

(λ/2π0r) dr = (λ/2π0) ln(a/b). 

a

The electric field near the surface of the wire is then given by

λ

∆V

(−855 V)

E =

=

=

= 1.32×108V/m. 

2π0a

a ln(a/b)

(6.70×10−7m) ln(6.70×10−7 m/1.05×10−2 m)

The electric field near the surface of the cylinder is then given by

λ

∆V

(−855 V)

E =

=

=

= 8.43×103V/m. 

2π0a

a ln(a/b)

(1.05×10−2m) ln(6.70×10−7 m/1.05×10−2 m)

E28-16

∆V = E∆x = (1.92×105N/C)(1.50×10−2m) = 2.88×103V. 

E28-17

(a) This is an energy conservation problem:

1

(2)(79)e2

(2)(79)e(1.60×10−19C)

K =

= (8.99×109N · m2/C)

= 3.2×107 eV

4π0

r

(7.0×10−15m)

(b) The alpha particles used by Rutherford never came close to hitting the gold nuclei. 

E28-18

This is an energy conservation problem: mv2/2 = eq/4π0r, or

s

(1.60×10−19C)(1.76×10−15C)

v =

= 2.13×104m/s

2π(8.85×10−12C2/N · m2)(1.22×10−2m)(9.11×10−31kg)
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E28-19

(a) We evaluate VA and VB individually, and then find the difference. 

1

q

1

(1.16µC)

VA =

=

= 5060 V, 

4π0 r

4π(8.85 × 10−12 C2/N · m2) (2.06 m)

and

1

q

1

(1.16µC)

VB =

=

= 8910 V, 

4π0 r

4π(8.85 × 10−12 C2/N · m2) (1.17 m)

The difference is then VA − VB = −3850 V. 

(b) The answer is the same, since when concerning ourselves with electric potential we only care

about distances, and not directions. 

E28-20

The number of “excess” electrons on each grain is

4π0rV

4π(8.85×10−12C2/N · m)(1.0×10−6m)(−400 V)

n =

=

= 2.8×105

e

(−1.60×10−19C)

E28-21

The excess charge on the shuttle is

q = 4π0rV = 4π(8.85×10−12C2/N · m)(10 m)(−1.0 V) = −1.1×10−9C

E28-22

q = 1.37×105C, so

(1.37×105C)

V = (8.99×109N · m2/C2)

= 1.93×108V. 

(6.37×106m)

E28-23

The ratio of the electric potential to the electric field strength is

V



1

q   1

q 

=

/

= r. 

E

4π0 r

4π0 r2

In this problem r is the radius of the Earth, so at the surface of the Earth the potential is

V = Er = (100 V/m)(6.38×106m) = 6.38×108 V. 

E28-24

Use Eq. 28-22:

(1.47)(3.34×10−30C · m)

V = (8.99×109N · m2/C2)

= 1.63×10−5V. 

(52.0×10−9m)2

E28-25

(a) When finding VA we need to consider the contribution from both the positive and

the negative charge, so

1



−q 

VA =

qa +

4π0

a + d

There will be a similar expression for VB, 

1



q



VB =

−qa +

. 

4π0

a + d
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Now to evaluate the difference. 

1



−q 

1



q



VA − VB

=

qa +

−

−qa +

, 

4π0

a + d

4π0

a + d

q

 1

1



=

−

, 

2π0

a

a + d

q



a + d

a



=

−

, 

2π0

a(a + d)

a(a + d)

q

d

=

. 

2π0 a(a + d)

(b) Does it do what we expect when d = 0? I expect it the difference to go to zero as the

two points A and B get closer together. The numerator will go to zero as d gets smaller. The

denominator, however, stays finite, which is a good thing. So yes, Va − VB → 0 as d → 0. 

E28-26

(a) Since both charges are positive the electric potential from both charges will be positive. 

There will be no finite points where V = 0, since two positives can’t add to zero. 

(b) Between the charges the electric field from each charge points toward the other, so ~

E will

√

√

vanish when q/x2 = 2q/(d − x)2. This happens when d − x =

2x, or x = d/(1 +

2). 

√

E28-27

The distance from C to either charge is

2d/2 = 1.39×10−2m. 

(a) V at C is

2(2.13×10−6C)

V = (8.99×109N · m2/C2)

= 2.76×106V

(1.39×10−2m)

(b) W = qδV = (1.91×10−6C)(2.76×106V) = 5.27 J. 

(c) Don’t forget about the potential energy of the original two charges! 

(2.13×10−6C)2

U0 = (8.99×109N · m2/C2)

= 2.08 J

(1.96×10−2m)

Add this to the answer from part (b) to get 7.35 J. 

E28-28

The potential is given by Eq. 28-32; at the surface V s = σR/20, half of this occurs when

pR2 + z2 − z = R/2, 

R2 + z2

=

R2/4 + Rz + z2, 

3R/4

=

z. 

E28-29

We can find the linear charge density by dividing the charge by the circumference, 

Q

λ =

, 

2πR

where Q refers to the charge on the ring. The work done to move a charge q from a point x to the

origin will be given by

W

=

q∆V, 

W

=

q (V (0) − V (x)) , 



1

Q

1

Q



=

q

√

−

√

, 

4π0

R2

4π0

R2 + x2

qQ  1

1



=

− √

. 

4π0

R

R2 + x2
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Putting in the numbers, 



! 

(−5.93×10−12C)(−9.12×10−9C)

1

1

−

= 1.86×10−10J. 

4π(8.85×10−12C2/N · m2)

1.48m

p(1.48m)2 + (3.07m)2

E28-30

(a) The electric field strength is greatest where the gradient of V is greatest. That is

between d and e. 

(b) The least absolute value occurs where the gradient is zero, which is between b and c and

again between e and f . 

E28-31

The potential on the positive plate is 2(5.52 V) = 11.0 V; the electric field between the

plates is E = (11.0 V)/(1.48×10−2m) = 743 V/m. 

E28-32

Take the derivative: E = −∂V /∂z. 

E28-33

The radial potential gradient is just the magnitude of the radial component of the electric

field, 

∂V

Er = − ∂r

Then

∂V

1

q

=

−

, 

∂r

4π0 r2

1

79(1.60 × 10−19C)

=

, 

4π(8.85 × 10−12 C2/N · m2) (7.0 × 10−15m)2

=

−2.32×1021 V/m. 

E28-34

Evaluate ∂V /∂r, and

Ze  −1

r 

E = −

+ 2

. 

4π0

r2

2R3

E28-35

Ex = −∂V /∂x = −2(1530 V/m2)x. At the point in question, E = −2(1530 V/m2)(1.28×

10−2m) = 39.2 V/m. 

E28-36

Draw the wires so that they are perpendicular to the plane of the page; they will then

“come out of” the page. The equipotential surfaces are then lines where they intersect the page, 

and they look like
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E28-37

(a) |VB − VA| = |W/q| = |(3.94 × 10−19 J)/(1.60 × 10−19 C)| = 2.46 V. The electric field

did work on the electron, so the electron was moving from a region of low potential to a region of

high potential; or VB > VA. Consequently, VB − VA = 2.46 V. 

(b) VC is at the same potential as VB (both points are on the same equipotential line), so

VC − VA = VB − VA = 2.46 V. 

(c) VC is at the same potential as VB (both points are on the same equipotential line), so

VC − VB = 0 V. 

E28-38

(a) For point charges r = q/4π0V , so

r = (8.99×109N · m2/C2)(1.5×10−8C)/(30 V) = 4.5 m

(b) No, since V ∝ 1/r. 

E28-39

The dotted lines are equipotential lines, the solid arrows are electric field lines. Note that

there are twice as many electric field lines from the larger charge! 
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E28-40

The dotted lines are equipotential lines, the solid arrows are electric field lines. 

E28-41

This can easily be done with a spreadsheet. The following is a sketch; the electric field is

the bold curve, the potential is the thin curve. 
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sphere radius

r

E28-42

Originally V = q/4π0r, where r is the radius of the smaller sphere. 

(a) Connecting the spheres will bring them to the same potential, or V1 = V2. 

(b) q1 + q2 = q; V1 = q1/4π0r and V2 = q2/4π02r; combining all of the above q2 = 2q1 and

q1 = q/3 and q2 = 2q/3. 

E28-43

(a) q = 4πR2σ, so V = q/4π0R = σR/0, or

V = (−1.60×10−19C/m2)(6.37×106m)/(8.85×10−12C2/N · m2) = 0.115 V

(b) Pretend the Earth is a conductor, then E = σ/epsilon0, so

E = (−1.60×10−19C/m2)/(8.85×10−12C2/N · m2) = 1.81×10−8V/m. 

E28-44

V = q/4π0R, so

V = (8.99×109N · m2/C2)(15×10−9C)/(0.16 m) = 850 V. 

E28-45

(a) q = 4π0RV = 4π(8.85×10−12C2/N · m2)(0.152 m)(215 V) = 3.63×10−9C

(b) σ = q/4πR2 = (3.63×10−9C)/4π(0.152 m)2 = 1.25×10−8C/m2. 

E28-46

The dotted lines are equipotential lines, the solid arrows are electric field lines. 
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E28-47

(a) The total charge (Q = 57.2nC) will be divided up between the two spheres so that

they are at the same potential. If q1 is the charge on one sphere, then q2 = Q − q1 is the charge on

the other. Consequently

V1

=

V2, 

1

q1

1

Q − q1

=

, 

4π0 r1

4π0

r2

q1r2

=

(Q − q1)r1, 

Qr2

q1

=

. 

r2 + r1

Putting in the numbers, we find

Qr1

(57.2 nC)(12.2 cm)

q1 =

=

= 38.6 nC, 

r2 + r1

(5.88 cm) + (12.2 cm)

and q2 = Q − q1 = (57.2 nC) − (38.6 nC) = 18.6 nC. 

(b) The potential on each sphere should be the same, so we only need to solve one. Then

1

q1

1

(38.6 nC)

=

= 2850 V. 

4π0 r1

4π(8.85 × 10−12 C2/N · m2) (12.2 cm)

E28-48

(a) V = (8.99×109N · m2/C2)(31.5×10−9C)/(0.162 m) = 1.75×103V. 

(b) V = q/4π0r, so r = q/4π0V , and then

r = (8.99×109N · m2/C2)(31.5×10−9C)/(1.20×103V) = 0.236 m. 

That is (0.236 m) − (0.162 m) = 0.074 m above the surface. 
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E28-49

(a) Apply the point charge formula, but solve for the charge. Then

1

q

=

V, 

4π0 r

q

=

4π0rV, 

q

=

4π(8.85 × 10−12 C2/N · m2)(1 m)(106 V) = 0.11 mC. 

Now that’s a fairly small charge. But if the radius were decreased by a factor of 100, so would

the charge (1.10 µC). Consequently, smaller metal balls can be raised to higher potentials with less

charge. 

(b) The electric field near the surface of the ball is a function of the surface charge density, 

E = σ/0. But surface charge density depends on the area, and varies as r−2. For a given potential, 

the electric field near the surface would then be given by

σ

q

V

E =

=

=

. 

0

4π0r2

r

Note that the electric field grows as the ball gets smaller. This means that the break down field is

more likely to be exceeded with a low voltage small ball; you’ll get sparking. 

E28-50

A “Volt” is a Joule per Coulomb. The power required by the drive belt is the product

(3.41×106V)(2.83×10−3C/s) = 9650 W. 

P28-1

(a) According to Newtonian mechanics we want K = 1 mv2 to be equal to W = q∆V

2

which means

mv2

(0.511 MeV)

∆V =

=

= 256 kV. 

2q

2e

mc2 is the rest mass energy of an electron. 

(b) Let’s do some rearranging first. 

" 

#

1

K

=

mc2

− 1 , 

p1 − β2

K

1

=

− 1, 

mc2

p1 − β2

K

1

+ 1

=

, 

mc2

p1 − β2

1

p

=

1 − β2, 

K

+ 1

mc2

1

=

1 − β2, 

K

+ 12

mc2

and finally, 

s

1

β =

1 −

K

+ 12

mc2

Putting in the numbers, 

v

u

1

u1 −

= 0.746, 

t

 (256 keV)

2

+ 1

(511 keV)

so v = 0.746c. 
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P28-2

(a) The potential of the hollow sphere is V = q/4π0r. The work required to increase the

charge by an amount dq is dW = V /, dq. Integrating, 

Z

e

q

e2

W =

dq =

. 

0

4π0r

8π0r

This corresponds to an electric potential energy of

e(1.60×10−19C)

W =

= 2.55×105 eV = 4.08×10−14J. 

8π(8.85×10−12C2/N · m2)(2.82×10−15m)

(b) This would be a mass of m = (4.08×10−14J)/(3.00×108m/s)2 = 4.53×10−31kg. 

P28-3

The negative charge is held in orbit by electrostatic attraction, or

mv2

qQ

=

. 

r

4π0r2

The kinetic energy of the charge is

1

qQ

K =

mv2 =

. 

2

8π0r

The electrostatic potential energy is

qQ

U = −

, 

4π0r

so the total energy is

qQ

E = −

. 

8π0r

The work required to change orbit is then

qQ  1

1 

W =

−

. 

8π0

r1

r2

P28-4

(a) V = − R E dr, so

Z

r

qr

qr2

V = −

dr = −

. 

0

4π0R3

8π0R3

(b) ∆V = q/8π0R. 

(c) If instead of V = 0 at r = 0 as was done in part (a) we take V = 0 at r = ∞, then

V = q/4π0R on the surface of the sphere. The new expression for the potential inside the sphere

will look like V = V 0 + Vs, where V 0 is the answer from part (a) and Vs is a constant so that the

surface potential is correct. Then

q

qR2

3qR2

Vs =

+

=

, 

4π0R

8π0R3

8π0R3

and then

qr2

3qR2

q(3R2 − r2)

V = −

+

=

. 

8π0R3

8π0R3

8π0R3
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P28-5

The total electric potential energy of the system is the sum of the three interaction pairs. 

One of these pairs does not change during the process, so it can be ignored when finding the change

in potential energy. The change in electrical potential energy is then

q2

q2

q2  1

1 

∆U = 2

− 2

=

−

. 

4π0rf

4π0ri

2π0

rf

ri

In this case ri = 1.72 m, while rf = 0.86 m. The change in potential energy is then



1

1



∆U = 2(8.99×109N · m2/C2)(0.122 C)2

−

= 1.56×108J

(0.86 m)

(1.72 m)

The time required is

t = (1.56×108)/(831 W) = 1.87×105s = 2.17 days. 

P28-6

(a) Apply conservation of energy:

qQ

qQ

K =

, or d =

, 

4π0d

4π0K

where d is the distance of closest approach. 

(b) Apply conservation of energy:

qQ

1

K =

+

mv2, 

4π0(2d)

2

so, combining with the results in part (a), v = pK/m. 

P28-7

(a) First apply Eq. 28-18, but solve for r. Then

q

(32.0 × 10−12 C)

r =

=

= 562 µm. 

4π0V

4π(8.85 × 10−12 C2/N · m2)(512 V)

(b) If two such drops join together the charge doubles, and the volume of water doubles, but the

√

radius of the new drop only increases by a factor of 3 2 = 1.26 because volume is proportional to

the radius cubed. 

The potential on the surface of the new drop will be

1

qnew

V new

=

, 

4π0 rnew

1

2qold

=

√

, 

4π

3

0

2 rold

1

qold

=

(2)2/3

= (2)2/3V old. 

4π0 rold

The new potential is 813 V. 

P28-8

(a) The work done is W = −F z = −Eqz = −qσz/20. 

(b) Since W = q∆V , ∆V = −σz/20, so

V = V0 − (σ/20)z. 
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P28-9

(a) The potential at any point will be the sum of the contribution from each charge, 

1

q1

1

q2

V =

+

, 

4π0 r1

4π0 r2

where r1 is the distance the point in question from q1 and r2 is the distance the point in question

from q2. Pick a point, call it (x, y). Since q1 is at the origin, 

p

r1 =

x2 + y2. 

Since q2 is at (d, 0), where d = 9.60 nm, 

p

r2 =

(x − d)2 + y2. 

Define the “Stanley Number” as S = 4π0V . Equipotential surfaces are also equi-Stanley surfaces. 

In particular, when V = 0, so does S. We can then write the potential expression in a sightly

simplified form

q1

q2

S =

+

. 

r1

r2

If S = 0 we can rearrange and square this expression. 

q1

q2

=

−

, 

r1

r2

r2

r2

1

=

2 , 

q2

q2

1

2

x2 + y2

(x − d)2 + y2

=

, 

q2

q2

1

2

Let α = q2/q1, then we can write

α2 x2 + y2

=

(x − d)2 + y2, 

α2x2 + α2y2

=

x2 − 2xd + d2 + y2, 

(α2 − 1)x2 + 2xd + (α2 − 1)y2

=

d2. 

We complete the square for the (α2 − 1)x2 + 2xd term by adding d2/(α2 − 1) to both sides of the

equation. Then

" 

#



d

2



1



(α2 − 1)

x +

+ y2

= d2

1 +

. 

α2 − 1

α2 − 1

The center of the circle is at

d

(9.60 nm)

−

=

= −5.4 nm. 

α2 − 1

(−10/6)2 − 1

(b) The radius of the circle is

v

u





u

1 +

1

α2

t

−1

d2

, 

α2 − 1

which can be simplified to

α

|(−10/6)|

d

= (9.6 nm)

= 9.00 nm. 

α2 − 1

(−10/6)2 − 1

(c) No. 
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P28-10

An annulus is composed of differential rings of varying radii r and width dr; the charge

on any ring is the product of the area of the ring, dA = 2πr dr, and the surface charge density, or

k

2πk

dq = σ dA =

2πr dr =

dr. 

r3

r2

The potential at the center can be found by adding up the contributions from each ring. Since we

are at the center, the contributions will each be dV = dq/4π0r. Then

Z

b

k dr

k  1

1 

k b2 − a2

V =

=

−

. =

. 

a

20 r3

40

a2

b2

40 b2a2

The total charge on the annulus is

Z

b 2πk

 1

1 

b − a

Q =

dr = 2πk

−

= 2πk

. 

a

r2

a

b

ba

Combining, 

Q a + b

V =

. 

8π0 ab

P28-11

Add the three contributions, and then do a series expansion for d  r. 

q



−1

1

1



V

=

+

+

, 

4π0

r + d

r

r − d

q



−1

1



=

+ 1 +

, 

4π0r

1 + d/r

1 − d/r

q



d

d 

≈

−1 +

+ 1 + 1 +

, 

4π0r

r

r

q



2d 

≈

1 +

. 

4π0r

r

P28-12

(a) Add the contributions from each differential charge: dq = λ dy. Then

Z

y+L

λ

λ

 y + L 

V =

dy =

ln

. 

y

4π0y

4π0

y

(b) Take the derivative:

∂V

λ

y

−L

λ

L

Ey = −

= −

=

. 

∂y

4π0 y + L y2

4π0 y(y + L)

(c) By symmetry it must be zero, since the system is invariant under rotations about the axis

of the rod. Note that we can’t determine E⊥ from derivatives because we don’t have the functional

form of V for points off-axis! 

P28-13

(a) We follow the work done in Section 28-6 for a uniform line of charge, starting with

Eq. 28-26, 

1

λ dx

dV

=

, 

4π p

0

x2 + y2

1

Z

L

kx dx

dV

=

, 

4π

p

0

0

x2 + y2
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k

L

p

=

x2 + y2 , 

4π



0

0

k

p



=

L2 + y2 − y . 

4π0

(b) The y component of the electric field can be found from

∂V

Ey = −

, 

∂y

which (using a computer-aided math program) is



! 

k

y

Ey =

1 −

. 

4π

p

0

L2 + y2

(c) We could find Ex if we knew the x variation of V . But we don’t; we only found the values of

V along a fixed value of x. 

(d) We want to find y such that the ratio



k







p



k

L2 + y2 − y

/

(L)

4π0

4π0

p

is one-half. Simplifying, 

L2 + y2 − y = L/2, which can be written as

L2 + y2 = L2/4 + Ly + y2, 

or 3L2/4 = Ly, with solution y = 3L/4. 

P28-14

The spheres are small compared to the separation distance. Assuming only one sphere at

a potential of 1500 V, the charge would be

q = 4π0rV = 4π(8.85×10−12C2/N · m)(0.150 m)(1500 V) = 2.50×10−8C. 

The potential from the sphere at a distance of 10.0 m would be

(0.150 m)

V = (1500 V)

= 22.5 V. 

(10.0 m)

This is small compared to 1500 V, so we will treat it as a perturbation. This means that we can

assume that the spheres have charges of

q = 4π0rV = 4π(8.85×10−12C2/N · m)(0.150 m)(1500 V + 22.5 V) = 2.54×10−8C. 

P28-15

Calculating the fraction of excess electrons is the same as calculating the fraction of

excess charge, so we’ll skip counting the electrons. This problem is effectively the same as Exercise 28-47; we have a total charge that is divided between two unequal size spheres which are at the same

potential on the surface. Using the result from that exercise we have

Qr1

q1 =

, 

r2 + r1

where Q = −6.2 nC is the total charge available, and q1 is the charge left on the sphere. r1 is the

radius of the small ball, r2 is the radius of Earth. Since the fraction of charge remaining is q1/Q, 

we can write

q1

r1

r1

=

≈

= 2.0 × 10−8. 

Q

r2 + r1

r2
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P28-16

The positive charge on the sphere would be

q = 4π0rV = 4π(8.85×10−12C2/N · m2)(1.08×10−2m)(1000 V) = 1.20×10−9C. 

The number of decays required to build up this charge is

n = 2(1.20×10−9C)/(1.60×10−19C) = 1.50×1010. 

The extra factor of two is because only half of the decays result in an increase in charge. The time

required is

t = (1.50×1010)/(3.70×108s−1) = 40.6 s. 

P28-17

(a) None. 

(b) None. 

(c) None. 

(d) None. 

(e) No. 

P28-18

(a) Outside of an isolated charged spherical object E = q/4π0r2 and V = q/4π0r. 

Then E = V /r. Consequently, the sphere must have a radius larger than r = (9.15×106V)/(100×

106V/m) = 9.15×10−2m. 

(b) The power required is (320×10−6C/s)(9.15×106V) = 2930 W. 

(c) σwv = (320×10−6C/s), so

(320×10−6C/s)

σ =

= 2.00×10−5C/m2. 

(0.485 m)(33.0 m/s)
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E29-1

(a) The charge which flows through a cross sectional surface area in a time t is given by

q = it, where i is the current. For this exercise we have

q = (4.82 A)(4.60 × 60 s) = 1330 C

as the charge which passes through a cross section of this resistor. 

(b) The number of electrons is given by (1330 C)/(1.60 × 10−19 C) = 8.31 × 1021 electrons. 

E29-2

Q/t = (200×10−6A/s)(60s/min)/(1.60×10−19C) = 7.5×1016 electrons per minute. 

E29-3

(a) j = nqv = (2.10×1014/m3)2(1.60×10−19C)(1.40×105m/s) = 9.41 A/m2. Since the ions

have positive charge then the current density is in the same direction as the velocity. 

(b) We need an area to calculate the current. 

E29-4

(a) j = i/A = (123×10−12A)/π(1.23×10−3m)2 = 2.59×10−5A/m2. 

(b) vd = j/ne = (2.59×10−5A/m2)/(8.49×1028/m3)(1.60×10−19C) = 1.91×10−15m/s. 

E29-5

The current rating of a fuse of cross sectional area A would be

imax = (440 A/cm2)A, 

and if the fuse wire is cylindrical A = πd2/4. Then

s

4 (0.552 A)

d =

= 4.00×10−2 cm. 

π (440 A/m2)

E29-6

Current density is current divided by cross section of wire, so the graph would look like:

4

3

2

I (A/mil^2 x10^−3)

1

50

100

150

200

d(mils)
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E29-7

The current is in the direction of the motion of the positive charges. The magnitude of the

current is

i = (3.1×1018/s + 1.1×1018/s)(1.60×10−19C) = 0.672 A. 

E29-8

(a) The total current is

i = (3.50×1015/s + 2.25×1015/s)(1.60×10−19C) = 9.20×10−4A. 

(b) The current density is

j = (9.20×10−4A)/π(0.165×10−3m)2 = 1.08×104A/m2. 

E29-9

(a) j = (8.70×106/m3)(1.60×10−19C)(470×103m/s) = 6.54×10−7A/m2. 

(b) i = (6.54×10−7A/m2)π(6.37×106m)2 = 8.34×107A. 

E29-10

i = σwv, so

σ = (95.0×10−6A)/(0.520 m)(28.0 m/s) = 6.52×10−6C/m2. 

E29-11

The drift velocity is given by Eq. 29-6, 

j

i

(115 A)

vd =

=

=

= 2.71×10−4m/s. 

ne

Ane

(31.2×10−6m2)(8.49×1028/m3)(1.60×10−19C)

The time it takes for the electrons to get to the starter motor is

x

(0.855 m)

t =

=

= 3.26×103s. 

v

(2.71×10−4m/s)

That’s about 54 minutes. 

E29-12

∆V = iR = (50×10−3A)(1800 Ω) = 90 V. 

E29-13

The resistance of an object with constant cross section is given by Eq. 29-13, 

L

(11, 000 m)

R = ρ

= (3.0 × 10−7 Ω · m)

= 0.59 Ω. 

A

(0.0056 m2)

E29-14

The slope is approximately [(8.2 − 1.7)/1000]µΩ · cm/◦C, so

1

α =

6.5×10−3µΩ · cm/◦C ≈ 4×10−3/C◦

1.7µΩ · cm

E29-15

(a) i = ∆V /R = (23 V)/(15×10−3Ω) = 1500 A. 

(b) j = i/A = (1500 A)/π(3.0×10−3m)2 = 5.3×107A/m2. 

(c) ρ = RA/L = (15×10−3Ω)π(3.0×10−3m)2/(4.0 m) = 1.1×10−7Ω · m. The material is possibly

platinum. 

E29-16

Use the equation from Exercise 29-17. ∆R = 8 Ω; then

∆T = (8 Ω)/(50 Ω)(4.3×10−3/C◦) = 37 C◦. 

The final temperature is then 57◦C. 

60

E29-17

Start with Eq. 29-16, 

ρ − ρ0 = ρ0αav(T − T0), 

and multiply through by L/A, 

L

L

(ρ − ρ0) =

ρ0αav(T − T0), 

A

A

to get

R − R0 = R0αav(T − T0). 

E29-18

The wire has a length L = (250)2π(0.122 m) = 192 m. The diameter is 0.129 inches; the

cross sectional area is then

A = π(0.129 × 0.0254 m)2/4 = 8.43×10−6m2. 

The resistance is

R = ρL/A = (1.69×10−8Ω · m)(192 m)/(8.43×10−6m2) = 0.385 Ω. 

E29-19

If the length of each conductor is L and has resistivity ρ, then

L

4L

RA = ρ

= ρ

πD2/4

πD2

and

L

4L

RB = ρ

= ρ

. 

(π4D2/4 − πD2/4)

3πD2

The ratio of the resistances is then

RA = 3. 

RB

E29-20

R = R, so ρ1L1/π(d1/2)2 = ρ2L2/π(d2/2)2. Simplifying, ρ1/d2 = ρ

. Then

1

2/d2

2

p

d2 = (1.19×10−3m) (9.68×10−8Ω · m)/(1.69×10−8Ω · m) = 2.85×10−3m. 

E29-21

(a) (750×10−3A)/(125) = 6.00×10−3A. 

(b) ∆V = iR = (6.00×10−3A)(2.65×10−6Ω) = 1.59×10−8V. 

(c) R = ∆V /i = (1.59×10−8V)/(750×10−3A) = 2.12×10−8Ω. 

E29-22

Since ∆V = iR, then if ∆V and i are the same, then R must be the same. 

(a) Since R = R, ρ1L1/πr2 = ρ

, or ρ

= ρ

. Then

1

2L2/πr2

2

1/r2

1

2/r2

2

p

riron/rcopper =

(9.68×10−8Ω · m)(1.69×10−8Ω · m) = 2.39. 

(b) Start with the definition of current density:

i

∆V

∆V

j =

=

=

. 

A

RA

ρL

Since ∆V and L is the same, but ρ is different, then the current densities will be different. 
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E29-23

Conductivity is given by Eq. 29-8, ~j = σ~

E. If the wire is long and thin, then the

magnitude of the electric field in the wire will be given by

E ≈ ∆V /L = (115 V)/(9.66 m) = 11.9 V/m. 

We can now find the conductivity, 

j

(1.42×104A/m2)

σ =

=

= 1.19×103(Ω · m)−1. 

E

(11.9 V/m)

E29-24

(a) vd = j/en = σE/en. Then

vd = (2.70×10−14/Ω · m)(120 V/m)/(1.60×10−19C)(620×106/m3 + 550×106/m3) = 1.73×10−2m/s. 

(b) j = σE = (2.70×10−14/Ω · m)(120 V/m) = 3.24×10−14A/m2. 

E29-25

(a) R/L = ρ/A, so j = i/A = (R/L)i/ρ. For copper, 

j = (0.152×10−3Ω/m)(62.3 A)/(1.69×10−8Ω · m) = 5.60×105A/m2; 

for aluminum, 

j = (0.152×10−3Ω/m)(62.3 A)/(2.75×10−8Ω · m) = 3.44×105A/m2. 

(b) A = ρL/R; if δ is density, then m = δlA = lδρ/(R/L). For copper, 

m = (1.0 m)(8960 kg/m3)(1.69×10−8Ω · m)/(0.152×10−3Ω/m) = 0.996 kg; 

for aluminum, 

m = (1.0 m)(2700 kg/m3)(2.75×10−8Ω · m)/(0.152×10−3Ω/m) = 0.488 kg. 

E29-26

The resistance for potential differences less than 1.5 V are beyond the scale. 

10

8

6

R (Kilo−ohms)

4

2

1

2

3

4

V(Volts)
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E29-27

(a) The resistance is defined as

∆V

(3.55 × 106 V/A2)i2

R =

=

= (3.55 × 106 V/A2)i. 

i

i

When i = 2.40 mA the resistance would be

R = (3.55 × 106 V/A2)(2.40 × 10−3A) = 8.52 kΩ. 

(b) Invert the above expression, and

i = R/(3.55 × 106 V/A2) = (16.0 Ω)/(3.55 × 106 V/A2) = 4.51 µA. 

E29-28

First, n = 3(6.02×1023)(2700 kg/m3)(27.0×10−3kg) = 1.81×1029/m3. Then

m

(9.11×10−31kg)

τ =

=

= 7.15×10−15s. 

ne2ρ

(1.81×1029/m3)(1.60×10−19C)2(2.75×10−8Ω · m)

E29-29

(a) E = E0/κe = q/4π0κeR2, so

(1.00×10−6C)

E =

=

4π(8.85×10−12C2/N · m2)(4.7)(0.10 m)2

(b) E = E0 = q/4π0R2, so

(1.00×10−6C)

E =

=

4π(8.85×10−12C2/N · m2)(0.10 m)2

(c) σind = 0(E0 − E) = q(1 − 1/κe)/4πR2. Then

(1.00×10−6C) 

1



σind =

1 −

= 6.23×10−6C/m2. 

4π(0.10 m)2

(4.7)

E29-30

Midway between the charges E = q/π0d, so

q = π(8.85×10−12C2/N · m2)(0.10 m)(3×106V/m) = 8.3×10−6C. 

E29-31

(a) At the surface of a conductor of radius R with charge Q the magnitude of the electric

field is given by

1

E =

QR2, 

4π0

while the potential (assuming V = 0 at infinity) is given by

1

V =

QR. 

4π0

The ratio is V /E = R. 

The potential on the sphere that would result in “sparking” is

V = ER = (3×106N/C)R. 

(b) It is “easier” to get a spark off of a sphere with a smaller radius, because any potential on

the sphere will result in a larger electric field. 

(c) The points of a lighting rod are like small hemispheres; the electric field will be large near

these points so that this will be the likely place for sparks to form and lightning bolts to strike. 
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P29-1

If there is more current flowing into the sphere than is flowing out then there must be a

change in the net charge on the sphere. The net current is the difference, or 2 µA. The potential on

the surface of the sphere will be given by the point-charge expression, 

1

q

V =

, 

4π0 r

and the charge will be related to the current by q = it. Combining, 

1

it

V =

, 

4π0 r

or

4π0V r

4π(8.85 × 10−12 C2/N · m2)(980 V)(0.13 m)

t =

=

= 7.1 ms. 

i

(2 µA)

P29-2

The net current density is in the direction of the positive charges, which is to the east. There

are two electrons for every alpha particle, and each alpha particle has a charge equal in magnitude

to two electrons. The current density is then

j

=

qeneve + qα + nαvα, 

=

(−1.6×10−19C)(5.6×1021/m3)(−88 m/s) + (3.2×10−19C)(2.8×1021/m3)(25 m/s), 

=

1.0×105C/m2. 

P29-3

(a) The resistance of the segment of the wire is

R = ρL/A = (1.69×10−8Ω · m)(4.0×10−2m)/π(2.6×10−3m)2 = 3.18×10−5Ω. 

The potential difference across the segment is

∆V = iR = (12 A)(3.18×10−5Ω) = 3.8×10−4V. 

(b) The tail is negative. 

(c) The drift speed is v = j/en = i/Aen, so

v = (12 A)/π(2.6×10−3m)2(1.6×10−19C)(8.49×1028/m3) = 4.16×10−5m/s. 

The electrons will move 1 cm in (1.0×10−2m)/(4.16×10−5m/s) = 240 s. 

P29-4

(a) N = it/q = (250×10−9A)(2.9 s)/(3.2×10−19C) = 2.27×1012. 

(b) The speed of the particles in the beam is given by v = p2K/m, so

p

v =

2(22.4 MeV)/4(932 MeV/c2) = 0.110c. 

It takes (0.180 m)/(0.110)(3.00×108m/s) = 5.45×10−9s for the beam to travel 18.0 cm. The number

of charges is then

N = it/q = (250×10−9A)(5.45×10−9s)/(3.2×10−19C) = 4260. 

(c) W = q∆V , so ∆V = (22.4 MeV)/2e = 11.2 MV. 
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P29-5

(a) The time it takes to complete one turn is t = (250 m)/c. The total charge is

q = it = (30.0 A)(950 m)/(3.00×108m/s) = 9.50×10−5C. 

(b) The number of charges is N = q/e, the total energy absorbed by the block is then

∆U = (28.0×109 eV)(9.50×10−5C)/e = 2.66×106J. 

This will raise the temperature of the block by

∆T = ∆U/mC = (2.66×106J)/(43.5 kg)(385J/kgC◦) = 159 C◦. 

P29-6

(a) i = R j dA = 2π R jr dr; 

Z

i = 2π

−0Rj0(1 − r/R)r dr = 2πj0(R2/2 − R3/3R) = πj0R2/6. 

(b) Integrate, again:

Z

i = 2π

−0Rj0(r/R)r dr = 2πj0(R3/3R) = πj0R2/3. 

P29-7

(a) Solve 2ρ0 = ρ0[1 + α(T − 20◦C)], or

T = 20◦C + 1/(4.3×10−3/C◦) = 250◦C. 

(b) Yes, ignoring changes in the physical dimensions of the resistor. 

P29-8

The resistance when on is (2.90 V)/(0.310 A) = 9.35 Ω. The temperature is given by

T = 20◦C + (9.35 Ω − 1.12 Ω)/(1.12 Ω)(4.5×10−3/◦C) = 1650◦C. 

P29-9

Originally we have a resistance R1 made out of a wire of length l1 and cross sectional area

A1. The volume of this wire is V1 = A1l1. When the wire is drawn out to the new length we have

l2 = 3l1, but the volume of the wire should be constant so

A2l2

=

A1l1, 

A2(3l1)

=

A1l1, 

A2

=

A1/3. 

The original resistance is

l1

R1 = ρ

. 

A1

The new resistance is

l2

3l1

R2 = ρ

= ρ

= 9R1, 

A2

A1/3

or R2 = 54 Ω. 

P29-10

(a) i = (35.8 V)/(935 Ω) = 3.83×10−2A. 

(b) j = i/A = (3.83×10−2A)/(3.50×10−4m2) = 109 A/m2. 

(c) v = (109 A/m2)/(1.6×10−19C)(5.33×1022/m3) = 1.28×10−2m/s. 

(d) E = (35.8 V)/(0.158 m) = 227 V/m. 

65

P29-11

(a) ρ = (1.09×10−3Ω)π(5.5×10−3m)2/4(1.6 m) = 1.62×10−8Ω · m. This is possibly silver. 

(b) R = (1.62×10−8Ω · m)(1.35×10−3m)4/π(2.14×10−2m)2 = 6.08×10−8Ω. 

P29-12

(a) ∆L/L = 1.7×10−5 for a temperature change of 1.0 C◦. Area changes are twice this, 

or ∆A/A = 3.4×10−5. 

Take the differential of RA = ρL: R dA+A dR = ρ dL+L dρ, or dR = ρ dL/A+L dρ/A−R dA/A. 

For finite changes this can be written as

∆R

∆L

∆ρ

∆A

=

+

−

. 

R

L

ρ

A

∆ρ/ρ = 4.3×10−3. Since this term is so much larger than the other two it is the only significant

effect. 

P29-13

We will use the results of Exercise 29-17, 

R − R0 = R0αav(T − T0). 

To save on subscripts we will drop the “av” notation, and just specify whether it is carbon “c” or

iron “i”. 

The disks will be effectively in series, so we will add the resistances to get the total. Looking

only at one disk pair, we have

Rc + Ri

=

R0,c (αc(T − T0) + 1) + R0,i (αi(T − T0) + 1) , 

=

R0,c + R0,i + (R0,cαc + R0,iαi) (T − T0). 

This last equation will only be constant if the coefficient for the term (T − T0) vanishes. Then

R0,cαc + R0,iαi = 0, 

but R = ρL/A, and the disks have the same cross sectional area, so

Lcρcαc + Liρiαi = 0, 

or

Lc

ρiαi

(9.68×10−8Ω · m)(6.5×10−3/C◦)

= −

= −

= 0.036. 

Li

ρcαc

(3500×10−8Ω · m)(−0.50×10−3/C◦)

P29-14

The current entering the cone is i. The current density as a function of distance x from

the left end is then

i

j =

. 

π[a + x(b − a)/L]2

The electric field is given by E = ρj. The potential difference between the ends is then

Z

L

Z

L

iρ

iρL

∆V =

E dx =

dx =

0

0

π[a + x(b − a)/L]2

πab

The resistance is R = ∆V /i = ρL/πab. 
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P29-15

The current is found from Eq. 29-5, 

Z

i =

~j · d~A, 

where the region of integration is over a spherical shell concentric with the two conducting shells

but between them. The current density is given by Eq. 29-10, 

~j = ~E/ρ, 

and we will have an electric field which is perpendicular to the spherical shell. Consequently, 

1 Z

1 Z

i =

~

E · d ~

A =

E dA

ρ

ρ

By symmetry we expect the electric field to have the same magnitude anywhere on a spherical shell

which is concentric with the two conducting shells, so we can bring it out of the integral sign, and

then

1

Z

4πr2E

i =

E

dA =

, 

ρ

ρ

where E is the magnitude of the electric field on the shell, which has radius r such that b > r > a. 

The above expression can be inverted to give the electric field as a function of radial distance, 

since the current is a constant in the above expression. Then E = iρ/4πr2 The potential is given by

Z

a

∆V = −

~

E · d~s, 

b

we will integrate along a radial line, which is parallel to the electric field, so

Z

a

∆V

=

−

E dr, 

b

Z

a

iρ

=

−

dr, 

b

4πr2

iρ Z a dr

=

−

, 

4π b

r

iρ  1

1 

=

−

. 

4π

a

b

We divide this expression by the current to get the resistance. Then

ρ  1

1 

R =

−

4π

a

b

P29-16

Since τ = λ/vd, ρ ∝ vd. For an ideal gas the kinetic energy is proportional to the

√

√

temperature, so ρ ∝

K ∝

T . 
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E30-1

We apply Eq. 30-1, 

q = C∆V = (50 × 10−12 F)(0.15 V) = 7.5 × 10−12 C; 

E30-2

(a) C = ∆V /q = (73.0×10−12 C)/(19.2 V) = 3.80×10−12F. 

(b) The capacitance doesn’t change! 

(c) ∆V = q/C = (210×10−12C)/(3.80×10−12F) = 55.3 V. 

E30-3

q = C∆V = (26.0×10−6F)(125 V) = 3.25×10−3C. 

E30-4

(a) C = 0A/d = (8.85×10−12F/m)π(8.22×10−2m)2/(1.31×10−3m) = 1.43×10−10F. 

(b) q = C∆V = (1.43×10−10F)(116 V) = 1.66×10−8C. 

E30-5

Eq. 30-11 gives the capacitance of a cylinder, 

L

(0.0238 m)

C = 2π0

= 2π(8.85×10−12 F/m)

= 5.46×10−13F. 

ln(b/a)

ln((9.15mm)/(0.81mm))

E30-6

(a) A = Cd/0 = (9.70×10−12F)(1.20×10−3m)/(8.85×10−12F/m) = 1.32×10−3m2. 

(b) C = C0d0/d = (9.70×10−12F)(1.20×10−3m)/(1.10×10−3m) = 1.06×10−11F. 

(c) ∆V = q0/C = [∆V ]0C0/C = [∆V ]0d/d0. Using this formula, the new potential difference

would be [∆V ]0 = (13.0 V)(1.10×10−3m)/(1.20×10−3m) = 11.9 V. The potential energy has changed

by (11.9 V) − (30.0 V) = −1.1 V. 

E30-7

(a) From Eq. 30-8, 

(0.040 m)(0.038 m)

C = 4π(8.85×10−12F/m)

= 8.45×10−11F. 

(0.040 m) − (0.038 m)

(b) A = Cd/0 = (8.45×10−11F)(2.00×10−3m)/(8.85×10−12F/m) = 1.91×10−2m2. 

E30-8

Let a = b + d, where d is the small separation between the shells. Then

ab

(b + d)b

C

=

4π0

= 4π0

, 

a − b

d

b2

≈ 4π0

= 0A/d. 

d

E30-9

The potential difference across each capacitor in parallel is the same; it is equal to 110 V. 

The charge on each of the capacitors is then

q = C∆V = (1.00 × 10−6 F)(110 V) = 1.10 × 10−4 C. 

If there are N capacitors, then the total charge will be N q, and we want this total charge to be

1.00 C. Then

(1.00 C)

(1.00 C)

N =

=

= 9090. 

q

(1.10 × 10−4 C)

68

E30-10

First find the equivalent capacitance of the parallel part:

Ceq = C1 + C2 = (10.3×10−6F) + (4.80×10−6F) = 15.1×10−6F. 

Then find the equivalent capacitance of the series part:

1

1

1

=

+

= 3.23×105F−1. 

Ceq

(15.1×10−6F)

(3.90×10−6F)

Then the equivalent capacitance of the entire arrangement is 3.10×10−6F. 

E30-11

First find the equivalent capacitance of the series part:

1

1

1

=

+

= 3.05×105F−1. 

Ceq

(10.3×10−6F)

(4.80×10−6F)

The equivalent capacitance is 3.28×10−6F. Then find the equivalent capacitance of the parallel part:

Ceq = C1 + C2 = (3.28×10−6F) + (3.90×10−6F) = 7.18×10−6F. 

This is the equivalent capacitance for the entire arrangement. 

E30-12

For one capacitor q = C∆V = (25.0×10−6F)(4200 V) = 0.105 C. There are three capaci-

tors, so the total charge to pass through the ammeter is 0.315 C. 

E30-13

(a) The equivalent capacitance is given by Eq. 30-21, 

1

1

1

1

1

5

=

+

=

+

=

Ceq

C1

C2

(4.0µF)

(6.0µF)

(12.0µF)

or Ceq = 2.40µF. 

(b) The charge on the equivalent capacitor is q = C∆V = (2.40µF)(200 V) = 0.480 mC. For

series capacitors, the charge on the equivalent capacitor is the same as the charge on each of the

capacitors. This statement is wrong in the Student Solutions! 

(c) The potential difference across the equivalent capacitor is not the same as the potential

difference across each of the individual capacitors. We need to apply q = C∆V to each capacitor

using the charge from part (b). Then for the 4.0µF capacitor, 

q

(0.480 mC)

∆V =

=

= 120 V; 

C

(4.0µF)

and for the 6.0µF capacitor, 

q

(0.480 mC)

∆V =

=

= 80 V. 

C

(6.0µF)

Note that the sum of the potential differences across each of the capacitors is equal to the potential difference across the equivalent capacitor. 

E30-14

(a) The equivalent capacitance is

Ceq = C1 + C2 = (4.0µF) + (6.0µF) = (10.0µF). 

(c) For parallel capacitors, the potential difference across the equivalent capacitor is the same as

the potential difference across either of the capacitors. 

(b) For the 4.0µF capacitor, 

q = C∆V = (4.0µF)(200 V) = 8.0×10−4 C; 

and for the 6.0µF capacitor, 

q = C∆V = (6.0µF)(200 V) = 12.0×10−4 C. 
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E30-15

(a) Ceq = C + C + C = 3C; 

0A

0A

d

deq =

=

=

. 

Ceq

3C

3

(b) 1/Ceq = 1/C + 1/C + 1/C = 3/C; 

0A

0A

deq =

=

= 3d. 

Ceq

C/3

E30-16

(a) The maximum potential across any individual capacitor is 200 V; so there must be

at least (1000 V)/(200 V) = 5 series capacitors in any parallel branch. This branch would have an

equivalent capacitance of Ceq = C/5 = (2.0×10−6F)/5 = 0.40×10−6F. 

(b) For parallel branches we add, which means we need (1.2×10−6F)/(0.40×10−6F) = 3 parallel

branches of the combination found in part (a). 

E30-17

Look back at the solution to Ex. 30-10. If C3 breaks down electrically then the circuit is

effectively two capacitors in parallel. 

(b) ∆V = 115 V after the breakdown. 

(a) q1 = (10.3×10−6F)(115 V) = 1.18×10−3C. 

E30-18

The 108µF capacitor originally has a charge of q = (108×10−6F)(52.4 V) = 5.66×10−3C. 

After it is connected to the second capacitor the 108µF capacitor has a charge of q = (108 ×

10−6F)(35.8 V) = 3.87×10−3C. The difference in charge must reside on the second capacitor, so the

capacitance is C = (1.79×10−3C)/(35.8 V) = 5.00×10−5F. 

E30-19

Consider any junction other than A or B. Call this junction point 0; label the four nearest

junctions to this as points 1, 2, 3, and 4. The charge on the capacitor that links point 0 to point 1 is q1 = C∆V01, where ∆V01 is the potential difference across the capacitor, so ∆V01 = V0 − V1, where

V0 is the potential at the junction 0, and V1 is the potential at the junction 1. Similar expressions exist for the other three capacitors. 

For the junction 0 the net charge must be zero; there is no way for charge to cross the plates of

the capacitors. Then q1 + q2 + q3 + q4 = 0, and this means

C∆V01 + C∆V02 + C∆V03 + C∆V04 = 0

or

∆V01 + ∆V02 + ∆V03 + ∆V04 = 0. 

Let ∆V0i = V0 − Vi, and then rearrange, 

4V0 = V1 + V2 + V3 + V4, 

or

1

V0 =

(V1 + V2 + V3 + V4) . 

4

E30-20

U = uV = 0E2V /2, where V is the volume. Then

1

U =

(8.85×10−12F/m)(150 V/m)2(2.0 m3) = 1.99×10−7J. 

2
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E30-21

The total capacitance is (2100)(5.0×10−6F) = 1.05×10−2F. The total energy stored is

1

1

U =

C(∆V )2 =

(1.05×10−2F)(55×103V)2 = 1.59×107 J. 

2

2

The cost is



$0.03



(1.59×107J)

= $0.133. 

3600×103J

E30-22

(a) U = 1 C(∆V )2 = 1 (0.061 F)(1.0×104V)2 = 3.05×106J. 

2

2

(b) (3.05×106J)/(3600×103J/kW · h) = 0.847kW · h. 

E30-23

(a) The capacitance of an air filled parallel-plate capacitor is given by Eq. 30-5, 

0A

(8.85×10−12F/m)(42.0 × 10−4m2)

C =

=

= 2.86×10−11 F. 

d

(1.30 × 10−3m)

(b) The magnitude of the charge on each plate is given by

q = C∆V = (2.86×10−11 F)(625 V) = 1.79×10−8 C. 

(c) The stored energy in a capacitor is given by Eq. 30-25, regardless of the type or shape of the

capacitor, so

1

1

U =

C(∆V )2 =

(2.86×10−11 F)(625 V)2 = 5.59 µJ. 

2

2

(d) Assuming a parallel plate arrangement with no fringing effects, the magnitude of the electric

field between the plates is given by Ed = ∆V , where d is the separation between the plates. Then

E = ∆V /d = (625 V)/(0.00130 m) = 4.81×105 V/m. 

(e) The energy density is Eq. 30-28, 

1

1

u =

0E2 =

((8.85×10−12F/m))(4.81×105 V/m)2 = 1.02 J/m3. 

2

2

E30-24

The equivalent capacitance is given by

1/Ceq = 1/(2.12×10−6F) + 1/(3.88×10−6F) = 1/(1.37×10−6F). 

The energy stored is U = 1 (1.37×10−6F)(328 V)2 = 7.37×10−2J. 

2

E30-25

V /r = q/4π0r2 = E, so that if V is the potential of the sphere then E = V /r is the

electric field on the surface. Then the energy density of the electric field near the surface is

1

(8.85×10−12F/m)  (8150 V) 2

u =

0E2 =

= 7.41×10−2J/m3. 

2

2

(0.063 m)

E30-26

The charge on C3 can be found from considering the equivalent capacitance. q3 = (3.10×

10−6F)(112 V) = 3.47×10−4C. The potential across C3 is given by [∆V ]3 = (3.47×10−4C)/(3.90×

10−6F) = 89.0 V. 

The potential across the parallel segment is then (112 V) − (89.0 V) = 23.0 V. So [∆V ]1 =

[∆V ]2 = 23.0 V. 

Then q1 = (10.3×10−6F)(23.0 V) = 2.37×10−4C and q2 = (4.80×10−6F)(23.0 V) = 1.10×10−4C.. 
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E30-27

There is enough work on this problem without deriving once again the electric field

between charged cylinders. I will instead refer you back to Section 26-4, and state

1

q

E =

, 

2π0 Lr

where q is the magnitude of the charge on a cylinder and L is the length of the cylinders. 

The energy density as a function of radial distance is found from Eq. 30-28, 

1

1

q2

u =

0E2 =

2

8π20 L2r2

The total energy stored in the electric field is given by Eq. 30-24, 

1 q2

q2 ln(b/a)

U =

=

, 

2 C

2 2π0L

where we substituted into the last part Eq. 30-11, the capacitance of a cylindrical capacitor. 

√

We want to show that integrating a volume integral from r = a to r =

ab over the energy

density function will yield U/2. Since we want to do this problem the hard way, we will pretend we

don’t know the answer, and integrate from r = a to r = c, and then find out what c is. 

Then

1

Z

U

=

u dV, 

2

Z

c Z 2π Z L 

1

q2 

=

r dr dφ dz, 

a

0

0

8π20 L2r2

q2

Z

c Z 2π Z L dr

=

dφ dz, 

8π20L2 a

0

0

r

q2

Z

c dr

=

, 

4π0L a r

q2

c

=

ln

. 

4π0L

a

Now we equate this to the value for U that we found above, and we solve for c. 

1 q2 ln(b/a)

q2

c

=

ln

, 

2 2 2π0L

4π0L

a

ln(b/a)

=

2 ln(c/a), 

(b/a)

=

(c/a)2, 

√ab = c. 

E30-28

(a) d = 0A/C, or

d = (8.85×10−12F/m)(0.350 m2)/(51.3×10−12F) = 6.04×10−3m. 

(b) C = (5.60)(51.3×10−12 F) = 2.87×10−10F. 

E30-29

Originally, C1 = 0A/d1. After the changes, C2 = κ0A/d2. Dividing C2 by C1 yields

C2/C1 = κd1/d2, so

κ = d2C2/d1C1 = (2)(2.57×10−12F)/(1.32×10−12F) = 3.89. 
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E30-30

The required capacitance is found from U = 1 C(∆V )2, or

2

C = 2(6.61×10−6J)/(630 V)2 = 3.33×10−11F. 

The dielectric constant required is κ = (3.33×10−11F)/(7.40×10−12F) = 4.50. Try transformer oil. 

E30-31

Capacitance with dielectric media is given by Eq. 30-31, 

κe0A

C =

. 

d

The various sheets have different dielectric constants and different thicknesses, and we want to

maximize C, which means maximizing κe/d. For mica this ratio is 54 mm−1, for glass this ratio is

35 mm−1, and for paraffin this ratio is 0.20 mm−1. Mica wins. 

E30-32

The minimum plate separation is given by

d = (4.13×103V)/(18.2×106V/m) = 2.27×10−4m. 

The minimum plate area is then

dC

(2.27×10−4m)(68.4×10−9F)

A =

=

= 0.627 m2. 

κ0

(2.80)(8.85×10−12F/m)

E30-33

The capacitance of a cylindrical capacitor is given by Eq. 30-11, 

1.0×103m

C = 2π(8.85×10−12F/m)(2.6)

= 8.63×10−8F. 

ln(0.588/0.11)

E30-34

(a) U = C0(∆V )2/2, C0 = κe0A/d, and ∆V /d is less than or equal to the dielectric

strength (which we will call S). Then ∆V = Sd and

1

U =

κe0AdS2, 

2

so the volume is given by

V = 2U/κe0S2. 

This quantity is a minimum for mica, so

V = 2(250×103J)/(5.4)(8.85×10−12F/m)(160×106V/m)2 = 0.41 m3. 

(b) κe = 2U/V 0S2, so

κe = 2(250×103J)/(0.087m3)(8.85×10−12F/m)(160×106V/m)2 = 25. 

E30-35

(a) The capacitance of a cylindrical capacitor is given by Eq. 30-11, 

L

C = 2π0κe

. 

ln(b/a)

The factor of κe is introduced because there is now a dielectric (the Pyrex drinking glass) between

the plates. We can look back to Table 29-2 to get the dielectric properties of Pyrex. The capacitance of our “glass” is then

(0.15 m)

C = 2π(8.85×10−12F/m)(4.7)

= 7.3×10−10 F. 

ln((3.8 cm)/(3.6 cm)

(b) The breakdown potential is (14 kV/mm)(2 mm) = 28 kV. 
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E30-36

(a) C0 = κeC = (6.5)(13.5×10−12F) = 8.8×10−11F. 

(b) Q = C0∆V = (8.8×10−11F)(12.5 V) = 1.1×10−9C. 

(c) E = ∆V /d, but we don’t know d. 

(d) E0 = E/κe, but we couldn’t find E. 

E30-37

(a) Insert the slab so that it is a distance a above the lower plate. Then the distance

between the slab and the upper plate is d − a − b. Inserting the slab has the same effect as having

two capacitors wired in series; the separation of the bottom capacitor is a, while that of the top

capacitor is d − a − b. 

The bottom capacitor has a capacitance of C1 = 0A/a, while the top capacitor has a capacitance

of C2 = 0A/(d − a − b). Adding these in series, 

1

1

1

=

+

, 

Ceq

C1

C2

a

d − a − b

=

+

, 

0A

0A

d − b

=

. 

0A

So the capacitance of the system after putting the copper slab in is C = 0A/(d − b). 

(b) The energy stored in the system before the slab is inserted is

q2

q2 d

U i =

=

2Ci

2 0A

while the energy stored after the slab is inserted is

q2

q2 d − b

U f =

=

2Cf

2 0A

The ratio is U i/U f = d/(d − b). 

(c) Since there was more energy before the slab was inserted, then the slab must have gone in

willingly, it was pulled in!. To get the slab back out we will need to do work on the slab equal to

the energy difference. 

q2 d

q2 d − b

q2 b

U i − U f =

−

=

. 

2 0A

2 0A

2 0A

E30-38

(a) Insert the slab so that it is a distance a above the lower plate. Then the distance

between the slab and the upper plate is d − a − b. Inserting the slab has the same effect as having

two capacitors wired in series; the separation of the bottom capacitor is a, while that of the top

capacitor is d − a − b. 

The bottom capacitor has a capacitance of C1 = 0A/a, while the top capacitor has a capacitance

of C2 = 0A/(d − a − b). Adding these in series, 

1

1

1

=

+

, 

Ceq

C1

C2

a

d − a − b

=

+

, 

0A

0A

d − b

=

. 

0A

So the capacitance of the system after putting the copper slab in is C = 0A/(d − b). 
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(b) The energy stored in the system before the slab is inserted is

Ci(∆V )2

(∆V )2 0A

U i =

=

2

2

d

while the energy stored after the slab is inserted is

Cf (∆V )2

(∆V )2 0A

U f =

=

2

2

d − b

The ratio is U i/U f = (d − b)/d. 

(c) Since there was more energy after the slab was inserted, then the slab must not have gone in

willingly, it was being repelled!. To get the slab in we will need to do work on the slab equal to the energy difference. 

(∆V )2 0A

(∆V )2 0A

(∆V )2

0Ab

U f − U i =

−

=

. 

2

d − b

2

d

2

d(d − b)

E30-39

C = κe0A/d, so d = κe0A/C. 

(a) E = ∆V /d = C∆V /κe0A, or

(112×10−12F)(55.0 V)

E =

= 13400 V/m. 

(5.4)(8.85×10−12F/m)(96.5×10−4m2)

(b) Q = C∆V = (112×10−12F)(55.0 V) = 6.16×10−9C.. 

(c) Q0 = Q(1 − 1/κe) = (6.16×10−9C)(1 − 1/(5.4)) = 5.02×10−9C. 

E30-40

(a) E = q/κe0A, so

(890×10−9C)

κe =

= 6.53

(1.40×106V/m)(8.85×10−12F/m)(110×10−4m2)

(b) q0 = q(1 − 1/κe) = (890×10−9C)(1 − 1/(6.53)) = 7.54×10−7C. 

P30-1

The capacitance of the cylindrical capacitor is from Eq. 30-11, 

2π0L

C =

. 

ln(b/a)

If the cylinders are very close together we can write b = a + d, where d, the separation between the

cylinders, is a small number, so

2π0L

2π0L

C =

=

. 

ln ((a + d)/a)

ln (1 + d/a)

Expanding according to the hint, 

2π0L

2πa0L

C ≈

=

d/a

d

Now 2πa is the circumference of the cylinder, and L is the length, so 2πaL is the area of a cylindrical plate. Hence, for small separation between the cylinders we have

0A

C ≈

, 

d

which is the expression for the parallel plates. 
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P30-2

(a) C = 0A/x; take the derivative and

dC

0 dA

0A dx

=

−

, 

dT

x dT

x2 dT

 1 dA

1 dx 

=

C

−

. 

A dT

x dT

(b) Since (1/A)dA/dT = 2αa and (1/x)dx/dT = αs, we need

αs = 2αa = 2(23×10−6/C◦) = 46×10−6/C◦. 

P30-3

Insert the slab so that it is a distance d above the lower plate. Then the distance between

the slab and the upper plate is a−b−d. Inserting the slab has the same effect as having two capacitors wired in series; the separation of the bottom capacitor is d, while that of the top capacitor is a−b−d. 

The bottom capacitor has a capacitance of C1 = 0A/d, while the top capacitor has a capacitance

of C2 = 0A/(a − b − d). Adding these in series, 

1

1

1

=

+

, 

Ceq

C1

C2

d

a − b − d

=

+

, 

0A

0A

a − b

=

. 

0A

So the capacitance of the system after putting the slab in is C = 0A/(a − b). 

P30-4

The potential difference between any two adjacent plates is ∆V . Each interior plate has a

charge q on each surface; the exterior plate (one pink, one gray) has a charge of q on the interior

surface only. 

The capacitance of one pink/gray plate pair is C = 0A/d. There are n plates, but only n − 1

plate pairs, so the total charge is (n − 1)q. This means the total capacitance is C = 0(n − 1)A/d. 

P30-5

Let ∆V0 = 96.6 V. 

As far as point e is concerned point a looks like it is originally positively charged, and point d is originally negatively charged. It is then convenient to define the charges on the capacitors in terms of the charges on the top sides, so the original charge on C1 is q1,i = C1∆V0 while the original charge on C2 is q2,i = −C2∆V0. Note the negative sign reflecting the opposite polarity of C2. 

(a) Conservation of charge requires

q1,i + q2,i = q1,f + q2,f , 

but since q = C∆V and the two capacitors will be at the same potential after the switches are closed

we can write

C1∆V0 − C2∆V0 = C1∆V + C2∆V, 

(C1 − C2) ∆V0 = (C1 + C2) ∆V, 

C1 − C2 ∆V0 = ∆V. 

C1 + C2

With numbers, 

(1.16 µF) − (3.22 µF)

∆V = (96.6 V)

= −45.4 V. 

(1.16 µF) + (3.22 µF)
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The negative sign means that the top sides of both capacitor will be negatively charged after the

switches are closed. 

(b) The charge on C1 is C1∆V = (1.16 µF)(45.4 V) = 52.7µC. 

(c) The charge on C2 is C2∆V = (3.22 µF)(45.4 V) = 146µC. 

P30-6

C2 and C3 form an effective capacitor with equivalent capacitance Ca = C2C3/(C2 + C3). 

The charge on C1 is originally q0 = C1∆V0. After throwing the switch the potential across C1

is given by q1 = C1∆V1. The same potential is across Ca; q2 = q3, so q2 = Ca∆V1. Charge is

conserved, so q1 + q2 = q0. Combining some of the above, 

q0

C1

∆V1 =

=

∆V0, 

C1 + Ca

C1 + Ca

and then

C2

C2(C2 + C3)

q

1

1

1 =

∆V0 =

∆V0. 

C1 + Ca

C1C2 + C1C3 + C2C3

Similarly, 

C



−1

aC1

1

1

1

q2 =

∆V0 =

+

+

∆V0. 

C1 + Ca

C1

C2

C3

q3 = q2 because they are in series. 

P30-7

(a) If terminal a is more positive than terminal b then current can flow that will charge the

capacitor on the left, the current can flow through the diode on the top, and the current can charge

the capacitor on the right. Current will not flow through the diode on the left. The capacitors are

effectively in series. 

Since the capacitors are identical and series capacitors have the same charge, we expect the

capacitors to have the same potential difference across them. But the total potential difference

across both capacitors is equal to 100 V, so the potential difference across either capacitor is 50 V. 

The output pins are connected to the capacitor on the right, so the potential difference across

the output is 50 V. 

(b) If terminal b is more positive than terminal a the current can flow through the diode on the

left. If we assume the diode is resistanceless in this configuration then the potential difference across it will be zero. The net result is that the potential difference across the output pins is 0 V. 

In real life the potential difference across the diode would not be zero, even if forward biased. It

will be somewhere around 0.5 Volts. 

P30-8

Divide the strip of width a into N segments, each of width ∆x = a/N . The capacitance of

each strip is ∆C = 0a∆x/y. If θ is small then

1

1

1

d

=

≈

≈ 1 − xθ/d). 

y

d + x sin θ

d + xθ

(

Since parallel capacitances add, 

Z

a





X

0a

0a2

aθ

C =

∆C =

(1 − xθ/d)dx =

1 −

. 

d

0

d

2d
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P30-9

(a) When S2 is open the circuit acts as two parallel capacitors. The branch on the left has

an effective capacitance given by

1

1

1

1

=

+

=

, 

Cl

(1.0×10−6F)

(3.0×10−6F)

7.5×10−7F

while the branch on the right has an effective capacitance given by

1

1

1

1

=

+

=

. 

Cl

(2.0×10−6F)

(4.0×10−6F)

1.33×10−6F

The charge on either capacitor in the branch on the left is

q = (7.5×10−7F)(12 V) = 9.0×10−6C, 

while the charge on either capacitor in the branch on the right is

q = (1.33×10−6F)(12 V) = 1.6×10−5C. 

(b) After closing S2 the circuit is effectively two capacitors in series. The top part has an effective capacitance of

Ct = (1.0×10−6F) + (2.0×10−6F) = (3.0×10−6F), 

while the effective capacitance of the bottom part is

Cb = (3.0×10−6F) + (4.0×10−6F) = (7.0×10−6F). 

The effective capacitance of the series combination is given by

1

1

1

1

=

+

=

. 

Ceq

(3.0×10−6F)

(7.0×10−6F)

2.1×10−6F

The charge on each part is q = (2.1×10−6F)(12 V) = 2.52×10−5C. The potential difference across

the top part is

∆V t = (2.52×10−5C)/(3.0×10−6F) = 8.4 V, 

and then the charge on the top two capacitors is q1 = (1.0 × 10−6F)(8.4 V) = 8.4 × 10−6C and

q2 = (2.0×10−6F)(8.4 V) = 1.68×10−5C. The potential difference across the bottom part is

∆V t = (2.52×10−5C)/(7.0×10−6F) = 3.6 V, 

and then the charge on the top two capacitors is q1 = (3.0 × 10−6F)(3.6 V) = 1.08 × 10−5C and

q2 = (4.0×10−6F)(3.6 V) = 1.44×10−5C. 

P30-10

Let ∆V = ∆Vxy. By symmetry ∆V2 = 0 and ∆V1 = ∆V4 = ∆V5 = ∆V3 = ∆V /2. 

Suddenly the problem is very easy. The charges on each capacitor is q1, except for q2 = 0. Then the

equivalent capacitance of the circuit is

q

q1 + q4

Ceq =

=

= C1 = 4.0×10−6F. 

∆V

2∆V1
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P30-11

(a) The charge on the capacitor with stored energy U0 = 4.0 J is q0, where

q2

U


0

0 =

. 

2C

When this capacitor is connected to an identical uncharged capacitor the charge is shared equally, 

so that the charge on either capacitor is now q = q0/2. The stored energy in one capacitor is then

q2

q2/4

1

U =

= 0

=

U0. 

2C

2C

4

But there are two capacitors, so the total energy stored is 2U = U0/2 = 2.0 J. 

(b) Good question. Current had to flow through the connecting wires to get the charge from one

capacitor to the other. Originally the second capacitor was uncharged, so the potential difference

across that capacitor would have been zero, which means the potential difference across the con-

necting wires would have been equal to that of the first capacitor, and there would then have been

energy dissipation in the wires according to

P = i2R. 

That’s where the missing energy went. 

P30-12

R = ρL/A and C = 0A/L. Combining, R = ρ0/C, or

R = (9.40 Ω · m)(8.85×10−12F/m)/(110×10−12F) = 0.756 Ω. 

P30-13

(a) u = 1 

2 0E2 = e2/32π20r4. 

(b) U = R u dV where dV = 4πr2dr. Then

Z

∞

e2

e2

1

U = 4pi

r2 dr =

. 

R

32π20r4

8π0 R

(c) R = e2/8π0mc2, or

(1.60×10−19C)2

R =

= 1.40×10−15m. 

8π(8.85×10−12F/m)(9.11×10−31kg)(3.00×108m/s)2

P30-14

U = 1 q2/C = q2x/2A

2

0. F = dU/dx = q2/2A0. 

P30-15

According to Problem 14, the force on a plate of a parallel plate capacitor is

q2

F =

. 

20A

The force per unit area is then

F

q2

σ2

=

=

, 

A

20A2

20

where σ = q/A is the surface charge density. But we know that the electric field near the surface of

a conductor is given by E = σ/0, so

F

1

=

0E2. 

A

2
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P30-16

A small surface area element dA carries a charge dq = q dA/4πR2. There are three forces

on the elements which balance, so

p(V0/V )dA + q dq/4π0R2 = p dA, 

or

pR3 + q2/16π2

0

0R = pR3. 

This can be rearranged as

q2 = 16π20pR(R3 − R3). 

0

P30-17

The magnitude of the electric field in the cylindrical region is given by E = λ/2π0r, 

where λ is the linear charge density on the anode. The potential difference is given by ∆V =

(λ/2π0) ln(b/a), where a is the radius of the anode b the radius of the cathode. Combining, E =

∆V /r ln(b/a), this will be a maximum when r = a, so

∆V = (0.180×10−3m) ln[(11.0×10−3m)/(0.180×10−3m)](2.20×106V/m) = 1630 V. 

P30-18

This is effectively two capacitors in parallel, each with an area of A/2. Then







0A/2

0A/2

0A

κe1 + κe2

Ceq = κe1

+ κe2

=

. 

d

d

d

2

P30-19

We will treat the system as two capacitors in series by pretending there is an infinitesi-

mally thin conductor between them. The slabs are (I assume) the same thickness. The capacitance

of one of the slabs is then given by Eq. 30-31, 

κe10A

C1 =

, 

d/2

where d/2 is the thickness of the slab. There would be a similar expression for the other slab. The

equivalent series capacitance would be given by Eq. 30-21, 

1

1

1

=

+

, 

Ceq

C1

C2

d/2

d/2

=

+

, 

κe10A

κe20A

d

κe2 + κe1

=

, 

20A κe1κe2

20A κe1κe2

Ceq

=

. 

d

κe2 + κe1

P30-20

Treat this as three capacitors. Find the equivalent capacitance of the series combination

on the right, and then add on the parallel part on the left. The right hand side is

1

d

d

2d  κ



e2 + κe3

=

+

=

. 

Ceq

κe20A/2

κe30A/2

0A

κe2κe3

Add this to the left hand side, and

κ





e10A/2

0A

κe2κe3

Ceq

=

+

, 

2d

2d

κe2 + κe3







0A

κe1

κe2κe3

=

+

. 

2d

2

κe2 + κe3
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P30-21

(a) q doesn’t change, but C0 = C/2. Then ∆V 0 = q/C = 2∆V . 

(b) U = C(∆V )2/2 = 0A(∆V )2/2d. U 0 = C0(∆V 0)2/2 = 0A(2∆V )2/4d = 2U . 

(c) W = U 0 − U = 2U − U = U = 0A(∆V )2/2d. 

P30-22

The total energy is U = qδV /2 = (7.02×10−10C)(52.3 V)/2 = 1.84×10−8J. 

(a) In the air gap we have

0E2V

(8.85×10−12F/m)(6.9×103V/m)2(1.15×10−2m2)(4.6×10−3m)

U

0

a =

=

= 1.11×10−8J. 

2

2

That is (1.11/1.85) = 60% of the total. 

(b) The remaining 40% is in the slab. 

P30-23

(a) C = 0A/d = (8.85×10−12F/m)(0.118 m2)/(1.22×10−2m) = 8.56×10−11F. 

(b) Use the results of Problem 30-24. 

(4.8)(8.85×10−12F/m)(0.118 m2)

C0 =

= 1.19×10−10F

(4.8)(1.22×10−2m) − (4.3×10−3m)(4.8 − 1)

(c) q = C∆V = (8.56×10−11F)(120 V) = 1.03×10−8C; since the battery is disconnected q0 = q. 

(d) E = q/0A = (1.03×10−8C)/(8.85×10−12F/m)(0.118 m2) = 9860 V/m in the space between

the plates. 

(e) E0 = E/κe = (9860 V/m)/(4.8) = 2050 V/m in the dielectric. 

(f) ∆V 0 = q/C0 = (1.03×10−8C)/(1.19×10−10F) = 86.6 V. 

(g) W = U 0 − U = q2(1/C − 1/C0)/2, or

(1.03×10−8C)2

W =

[1/(8.56×10−11F) − 1/(1.19×10−10F)] = 1.73×10−7J. 

2

P30-24

The result is effectively three capacitors in series. Two are air filled with thicknesses of

x and d − b − x, the third is dielectric filled with thickness b. All have an area A. The effective

capacitance is given by

1

x

d − b − x

b

=

+

+

, 

C

0A

0A

κe0A

1 

b 

=

(d − b) +

, 

0A

κe

0A

C

=

, 

d − b + b/κe

κe0A

=

. 

κe − b(κe − 1)
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E31-1

(5.12 A)(6.00 V)(5.75 min)(60 s/min) = 1.06×104J. 

E31-2

(a) (12.0 V)(1.60×10−19C) = 1.92×10−18J. 

(b) (1.92×10−18J)(3.40×1018/s) = 6.53 W. 

E31-3

If the energy is delivered at a rate of 110 W, then the current through the battery is

P

(110 W)

i =

=

= 9.17 A. 

∆V

(12 V)

Current is the flow of charge in some period of time, so

∆q

(125 A · h)

∆t =

=

= 13.6 h, 

i

(9.2 A)

which is the same as 13 hours and 36 minutes. 

E31-4

(100 W)(8 h) = 800 W · h. 

(a) (800 W · h)/(2.0 W · h) = 400 batteries, at a cost of (400)($0.80) = $320. 

(b) (800 W · h)($0.12×10−3 W · h) = $0.096. 

E31-5

Go all of the way around the circuit. It is a simple one loop circuit, and although it does

not matter which way we go around, we will follow the direction of the larger emf. Then

(150 V) − i(2.0 Ω) − (50 V) − i(3.0 Ω) = 0, 

where i is positive if it is counterclockwise. Rearranging, 

100 V = i(5.0 Ω), 

or i = 20 A. 

Assuming the potential at P is VP = 100 V, then the potential at Q will be given by

VQ = VP − (50 V) − i(3.0 Ω) = (100 V) − (50 V) − (20 A)(3.0 Ω) = −10 V. 

E31-6

(a) Req = (10 Ω) + (140 Ω) = 150 Ω. i = (12.0 V)/(150 Ω) = 0.080 A. 

(b) Req = (10 Ω) + (80 Ω) = 90 Ω. i = (12.0 V)/(90 Ω) = 0.133 A. 

(c) Req = (10 Ω) + (20 Ω) = 30 Ω. i = (12.0 V)/(30 Ω) = 0.400 A. 

E31-7

(a) Req = (3.0 V − 2.0 V)/(0.050 A) = 20 Ω. Then R = (20 Ω) − (3.0 Ω) − (3.0 Ω) = 14 Ω. 

(b) P = i∆V = i2R = (0.050 A)2(14 Ω) = 3.5×10−2W. 

E31-8

(5.0 A)R1 = ∆V . (4.0 A)(R1 +2.0 Ω) = ∆V . Combining, 5R1 = 4R1 +8.0 Ω, or R1 = 8.0 Ω. 

E31-9

(a) (53.0 W)/(1.20 A) = 44.2 V. 

(b) (1.20 A)(19.0 Ω) = 22.8 V is the potential difference across R. Then an additional potential

difference of (44.2 V) − (22.8 V) = 21.4 V must exist across C. 

(c) The left side is positive; it is a reverse emf. 

E31-10

(a) The current in the resistor is p(9.88 W)/(0.108 Ω) = 9.56 A. The total resistance of

the circuit is (1.50 V)/(9.56 A) = 0.157 Ω. The internal resistance of the battery is then (0.157 Ω) −

(0.108 Ω) = 0.049 Ω. 

(b) (9.88 W)/(9.56 A) = 1.03 V. 
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E31-11

We assign directions to the currents through the four resistors as shown in the figure. 

1

2

 a

 b

3

4

Since the ammeter has no resistance the potential at a is the same as the potential at b. Con-

sequently the potential difference (∆V b) across both of the bottom resistors is the same, and the

potential difference (∆V t) across the two top resistors is also the same (but different from the

bottom). We then have the following relationships:

∆V t + ∆V b

=

E, 

i1 + i2

=

i3 + i4, 

∆Vj

=

ijRj, 

where the j subscript in the last line refers to resistor 1, 2, 3, or 4. 

For the top resistors, 

∆V1 = ∆V2 implies 2i1 = i2; 

while for the bottom resistors, 

∆V3 = ∆V4 implies i3 = i4. 

Then the junction rule requires i4 = 3i1/2, and the loop rule requires

(i1)(2R) + (3i1/2)(R) = E or i1 = 2E/(7R). 

The current that flows through the ammeter is the difference between i2 and i4, or 4E/(7R) −

3E/(7R) = E/(7R). 

E31-12

(a) Define the current i1 as moving to the left through r1 and the current i2 as moving

to the left through r2. i3 = i1 + i2 is moving to the right through R. Then there are two loop

equations:

E1 = i1r1 + i3R, 

E2 = (i3 − i1)r2 + i3R. 

Multiply the top equation by r2 and the bottom by r1 and then add:

r2E1 + r1E2 = i3r1r2 + i3R(r1 + r2), 

which can be rearranged as

r2E1 + r1E2

i3 =

. 

r1r2 + Rr1 + Rr2

(b) There is only one current, so

E1 + E2 = i(r1 + r2 + R), 

or

E1 + E2

i =

. 

r1 + r2 + R
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E31-13

(a) Assume that the current flows through each source of emf in the same direction as

the emf. The the loop rule will give us three equations

E1 − i1R1 + i2R2 − E2 − i1R1 = 0, 

E2 − i2R2 + i3R1 − E3 + i3R1 = 0, 

E1 − i1R1 + i3R1 − E3 + i3R1 − i1R1 = 0. 

The junction rule (looks at point a) gives us i1 + i2 + i3 = 0. Use this to eliminate i2 from the second loop equation, 

E2 + i1R2 + i3R2 + 2i3R1 − E3 = 0, 

and then combine this with the the third equation to eliminate i3, 

E1R2 − E3R2 + 2i3R1R2 + 2E2R1 + 2i3R1R2 + 4i3R21 − 2E3R1 = 0, 

or

2E3R1 + E3R2 − E1R2 − 2E2R1

i3 =

= 0.582 A. 

4R1R2 + 4R21

Then we can find i1 from

E3 − E2 − i3R2 − 2i3R1

i1 =

= −0.668 A, 

R2

where the negative sign indicates the current is down. 

Finally, we can find i2 = −(i1 + i3) = 0.0854 A. 

(b) Start at a and go to b (final minus initial!), 

+i2R2 − E2 = −3.60 V. 

E31-14

(a) The current through the circuit is i = E/(r + R). The power delivered to R is then

P = i∆V = i2R = E2R/(r + R)2. Evaluate dP/dR and set it equal to zero to find the maximum. 

Then

dP

r − R

0 =

= E2R

, 

dR

(r + R)3

which has the solution r = R. 

(b) When r = R the power is

1

E2

P = E2R

=

. 

(R + R)2

4r

E31-15

(a) We first use P = F v to find the power output by the electric motor. Then P =

(2.0 N)(0.50 m/s) = 1.0 W. 

The potential difference across the motor is ∆V m = E − ir. The power output from the motor is

the rate of energy dissipation, so P m = ∆V mi. Combining these two expressions, 

P m

=

(E − ir) i, 

=

Ei − i2r, 

0

=

−i2r + Ei − P m, 

0

=

(0.50 Ω)i2 − (2.0 V)i + (1.0 W). 

Rearrange and solve for i, 

(2.0 V) ± p(2.0 V)2 − 4(0.50 Ω)(1.0 W)

i =

, 

2(0.50 Ω)
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which has solutions i = 3.4 A and i = 0.59 A. 

(b) The potential difference across the terminals of the motor is ∆V m = E − ir which if i = 3.4 A

yields ∆V m = 0.3 V, but if i = 0.59 A yields ∆V m = 1.7 V. The battery provides an emf of 2.0 V; it

isn’t possible for the potential difference across the motor to be larger than this, but both solutions seem to satisfy this constraint, so we will move to the next part and see what happens. 

(c) So what is the significance of the two possible solutions? It is a consequence of the fact that

power is related to the current squared, and with any quadratics we expect two solutions. Both

are possible, but it might be that only one is stable, or even that neither is stable, and a small

perturbation to the friction involved in turning the motor will cause the system to break down. We

will learn in a later chapter that the effective resistance of an electric motor depends on the speed at which it is spinning, and although that won’t affect the problem here as worded, it will affect the physical problem that provided the numbers in this problem! 

E31-16

req = 4r = 4(18 Ω) = 72 Ω. The current is i = (27 V)/(72 Ω) = 0.375 A. 

E31-17

In parallel connections of two resistors the effective resistance is less than the smaller

resistance but larger than half the smaller resistance. In series connections of two resistors the

effective resistance is greater than the larger resistance but less than twice the larger resistance. 

Since the effective resistance of the parallel combination is less than either single resistance

and the effective resistance of the series combinations is larger than either single resistance we can conclude that 3.0 Ω must have been the parallel combination and 16 Ω must have been the series

combination. 

The resistors are then 4.0 Ω and 12 Ω resistors. 

E31-18

Points B and C are effectively the same point! 

(a) The three resistors are in parallel. Then req = R/3. 

(b) See (a). 

(c) 0, since there is no resistance between B and C. 

E31-19

Focus on the loop through the battery, the 3.0 Ω, and the 5.0 Ω resistors. The loop rule

yields

(12.0 V) = i[(3.0 Ω) + (5.0 Ω)] = i(8.0 Ω). 

The potential difference across the 5.0 Ω resistor is then

∆V = i(5.0 Ω) = (5.0 Ω)(12.0 V)/(8.0 Ω) = 7.5 V. 

E31-20

Each lamp draws a current of (500 W)/(120 V) = 4.17 A. 

Furthermore, the fuse can

support (15 A)/(4.17 A) = 3.60 lamps. That is a maximum of 3. 

E31-21

The current in the series combination is is = E/(R1 + R2). The power dissipated is

P s = iE = E2/(R1 + R2). 

In a parallel arrangement R1 dissipates P1 = i1E = E2/R1. A similar expression exists for R2, 

so the total power dissipated is P p = E2(1/R1 + 1/R2). 

The ratio is 5, so 5 = P p/P s = (1/R1 + 1/R2)(R1 + R2), or 5R1R2 = (R1 + R2)2. Solving for

R2 yields 2.618R1 or 0.382R1. Then R2 = 262 Ω or R2 = 38.2 Ω. 
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E31-22

Combining n identical resistors in series results in an equivalent resistance of req = nR. 

Combining n identical resistors in parallel results in an equivalent resistance of req = R/n. If the

resistors are arranged in a square array consisting of n parallel branches of n series resistors, then the effective resistance is R. Each will dissipate a power P , together they will dissipate n2P . 

So we want nine resistors, since four would be too small. 

E31-23

(a) Work through the circuit one step at a time. We first “add” R2, R3, and R4 in

parallel:

1

1

1

1

1

=

+

+

=

Reff

42.0 Ω

61.6 Ω

75.0 Ω

18.7 Ω

We then “add” this resistance in series with R1, 

Reff = (112 Ω) + (18.7 Ω) = 131 Ω. 

(b) The current through the battery is i = E/R = (6.22 V)/(131 Ω) = 47.5 mA. This is also the

current through R1, since all the current through the battery must also go through R1. 

The potential difference across R1 is ∆V1 = (47.5 mA)(112 Ω) = 5.32 V. The potential difference

across each of the three remaining resistors is 6.22 V − 5.32 V = 0.90 V. 

The current through each resistor is then

i2

=

(0.90 V)/(42.0 Ω) = 21.4 mA, 

i3

=

(0.90 V)/(61.6 Ω) = 14.6 mA, 

i4

=

(0.90 V)/(75.0 Ω) = 12.0 mA. 

E31-24

The equivalent resistance of the parallel part is r0 = R2R/(R2 + R). The equivalent

resistance for the circuit is r = R1 + R2R/(R2 + R). The current through the circuit is i0 = E/r. 

The potential difference across R is ∆V = E − i0R1, or

∆V

=

E(1 − R1/r), 



R



2 + R

=

E 1 − R1

, 

R1R2 + R1R + RR2

RR2

=

E

. 

R1R2 + R1R + RR2

Since P = i∆V = (∆V )2/R, 

RR2

P = E2

2

. 

(R1R2 + R1R + RR2)2

Set dP/dR = 0, the solution is R = R1R2/(R1 + R2). 

E31-25

(a) First “add” the left two resistors in series; the effective resistance of that branch is

2R. Then “add” the right two resistors in series; the effective resistance of that branch is also 2R. 

Now we combine the three parallel branches and find the effective resistance to be

1

1

1

1

4

=

+

+

=

, 

Reff

2R

R

2R

2R

or Reff = R/2. 

(b) First we “add” the right two resistors in series; the effective resistance of that branch is 2R. 

We then combine this branch with the resistor which connects points F and H. This is a parallel

connection, so the effective resistance is

1

1

1

3

=

+

=

, 

Reff

2R

R

2R
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or 2R/3. 

This value is effectively in series with the resistor which connects G and H, so the “total” is

5R/3. 

Finally, we can combine this value in parallel with the resistor that directly connects F and G

according to

1

1

3

8

=

+

=

, 

Reff

R

5R

5R

or Reff = 5R/8. 

E31-26

The resistance of the second resistor is r2 = (2.4 V)/(0.001 A) = 2400 Ω. The potential

difference across the first resistor is (12 V) − (2.4 V) = 9.6 V. The resistance of the first resistor is (9.6 V)/(0.001 A) = 9600 Ω. 

E31-27

See Exercise 31-26. The resistance ratio is

r1

(0.95 ± 0.1 V)

=

, 

r1 + r2

(1.50 V)

or

r2

(1.50 V)

=

− 1. 

r1

(0.95 ± 0.1 V)

The allowed range for the ratio r2/r1 is between 0.5625 and 0.5957. 

We can choose any standard resistors we want, and we could use any tolerance, but then we

will need to check our results. 22Ω and 39Ω would work; as would 27Ω and 47Ω. There are other

choices. 

E31-28

Consider any junction other than A or B. Call this junction point 0; label the four

nearest junctions to this as points 1, 2, 3, and 4. 

The current through the resistor that links

point 0 to point 1 is i1 = ∆V01/R, where ∆V01 is the potential difference across the resistor, so

∆V01 = V0 − V1, where V0 is the potential at the junction 0, and V1 is the potential at the junction

1. Similar expressions exist for the other three resistor. 

For the junction 0 the net current must be zero; there is no way for charge to accumulate on the

junction. Then i1 + i2 + i3 + i4 = 0, and this means

∆V01/R + ∆V02/R + ∆V03/R + ∆V04/R = 0

or

∆V01 + ∆V02 + ∆V03 + ∆V04 = 0. 

Let ∆V0i = V0 − Vi, and then rearrange, 

4V0 = V1 + V2 + V3 + V4, 

or

1

V0 =

(V1 + V2 + V3 + V4) . 

4

E31-29

The current through the radio is i = P/∆V = (7.5 W)/(9.0 V) = 0.83 A. The radio

was left one for 6 hours, or 2.16×104 s. The total charge to flow through the radio in that time is

(0.83 A)(2.16×104 s) = 1.8×104 C. 

E31-30

The power dissipated by the headlights is (9.7 A)(12.0 V) = 116 W. The power required

by the engine is (116 W)/(0.82) = 142 W, which is equivalent to 0.190 hp. 

87

E31-31

(a) P = (120 V)(120 V)/(14.0 Ω) = 1030 W. 

(b) W = (1030 W)(6.42 h) = 6.61 kW · h. The cost is $0.345. 

E31-32

E31-33

We want to apply either Eq. 31-21, 

PR = i2R, 

or Eq. 31-22, 

PR = (∆VR)2/R, 

depending on whether we are in series (the current is the same through each bulb), or in parallel

(the potential difference across each bulb is the same. The brightness of a bulb will be measured by

P , even though P is not necessarily a measure of the rate radiant energy is emitted from the bulb. 

(b) If the bulbs are in parallel then PR = (∆VR)2/R is how we want to compare the brightness. 

The potential difference across each bulb is the same, so the bulb with the smaller resistance is

brighter. 

(b) If the bulbs are in series then PR = i2R is how we want to compare the brightness. Both

bulbs have the same current, so the larger value of R results in the brighter bulb. 

One direct consequence of this can be tried at home. Wire up a 60 W, 120 V bulb and a 100 W, 

120 V bulb in series. Which is brighter? You should observe that the 60 W bulb will be brighter. 

E31-34

(a) j = i/A = (25 A)/π(0.05 in) = 3180 A/in2 = 4.93×106A/m2. 

(b) E = ρj = (1.69×10−8Ω · m)(4.93×106A/m2) = 8.33×10−2V/m. 

(c) ∆V = Ed = (8.33×10−2V/m)(305 m) = 25 V. 

(d) P = i∆V = (25 A)(25 V) = 625 W. 

E31-35

(a) The bulb is on for 744 hours. The energy consumed is (100 W)(744 h) = 74.4 kW · h, 

at a cost of (74.4)(0.06) = $4.46. 

(b) r = V 2/P = (120 V)2/(100 W) = 144 Ω. 

(c) i = P/V = (100 W)/(120 V) = 0.83 A. 

E31-36

P = (∆V )2/r and r = r0(1 + α∆T ). Then

P0

(500 W)

P =

=

= 660 W

1 + α∆T

1 + (4.0×10−4/C◦)(−600C◦)

E31-37

(a) n = q/e = it/e, so

n = (485×10−3A)(95×10−9s)/(1.6×10−19C) = 2.88×1011. 

(b) iav = (520/s)(485×10−3A)(95×10−9s) = 2.4×10−5A. 

(c) P p = ip∆V = (485×10−3A)(47.7×106V) = 2.3×106W; while P a = ia∆V = (2.4×10−5A)(47.7×

106V) = 1.14×103W. 

E31-38

r = ρL/A = (3.5×10−5Ω · m)(1.96×10−2m)/π(5.12×10−3m)2 = 8.33×10−3Ω. 

(a) i = pP/r = p(1.55 W)/(8.33×10−3Ω) = 13.6 A, so

j = i/A = (13.6 A)/π(5.12×10−3m)2 = 1.66×105A/m2. 

√

(b) ∆V =

P r = p(1.55 W)(8.33×10−3Ω) = 0.114 V. 
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E31-39

(a) The current through the wire is

i = P/∆V = (4800 W)/(75 V) = 64 A, 

The resistance of the wire is

R = ∆V /i = (75 V)/(64 A) = 1.17 Ω. 

The length of the wire is then found from

RA

(1.17 Ω)(2.6×10−6 m2)

L =

=

= 6.1 m. 

ρ

(5.0×10−7 Ωm)

One could easily wind this much nichrome to make a toaster oven. Of course allowing 64 Amps to

be drawn through household wiring will likely blow a fuse. 

(b) We want to combine the above calculations into one formula, so

RA

A∆V /i

A(∆V )2

L =

=

=

, 

ρ

ρ

P ρ

then

(2.6×10−6 m2)(110 V)2

L =

= 13 m. 

(4800 W)(5.0×10−7 Ωm)

Hmm. We need more wire if the potential difference is increased? Does this make sense? Yes, it

does. We need more wire because we need more resistance to decrease the current so that the same

power output occurs. 

E31-40

(a) The energy required to bring the water to boiling is Q = mC∆T . The time required

is

Q

(2.1 kg)(4200 J/kg)(100◦C − 18.5◦C)

t =

=

= 2.22×103s

0.77P

0.77(420 W)

(b) The additional time required to boil half of the water away is

mL/2

(2.1 kg)(2.26×106J/kg)/2

t =

=

= 7340 s. 

0.77P

0.77(420 W)

E31-41

(a) Integrate both sides of Eq. 31-26; 

Z

q

dq

Z

t

dt

=

−

, 

0

q − EC

0

RC

t

t 

ln(q − EC)|q

=

−



, 

0



RC 0

 q − EC 

t

ln

=

−

, 

−EC

RC

q − EC

=

e−t/RC , 

−EC





q

=

EC 1 − e−t/RC . 

That wasn’t so bad, was it? 
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(b) Rearrange Eq. 31-26 in order to get q terms on the left and t terms on the right, then

integrate; 

Z

q dq

Z

t

dt

=

−

, 

q

q

RC

0

0

t

t 

ln q|q

=

−



, 

q



0

RC 0

 q 

t

ln

=

−

, 

q0

RC

q

=

e−t/RC , 

q0

q

=

q0e−t/RC . 

That wasn’t so bad either, was it? 

E31-42

(a) τC = RC = (1.42×106Ω)(1.80×10−6F) = 2.56 s. 

(b) q0 = C∆V = (1.80×10−6F)(11.0 V) = 1.98×10−5C. 

(c) t = −τC ln(1 − q/q0), so

t = −(2.56 s) ln(1 − 15.5×10−6C/1.98×10−5C) = 3.91 s. 

E31-43

Solve n = t/τC = − ln(1 − 0.99) = 4.61. 

E31-44

(a) ∆V = E(1 − e−t/τC ), so

τC = −(1.28×10−6s)/ ln(1 − 5.00 V/13.0 V) = 2.64×10−6s

(b) C = τC /R = (2.64×10−6s)/(15.2×103Ω) = 1.73×10−10F

E31-45

(a) ∆V = Ee−t/τC , so

τC = −(10.0 s)/ ln(1.06 V/100 V) = 2.20 s

(b) ∆V = (100 V)e−17 s/2.20 s = 4.4×10−2V. 

E31-46

∆V = Ee−t/τC and τC = RC, so

t

t

t

R = −

= −

=

. 

C ln(∆V /∆V0)

(220×10−9F) ln(0.8 V/5 V)

4.03×10−7F

If t is between 10.0 µs and 6.0 ms, then R is between

R = (10×10−6s)/(4.03×10−7F) = 24.8Ω, 

and

R = (6×10−3s)/(4.03×10−7F) = 14.9×103Ω. 

E31-47

The charge on the capacitor needs to build up to a point where the potential across the

capacitor is VL = 72 V, and this needs to happen within 0.5 seconds. This means that we want to

solve





C∆VL = CE 1 − eT/RC

for R knowing that T = 0.5 s. This expression can be written as

T

(0.5 s)

R = −

= −

= 2.35×106Ω. 

C ln(1 − VL/E)

(0.15 µC) ln(1 − (72 V)/(95 V))
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√

E31-48

(a) q0 =

2U C = p2(0.50 J)(1.0×10−6F) = 1×10−3C. 

(b) i0 = ∆V0/R = q0/RC = (1×10−3C)/(1.0×106Ω)(1.0×10−6F) = 1×10−3A. 

(c) ∆VC = ∆V0e−t/τC , so

(1×10−3C)

∆VC =

e−t/(1.0×106Ω)(1.0×10−6F) = (1000 V)e−t/(1.0 s)

(1.0×10−6F)

Note that ∆VR = ∆VC . 

(d) PR = (∆VR)2/R, so

PR = (1000 V)2e−2t/(1.0 s)/(1×106ω) = (1 W)e−2t/(1.0 s). 

E31-49

(a) i = dq/dt = Ee−t/τC /R, so

(4.0 V)

i =

e−(1.0 s)/(3.0×106Ω)(1.0×10−6F) = 9.55×10−7A. 

(3.0×106Ω)

(b) PC = i∆V = (E2/R)e−t/τC (1 − e−t/τC ), so

(4.0 V)2





PC =

e−(1.0 s)/(3.0×106Ω)(1.0×10−6F) 1 − e−(1.0 s)/(3.0×106Ω)(1.0×10−6F) = 1.08×10−6W. 

(3.0×106Ω)

(c) PR = i2R = (E2/R)e−2t/τC , so

(4.0 V)2

PR =

e−2(1.0 s)/(3.0×106Ω)(1.0×10−6F) = 2.74×10−6W. 

(3.0×106Ω)

(d) P = PR + PC , or

P = 2.74×10−6W + 1.08×10−6W = 3.82×10−6W

E31-50

The rate of energy dissipation in the resistor is

PR = i2R = (E2/R)e−2t/τC . 

Evaluating

Z

∞

E2 Z ∞

E2

PRdt =

e−2t/RC dt =

C, 

0

R

0

2

but that is the original energy stored in the capacitor. 

P31-1

The terminal voltage of the battery is given by V = E − ir, so the internal resistance is

E − V

(12.0 V) − (11.4 V)

r =

=

= 0.012 Ω, 

i

(50 A)

so the battery appears within specs. 

The resistance of the wire is given by

∆V

(3.0 V)

R =

=

= 0.06 Ω, 

i

(50 A)

so the cable appears to be bad. 

What about the motor? Trying it, 

∆V

(11.4 V) − (3.0 V)

R =

=

= 0.168 Ω, 

i

(50 A)

so it appears to be within spec. 
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P31-2

Traversing the circuit we have

E − ir1 + E − ir2 − iR = 0, 

so i = 2E/(r1 + r2 + R). The potential difference across the first battery is then



2r



1

r2 − r1 + R

∆V1 = E − ir1 = E 1 −

= E

r1 + r2 + R

r1 + r2 + R

This quantity will only vanish if r2 − r1 + R = 0, or r1 = R + r2. Since r1 > r2 this is actually

possible; R = r1 − r2. 

P31-3

∆V = E − iri and i = E/(ri + R), so

R

∆V = E

, 

ri + R

There are then two simultaneous equations:

(0.10 V)(500 Ω) + (0.10 V)ri = E(500 Ω)

and

(0.16 V)(1000 Ω) + (0.16 V)ri = E(1000 Ω), 

with solution

(a) ri = 1.5×103Ω and

(b) E = 0.400 V. 

(c) The cell receives energy from the sun at a rate (2.0 mW/cm2)(5.0 cm2) = 0.010 W. The cell

converts energy at a rate of V 2/R = (0.16 V)2/(1000 Ω) = 0.26 %

P31-4

(a) The emf of the battery can be found from

E = iri + ∆V l = (10 A)(0.05 Ω) + (12 V) = 12.5 V

(b) Assume that resistance is not a function of temperature. The resistance of the headlights is

then

rl = (12.0 V)/(10.0 A) = 1.2 Ω. 

The potential difference across the lights when the starter motor is on is

∆V l = (8.0 A)(1.2 Ω) = 9.6 V, 

and this is also the potential difference across the terminals of the battery. The current through the battery is then

E − ∆V

(12.5 V) − (9.6 V)

i =

=

= 58 A, 

ri

(0.05 Ω)

so the current through the motor is 50 Amps. 

P31-5

(a) The resistivities are

ρA = rAA/L = (76.2×10−6Ω)(91.0×10−4m2)/(42.6 m) = 1.63×10−8Ω · m, 

and

ρB = rBA/L = (35.0×10−6Ω)(91.0×10−4m2)/(42.6 m) = 7.48×10−9Ω · m. 

(b) The current is i = ∆V /(rA + rB) = (630 V)/(111.2 µΩ) = 5.67×106A. The current density

is then

j = (5.67×106A)/(91.0×10−4m2) = 6.23×108A/m2. 

(c) EA = ρAj = (1.63×10−8Ω · m)(6.23×108A/m2) = 10.2 V/m and EB = ρBj = (7.48×10−9Ω ·

m)(6.23×108A/m2) = 4.66 V/m. 

(d) ∆VA = EAL = (10.2 V/m)(42.6 m) = 435 V and ∆VB = EBL = (4.66 V/m)(42.6 m) = 198 V. 
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P31-6

Set up the problem with the traditional presentation of the Wheatstone bridge problem. 

Then the symmetry of the problem (flip it over on the line between x and y) implies that there is no

current through r. As such, the problem is equivalent to two identical parallel branches each with

two identical series resistances. 

Each branch has resistance R + R = 2R, so the overall circuit has resistance

1

1

1

1

=

+

=

, 

Req

2R

2R

R

so Req = R. 

P31-7

P31-8

(a) The loop through R1 is trivial: i1 = E2/R1 = (5.0 V)/(100 Ω) = 0.05 A. The loop

through R2 is only slightly harder: i2 = (E2 + E3 − E1)/R2 = 0.06 A. 

(b) ∆Vab = E3 + E2 = (5.0 V) + (4.0 V) = 9.0 V. 

P31-9

(a) The three way light-bulb has two filaments (or so we are told in the question). There

are four ways for these two filaments to be wired: either one alone, both in series, or both in

parallel. Wiring the filaments in series will have the largest total resistance, and since P = V 2/R

this arrangement would result in the dimmest light. But we are told the light still operates at the

lowest setting, and if a filament burned out in a series arrangement the light would go out. 

We then conclude that the lowest setting is one filament, the middle setting is another filament, 

and the brightest setting is both filaments in parallel. 

(b) The beauty of parallel settings is that then power is additive (it is also addictive, but that’s

a different field.) One filament dissipates 100 W at 120 V; the other filament (the one that burns

out) dissipates 200 W at 120 V, and both together dissipate 300 W at 120 V. 

The resistance of one filament is then

(∆V )2

(120 V)2

R =

=

= 144 Ω. 

P

(100 W)

The resistance of the other filament is

(∆V )2

(120 V)2

R =

=

= 72 Ω. 

P

(200 W)

P31-10

We can assume that R “contains” all of the resistance of the resistor, the battery and the

ammeter, then

R = (1.50 V)/(1.0 m/A) = 1500 Ω. 

For each of the following parts we apply R + r = ∆V /i, so

(a) r = (1.5 V)/(0.1 mA) − (1500 Ω) = 1.35×104Ω, 

(b) r = (1.5 V)/(0.5 mA) − (1500 Ω) = 1.5×103Ω, 

(c) r = (1.5 V)/(0.9 mA) − (1500 Ω) = 167Ω. 

(d) R = (1500 Ω) − (18.5 Ω) = 1482 Ω

P31-11

(a) The effective resistance of the parallel branches on the middle and the right is

R2R3 . 

R2 + R3
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The effective resistance of the circuit as seen by the battery is then

R2R3

R1R2 + R1R3 + R2R3

R1 +

=

, 

R2 + R3

R2 + R3

The current through the battery is

R2 + R3

i = E

, 

R1R2 + R1R3 + R2R3

The potential difference across R1 is then

R2 + R3

∆V1 = E

R1, 

R1R2 + R1R3 + R2R3

while ∆V3 = E − ∆V1, or

R2R3

∆V3 = E

, 

R1R2 + R1R3 + R2R3

so the current through the ammeter is

∆V3

R2

i3 =

= E

, 

R3

R1R2 + R1R3 + R2R3

or

(4 Ω)

i3 = (5.0 V)

= 0.45 A. 

(2 Ω)(4 Ω) + (2 Ω)(6 Ω) + (4 Ω)(6 Ω)

(b) Changing the locations of the battery and the ammeter is equivalent to swapping R1 and

R3. But since the expression for the current doesn’t change, then the current is the same. 

P31-12

∆V1 + ∆V2 = ∆VS + ∆VX ; if Va = Vb, then ∆V1 = ∆VS. Using the first expression, 

ia(R1 + R2) = ib(RS + RX ), 

using the second, 

iaR1 = ibR2. 

Dividing the first by the second, 

1 + R2/R1 = 1 + RX /RS, 

or RX = RS(R2/R1). 

P31-13

P31-14

Lv = ∆Q/∆m and ∆Q/∆t = P = i∆V , so

i∆V

(5.2 A)(12 V)

Lv =

=

= 2.97×106J/kg. 

∆m/∆t

(21×10−6kg/s)

P31-15

P = i2R. W = p∆V , where V is volume. p = mg/A and V = Ay, where y is the height

of the piston. Then P = dW/dt = mgv. Combining all of this, 

i2R

(0.240 A)2(550 Ω)

v =

=

= 0.274 m/s. 

mg

(11.8 kg)(9.8 m/s2)
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P31-16

(a) Since q = CV , then

q = (32×10−6F) (6 V) + (4 V/s)(0.5 s) − (2 V/s2)(0.5 s)2 = 2.4×10−4C. 

(b) Since i = dq/dt = C dV /dt, then

i = (32×10−6F) (4 V/s) − 2(2 V/s2)(0.5 s) = 6.4×10−5A. 

(c) Since P = iV , 

P = [(4 V/s) − 2(2 V/s2)(0.5 s) (6 V) + (4 V/s)(0.5 s) − (2 V/s2)(0.5 s)2 = 4.8×10−4W. 

P31-17

(a) We have P = 30P0 and i = 4i0. Then

P

30P0

30

R =

=

=

R0. 

i2

(4i0)2

16

We don’t really care what happened with the potential difference, since knowing the change in

resistance of the wire should give all the information we need. 

The volume of the wire is a constant, even upon drawing the wire out, so LA = L0A0; the

product of the length and the cross sectional area must be a constant. 

Resistance is given by R = ρL/A, but A = L0A0/L, so the length of the wire is

s

s

A0L0R

30 A0L0R0

L =

=

= 1.37L0. 

ρ

16

ρ

(b) We know that A = L0A0/L, so

L

A0

A =

A0 =

= 0.73A0. 

L0

1.37

P31-18

(a) The capacitor charge as a function of time is given by Eq. 31-27, 





q = CE 1 − e−t/RC , 

while the current through the circuit (and the resistor) is given by Eq. 31-28, 

E

i =

e−t/RC . 

R

The energy supplied by the emf is

Z

Z

U =

Ei dt = E

dq = Eq; 

but the energy in the capacitor is UC = q∆V /2 = Eq/2. 

(b) Integrating, 

Z

E2 Z

E2

Eq

UR =

i2Rdt =

e−2t/RC dt =

=

. 

R

2C

2
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P31-19

The capacitor charge as a function of time is given by Eq. 31-27, 





q = CE 1 − e−t/RC , 

while the current through the circuit (and the resistor) is given by Eq. 31-28, 

E

i =

e−t/RC . 

R

The energy stored in the capacitor is given by

q2

U =

, 

2C

so the rate that energy is being stored in the capacitor is

dU

q dq

q

PC =

=

=

i. 

dt

C dt

C

The rate of energy dissipation in the resistor is

PR = i2R, 

so the time at which the rate of energy dissipation in the resistor is equal to the rate of energy

storage in the capacitor can be found by solving

PC

=

PR, 

q

i2R

=

i, 

C

iRC

=

q, 





ECe−t/RC

=

CE 1 − e−t/RC , 

e−t/RC

=

1/2, 

t

=

RC ln 2. 
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E32-1

Apply Eq. 32-3, ~

F = q~

v× ~

B. 

All of the paths which involve left hand turns are positive particles (path 1); those paths which

involve right hand turns are negative particle (path 2 and path 4); and those paths which don’t turn

involve neutral particles (path 3). 

E32-2

(a) The greatest magnitude of force is F = qvB = (1.6×10−19C)(7.2×106m/s)(83×10−3T) =

9.6×10−14N. The least magnitude of force is 0. 

(b) The force on the electron is F = ma; the angle between the velocity and the magnetic field

is θ, given by ma = qvB sin θ. Then



(9.1×10−31kg)(4.9×1016m/s2)



θ = arcsin

= 28◦. 

(1.6×10−19C)(7.2×106m/s)(83×10−3T)

E32-3

(a) v = E/B = (1.5×103V/m)/(0.44 T) = 3.4×103m/s. 

E32-4

(a) v = F/qB sin θ = (6.48×10−17N/(1.60×10−19C)(2.63×10−3T) sin(23.0◦) = 3.94×105m/s. 

(b) K = mv2/2 = (938 MeV/c2)(3.94×105m/s)2/2 = 809 eV. 

E32-5

The magnetic force on the proton is

FB = qvB = (1.6×10−19 C)(2.8×107 m/s)(30eex−6 T) = 1.3×10−16N. 

The gravitational force on the proton is

mg = (1.7×10−27kg)(9.8 m/s2) = 1.7×10−26 N. 

The ratio is then 7.6×109. If, however, you carry the number of significant digits for the intermediate answers farther you will get the answer which is in the back of the book. 

E32-6

The speed of the electron is given by v = p2q∆V /m, or

p

v =

2(1000 eV)/(5.1×105 eV/c2) = 0.063c. 

The electric field between the plates is E = (100 V)/(0.020 m) = 5000 V/m. The required magnetic

field is then

B = E/v = (5000 V/m)/(0.063c) = 2.6×10−4T. 

E32-7

Both have the same velocity. Then Kp/Ke = mpv2/mev2 = mp/me =. 

E32-8

The speed of the ion is given by v = p2q∆V /m, or

p

v =

2(10.8 keV)/(6.01)(932 MeV/c2) = 1.96×10−3c. 

The required electric field is E = vB = (1.96×10−3c)(1.22 T) = 7.17×105V/m. 

E32-9

(a) For a charged particle moving in a circle in a magnetic field we apply Eq. 32-10; 

mv

(9.11×10−31kg)(0.1)(3.00×108 m/s)

r =

=

= 3.4×10−4 m. 

|q|B

(1.6×10−19 C)(0.50 T)

(b) The (non-relativistic) kinetic energy of the electron is

1

1

K =

mv2 =

(0.511 MeV)(0.10c)2 = 2.6×10−3 MeV. 

2

2
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E32-10

(a) v = p2K/m = p2(1.22 keV)/(511 keV/c2) = 0.0691c. 

(b) B = mv/qr = (9.11×10−31kg)(0.0691c)/(1.60×10−19C)(0.247 m) = 4.78×10−4T. 

(c) f = qB/2πm = (1.60×10−19C)(4.78×10−4T)/2π(9.11×10−31kg) = 1.33×107 Hz. 

(d) T = 1/f = 1/(1.33×107 Hz) = 7.48×10−8s. 

E32-11

(a) v = p2K/m = p2(350 eV)/(511 keV/c2) = 0.037c. 

(b) r = mv/qB = (9.11×10−31kg)(0.037c)/(1.60×10−19C)(0.20T) = 3.16×10−4m. 

E32-12

The frequency is f = (7.00)/(1.29 ×10−3s) = 5.43×103 Hz. The mass is given by m =

qB/2πf , or

(1.60×10−19C)(45.0×10−3T)

m =

= 2.11×10−25kg = 127 u. 

2π(5.43×103 Hz)

E32-13

(a) Apply Eq. 32-10, but rearrange it as

|q|rB

2(1.6×10−19 C)(0.045 m)(1.2 T)

v =

=

= 2.6×106 m/s. 

m

4.0(1.66×10−27kg)

(b) The speed is equal to the circumference divided by the period, so

2πr

2πm

2π4.0(1.66×10−27kg)

T =

=

=

= 1.1×10−7 s. 

v

|q|B

2(1.6 × 10−19 C)(1.2 T)

(c) The (non-relativistic) kinetic energy is

|q|2r2B

(2×1.6×10−19 C)2(0.045 m)2(1.2 T)2

K =

=

= 2.24×10−14J. 

2m

2(4.0×1.66×10−27kg))

To change to electron volts we need merely divide this answer by the charge on one electron, so

(2.24×10−14J)

K =

= 140 keV. 

(1.6×10−19 C)

(d) ∆V = K = (140 keV)/(2e) = 70 V. 

q

E32-14

(a) R = mv/qB = (938 MeV/c2)(0.100c)/e(1.40 T) = 0.223 m. 

(b) f = qB/2πm = e(1.40 T)/2π(938 MeV/c2) = 2.13×107 Hz. 

E32-15

(a) K

2

α/K p = (q2 /m

/m

α

α)/(qp

p) = 22/4 = 1. 

(b) K

2

2

d/K p = (qd /md)/(qp /mp) = 12/2 = 1/2. 

E32-16

(a) K = q∆V . Then Kp = e∆V , Kd = e∆V , and Kα = 2e∆V . 

√

(b) r = sqrt2mK/qB. Then rd/rp = p(2/1)(1/1)/(1/1) =

2. 

√

(c) r = sqrt2mK/qB. Then rα/rp = p(4/1)(2/1)/(2/1) =

2. 

√

√

√

E32-17

r =

2mK/|q|B = ( m/|q|)( 2K/B). All three particles are traveling with the same

kinetic energy in the same magnetic field. The relevant factors are in front; we just need to compare the mass and charge of each of the three particles. 

√

(a) The radius of the deuteron path is

2 r

1

p.√

(b) The radius of the alpha particle path is

4 r

2

p = rp. 
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E32-18

The neutron, being neutral, is unaffected by the magnetic field and moves off in a line

tangent to the original path. The proton moves at the same original speed as the deuteron and has

the same charge, but since it has half the mass it moves in a circle with half the radius. 

E32-19

(a) The proton momentum would be pc = qcBR = e(3.0×108m/s)(41×10−6T)(6.4×106m) =

7.9×104 MeV. Since 79000 MeV is much, much greater than 938 MeV the proton is ultra-relativistic. 

Then E ≈ pc, and since γ = E/mc2 we have γ = p/mc. Inverting, 

s

v

r

1

m2c2

m2c2

=

1 −

=

1 −

≈ 1 −

≈ 0.99993. 

c

γ2

p2

2p2

√

E32-20

(a) Classically, R =

2mK/qB, or

p

R =

2(0.511 MeV/c2)(10.0 MeV)/e(2.20 T) = 4.84×10−3m. 

(b) This would be an ultra-relativistic electron, so K ≈ E ≈ pc, then R = p/qB = K/qBc, or

R = (10.0 MeV)/e(2.2 T)(3.00×108m/s) = 1.52×10−2m. 

(c) The electron is effectively traveling at the speed of light, so T = 2πR/c, or

T = 2π(1.52×10−2m)/(3.00×108 m/s) = 3.18×10−10s. 

This result does depend on the speed! 

E32-21

Use Eq. 32-10, except we rearrange for the mass, 

|q|rB

2(1.60×10−19 C)(4.72 m)(1.33 T)

m =

=

= 9.43×10−27 kg

v

0.710(3.00×108 m/s)

However, if it is moving at this velocity then the “mass” which we have here is not the true mass, 

but a relativistic correction. For a particle moving at 0.710c we have

1

1

γ =

=

= 1.42, 

p1 − v2/c2

p1 − (0.710)2

so the true mass of the particle is (9.43×10−27 kg)/(1.42) = 6.64×10−27kg. The number of nucleons

present in this particle is then (6.64 ×10−27kg)/(1.67×10−27 kg) = 3.97 ≈ 4. The charge was +2, 

which implies two protons, the other two nucleons would be neutrons, so this must be an alpha

particle. 

E32-22

(a) Since 950 GeV is much, much greater than 938 MeV the proton is ultra-relativistic. 

γ = E/mc2, so

r

v

r

1

m2c4

m2c4

=

1 −

=

1 −

≈ 1 −

≈ 0.9999995. 

c

γ2

E2

2E2

(b) Ultra-relativistic motion requires pc ≈ E, so

B = pc/qRc = (950 GeV)/e(750 m)(3.00×108m/s) = 4.44 T. 
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E32-23

First use 2πf = qB/m. The use K = q2B2R2/2m = mR2(2πf )2/2. The number of

√

turns is n = K/2q∆V , on average the particle is located at a distance R/ 2 from the center, so the

√

√

distance traveled is x = n2πR/ 2 = n 2πR. Combining, 

√

√

2π3R3mf 2

2π3(0.53 m)3(2 × 932×103 keV/c2)(12×106/s)2

x =

=

= 240 m. 

q∆V

e(80 kV)

E32-24

The particle moves in a circle. x = R sin ωt and y = R cos ωt. 

E32-25

We will use Eq. 32-20, EH = vdB, except we will not take the derivation through to Eq. 

32-21. Instead, we will set the drift velocity equal to the speed of the strip. We will, however, set EH = ∆V H/w. Then

EH

∆V H/w

(3.9×10−6V)/(0.88×10−2m)

v =

=

=

= 3.7×10−1m/s. 

B

B

(1.2×10−3T)

E32-26

(a) v = E/B = (40×10−6V)/(1.2×10−2m)/(1.4 T) = 2.4×10−3m/s. 

(b) n = (3.2 A)(1.4 T)/(1.6×10−19C)(9.5×10−6m)(40×10−6V) = 7.4×1028/m3.; Silver. 

E32-27

EH = vdB and vd = j/ne. Combine and rearrange. 

E32-28

(a) Use the result of the previous exercise and Ec = ρj. 

(b) (0.65 T)/(8.49×1028/m3)(1.60×10−19C)(1.69×10−8Ω · m) = 0.0028. 

E32-29

Since ~

L is perpendicular to ~

B can use

FB = iLB. 

Equating the two forces, 

iLB

=

mg, 

mg

(0.0130 kg)(9.81 m/s2)

i

=

=

= 0.467 A. 

LB

(0.620 m)(0.440 T)

Use of an appropriate right hand rule will indicate that the current must be directed to the right

in order to have a magnetic force directed upward. 

E32-30

F = iLB sin θ = (5.12 × 103A)(100 m)(58 × 10−6T) sin(70◦) = 27.9 N. The direction is

horizontally west. 

E32-31

(a) We use Eq. 32-26 again, and since the (horizontal) axle is perpendicular to the

vertical component of the magnetic field, 

F

(10, 000 N)

i =

=

= 3.3×108A. 

BL

(10 µT)(3.0 m)

(b) The power lost per ohm of resistance in the rails is given by

P/r = i2 = (3.3×108A)2 = 1.1×1017 W. 

(c) If such a train were to be developed the rails would melt well before the train left the station. 
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E32-32

F = idB, so a = F/m = idB/m. Since a is constant, v = at = idBt/m. The direction is

to the left. 

E32-33

Only the ˆj component of ~

B is of interest. Then F = R dF = i R By dx, or

Z

3.2

F = (5.0 A)(8×10−3T/m2)

x2 dx = 0.414 N. 

1.2

The direction is −ˆ

k. 

E32-34

The magnetic force will have two components: one will lift vertically (Fy = F sin α), the

other push horizontally (Fx = F cos α). The rod will move when Fx > µ(W − Fy). We are interested

in the minimum value for F as a function of α. This occurs when

dF

d 

µW



=

= 0. 

dα

dα

cos α + µ sin α

This happens when µ = tan α. Then α = arctan(0.58) = 30◦, and

(0.58)(1.15 kg)(9.81 m/s2)

F =

= 5.66 N

cos(30◦) + (0.58) sin(30◦)

is the minimum force. Then B = (5.66 N)/(53.2 A)(0.95 m) = 0.112 T. 

E32-35

We choose that the field points from the shorter side to the longer side. 

(a) The magnetic field is parallel to the 130 cm side so there is no magnetic force on that side. 

The magnetic force on the 50 cm side has magnitude

FB = iLB sin θ, 

where θ is the angle between the 50 cm side and the magnetic field. This angle is larger than 90◦, 

but the sine can be found directly from the triangle, 

(120 cm)

sin θ =

= 0.923, 

(130 cm)

and then the force on the 50 cm side can be found by

(120 cm)

FB = (4.00 A)(0.50 m)(75.0×10−3 T)

= 0.138 N, 

(130 cm)

and is directed out of the plane of the triangle. 

The magnetic force on the 120 cm side has magnitude

FB = iLB sin θ, 

where θ is the angle between the 1200 cm side and the magnetic field. This angle is larger than

180◦, but the sine can be found directly from the triangle, 

(−50 cm)

sin θ =

= −0.385, 

(130 cm)

and then the force on the 50 cm side can be found by

(−50 cm)

FB = (4.00 A)(1.20 m)(75.0×10−3 T)

= −0.138 N, 

(130 cm)

and is directed into the plane of the triangle. 

(b) Look at the three numbers above. 
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E32-36

τ = N iAB sin θ, so

τ = (20)(0.1 A)(0.12 m)(0.05 m)(0.5 T) sin(90◦ − 33◦) = 5.0×10−3N · m. 

E32-37

The external magnetic field must be in the plane of the clock/wire loop. The clockwise

current produces a magnetic dipole moment directed into the plane of the clock. 

(a) Since the magnetic field points along the 1 pm line and the torque is perpendicular to both

the external field and the dipole, then the torque must point along either the 4 pm or the 10 pm line. 

Applying Eq. 32-35, the direction is along the 4 pm line. It will take the minute hand 20 minutes

to get there. 

(b) τ = (6)(2.0 A)π(0.15 m)2(0.07 T) = 0.059 N · m. 

P32-1

Since ~

F must be perpendicular to ~

B then ~

B must be along ˆ

k. The magnitude of v is

p(40)2 + (35)2 km/s = 53.1 km/s; the magnitude of F is p(−4.2)2 + (4.8)2fN = 6.38 fN. Then

B = F/qv = (6.38×10−15N)/(1.6×10−19C)(53.1×103m/s) = 0.75 T. 

or ~

B = 0.75 T ˆ

k. 

P32-2

~

a = (q/m)(~

E + ~

v × ~

B). For the initial velocity given, 

~

v × ~

B = (15.0×103m/s)(400×10−6T)ˆj − (12.0×103m/s)(400×10−6T)ˆ

k. 

But since there is no acceleration in the ˆj or ˆ

k direction this must be offset by the electric field. 

Consequently, two of the electric field components are Ey = −6.00 V/m and Ez = 4.80 V/m. The

third component of the electric field is the source of the acceleration, so

Ex = max/q = (9.11×10−31kg)(2.00×1012m/s2)/(−1.60×10−19C) = −11.4 V/m. 

P32-3

(a) Consider first the cross product, ~

v × ~

B. The electron moves horizontally, there is a

component of the ~

B which is down, so the cross product results in a vector which points to the left

of the electron’s path. 

But the force on the electron is given by ~

F = q~

v × ~

B, and since the electron has a negative charge

the force on the electron would be directed to the right of the electron’s path. 

(b) The kinetic energy of the electrons is much less than the rest mass energy, so this is non-

relativistic motion. The speed of the electron is then v = p2K/m, and the magnetic force on the

electron is FB = qvB, where we are assuming sin θ = 1 because the electron moves horizontally

through a magnetic field with a vertical component. We can ignore the effect of the magnetic field’s

horizontal component because the electron is moving parallel to this component. 

The acceleration of the electron because of the magnetic force is then

r

qvB

qB

2K

a

=

=

, 

m

m

m

s

(1.60×10−19C)(55.0×10−6T)

2(1.92×10−15J)

=

= 6.27×1014 m/s2. 

(9.11×10−31kg)

(9.11×10−31kg)

(c) The electron travels a horizontal distance of 20.0 cm in a time of

(20.0 cm)

(20.0 cm)

t =

=

= 3.08×10−9 s. 

p2K/m

p2(1.92×10−15J)/(9.11×10−31kg)

In this time the electron is accelerated to the side through a distance of

1

1

d =

at2 =

(6.27×1014 m/s2)(3.08×10−9 s)2 = 2.98 mm. 

2

2
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P32-4

(a) d needs to be larger than the turn radius, so R ≤ d; but 2mK/q2B2 = R2 ≤ d2, or

B ≥ p2mK/q2d2. 

(b) Out of the page. 

P32-5

Only undeflected ions emerge from the velocity selector, so v = E/B. The ions are then

deflected by B0 with a radius of curvature of r = mv/qB; combining and rearranging, q/m =

E/rBB0. 

P32-6

The ions are given a kinetic energy K = q∆V ; they are then deflected with a radius of

curvature given by R2 = 2mK/q2B2. But x = 2R. Combine all of the above, and m = B2qx2/8∆V. 

P32-7

(a) Start with the equation in Problem 6, and take the square root of both sides to get

1

√

 B2q  2

m =

x, 

8∆V

and then take the derivative of x with respect to m, 

1

1 dm

 B2q  2

√

=

dx, 

2

m

8∆V

and then consider finite differences instead of differential quantities, 

1

 mB2q  2

∆m =

∆x, 

2∆V

(b) Invert the above expression, 

1

 2∆V  2

∆x =

∆m, 

mB2q

and then put in the given values, 

1



2(7.33×103V)

 2

∆x

=

(2.0)(1.66×10−27kg), 

(35.0)(1.66×10−27kg)(0.520 T)2(1.60×10−19C)

=

8.02 mm. 

Note that we used 35.0 u for the mass; if we had used 37.0 u the result would have been closer to

the answer in the back of the book. 

P32-8

(a) B = p2∆V m/qr2 = p2(0.105 MV)(238)(932 MeV/c2)/2e(0.973 m)2 = 5.23×10−7T. 

(b) The number of atoms in a gram is 6.02×1023/238 = 2.53×1021. The current is then

(0.090)(2.53×1021)(2)(1.6×10−19C)/(3600 s) = 20.2 mA. 

P32-9

(a) −q. 

(b) Regardless of speed, the orbital period is T = 2πm/qB. But they collide halfway around a

complete orbit, so t = πm/qB. 

P32-10
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P32-11

(a) The period of motion can be found from the reciprocal of Eq. 32-12, 

2πm

2π(9.11×10−31kg)

T =

=

= 7.86×10−8s. 

|q|B

(1.60×10−19C)(455×10−6T)

(b) We need to find the velocity of the electron from the kinetic energy, 

p

p

v =

2K/m =

2(22.5 eV)(1.60×10−19 J/eV)/(9.11×10−31kg) = 2.81×106 m/s. 

The velocity can written in terms of components which are parallel and perpendicular to the magnetic

field. Then

v|| = v cos θ and v⊥ = v sin θ. 

The pitch is the parallel distance traveled by the electron in one revolution, so

p = v||T = (2.81×106m/s) cos(65.5◦)(7.86×10−8s) = 9.16 cm. 

(c) The radius of the helical path is given by Eq. 32-10, except that we use the perpendicular

velocity component, so

mv

(9.11×10−31kg)(2.81×106m/s) sin(65.5◦)

R =

⊥ =

= 3.20 cm

|q|B

(1.60×10−19C)(455×10−6T)

P32-12

~

F = i R b d~l × ~

B. d~l has two components, those parallel to the path, say d~

x and those

a

perpendicular, say d~

y. Then the integral can be written as

Z

b

Z

b

~

F =

d~

x × ~

B +

d~

y × ~

B. 

a

a

But ~

B is constant, and can be removed from the integral. R b d~

x = ~l, a vector that points from a to

a

b. R b d~

y = 0, because there is no net motion perpendicular to ~l. 

a

P32-13

qvyB = Fx = m dvx/dt; −qvxB = Fy = m dvy/dt. Taking the time derivative of the

second expression and inserting into the first we get



m  d2vy

qvyB = m −

, 

qB

dt2

which has solution vy = −v sin(mt/qB), where v is a constant. Using the second equation we find

that there is a similar solution for vx, except that it is out of phase, and so vx = v cos(mt/qB). 

Integrating, 

Z

Z

qBv

x =

vxdt = v

cos(mt/qB) =

sin(mt/qB). 

m

Similarly, 

Z

Z

qBv

y =

vydt = −v

sin(mt/qB) =

cos(mt/qB). 

m

This is the equation of a circle. 

P32-14

d~

L = îdx + ˆjdy + ˆ

kdz. ~

B is uniform, so that the integral can be written as

I

I

I

I

~

F = i

(îdx + ˆjdy + ˆ

kdz) × ~

B = iî × ~

B

dx + iˆj × ~

B

dy + iˆ

k × ~

B

dz, 

but since H dx = H dy = H dz = 0, the entire expression vanishes. 
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P32-15

The current pulse provides an impulse which is equal to

Z

Z

Z

F dt =

BiL dt = BL

i dt = BLq. 

This gives an initial velocity of v0 = BLq/m, which will cause the rod to hop to a height of

h = v2/2g = B2L2q2/2m2g. 

0

Solving for q, 

m p

(0.013 kg)

p

q =

2gh =

2(9.8 m/s2)(3.1 m) = 4.2 C. 

BL

(0.12 T)(0.20 m)

P32-16

P32-17

The torque on a current carrying loop depends on the orientation of the loop; the

maximum torque occurs when the plane of the loop is parallel to the magnetic field. In this case the

magnitude of the torque is from Eq. 32-34 with sin θ = 1—

τ = N iAB. 

The area of a circular loop is A = πr2 where r is the radius, but since the circumference is C = 2πr, we can write

C2

A =

. 

4π

The circumference is not the length of the wire, because there may be more than one turn. Instead, 

C = L/N , where N is the number of turns. 

Finally, we can write the torque as

L2

iL2B

τ = N i

B =

, 

4πN 2

4πN

which is a maximum when N is a minimum, or N = 1. 

P32-18

d~

F = i d~

L × ~

B; the direction of d~

F will be upward and somewhat toward the center. ~

L

and ~

B are a right angles, but only the upward component of d~

F will survive the integration as the

central components will cancel out by symmetry. Hence

Z

F = iB sin θ

dL = 2πriB sin θ. 

P32-19

The torque on the cylinder from gravity is

τ g = mgr sin θ, 

where r is the radius of the cylinder. The torque from magnetism needs to balance this, so

mgr sin θ = N iAB sin θ = N i2rLB sin θ, 

or

mg

(0.262 kg)(9.8 m/s2)

i =

=

= 1.63 A. 

2N LB

2(13)(0.127 m)(0.477 T)
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E33-1

(a) The magnetic field from a moving charge is given by Eq. 33-5. If the protons are

moving side by side then the angle is φ = π/2, so

µ0 qv

B = 4π r2

and we are interested is a distance r = d. The electric field at that distance is

1

q

E =

, 

4π0 r2

where in both of the above expressions q is the charge of the source proton. 

On the receiving end is the other proton, and the force on that proton is given by

~

F = q(~

E + ~

v × ~

B). 

The velocity is the same as that of the first proton (otherwise they wouldn’t be moving side by side.) This velocity is then perpendicular to the magnetic field, and the resulting direction for the cross

product will be opposite to the direction of ~

E. Then for balance, 

E

=

vB, 

1

q

µ0 qv

=

v

, 

4π0 r2

4π r2

1

=

v2. 

0µ0

We can solve this easily enough, and we find v ≈ 3 × 108 m/s. 

(b) This is clearly a relativistic speed! 

E33-2

B = µ0i/2πd = (4π ×10−7T · m/A)(120 A)/2π(6.3 m) = 3.8×10−6T. This will deflect the

compass needle by as much as one degree. However, there is unlikely to be a place on the Earth’s

surface where the magnetic field is 210 µT. This was likely a typo, and should probably have been

21.0 µT. The deflection would then be some ten degrees, and that is significant. 

E33-3

B = µ0i/2πd = (4π×10−7T · m/A)(50 A)/2π(1.3×10−3 m) = 37.7×10−3T. 

E33-4

(a) i = 2πdB/µ0 = 2π(8.13×10−2m)(39.0×10−6T)/(4π×10−7T · m/A) = 15.9 A. 

(b) Due East. 

E33-5

Use

µ0i

(4π ×10−7N/A2)(1.6 × 10−19 C)(5.6 × 1014 s−1)

B =

=

= 1.2×10−8T. 

2πd

2π(0.0015 m)

E33-6

Zero, by symmetry. Any contributions from the top wire are exactly canceled by contribu-

tions from the bottom wire. 

E33-7

B = µ0i/2πd = (4π×10−7T · m/A)(48.8 A)/2π(5.2×10−2 m) = 1.88×10−4T. 

~

F = q~

v × ~

B. All cases are either parallel or perpendicular, so either F = 0 or F = qvB. 

(a) F = qvB = (1.60×10−19C)(1.08×107m/s)(1.88×10−4T) = 3.24×10−16N. The direction of

~

F is parallel to the current. 

(b) F = qvB = (1.60×10−19C)(1.08×107m/s)(1.88×10−4T) = 3.24×10−16N. The direction of

~

F is radially outward from the current. 

(c) F = 0. 
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E33-8

We want B1 = B2, but with opposite directions. Then i1/d1 = i2/d2, since all constants

cancel out. Then i2 = (6.6 A)(1.5 cm)/(2.25 cm) = 4.4 A, directed out of the page. 

E33-9

For a single long straight wire, B = µ0i/2πd but we need a factor of “2” since there are

two wires, then i = πdB/µ0. Finally

πdB

π(0.0405 m)(296, µT)

i =

=

= 30 A

µ0

(4π ×10−7N/A2)

E33-10

(a) The semi-circle part contributes half of Eq. 33-21, or µ0i/4R. Each long straight wire

contributes half of Eq. 33-13, or µ0i/4πR. Add the three contributions and get

µ









0i

2

(4π ×10−7N/A2)(11.5 A)

2

Ba =

+ 1

=

+ 1

= 1.14×10−3T. 

4R

π

4(5.20×10−3m)

π

The direction is out of the page. 

(b) Each long straight wire contributes Eq. 33-13, or µ0i/2πR. Add the two contributions and

get

µ0i

(4π ×10−7N/A2)(11.5 A)

Ba =

=

= 8.85×10−4T. 

πR

π(5.20×10−3m)

The direction is out of the page. 

E33-11

z3 = µ0iR2/2B = (4π ×10−7N/A2)(320)(4.20 A)(2.40×10−2m)2/2(5.0×10−6T) = 9.73×

10−2m3. Then z = 0.46 m. 

E33-12

The circular part contributes a fraction of Eq. 33-21, or µ0iθ/4πR. Each long straight

wire contributes half of Eq. 33-13, or µ0i/4πR. Add the three contributions and get

µ0i

B =

(θ − 2). 

4πR

The goal is to get B = 0 that will happen if θ = 2 radians. 

E33-13

There are four current segments that could contribute to the magnetic field. The straight

segments, however, contribute nothing because the straight segments carry currents either directly

toward or directly away from the point P . 

That leaves the two rounded segments. Each contribution to ~

B can be found by starting with

Eq. 33-21, or µ0iθ/4πb. The direction is out of the page. 

There is also a contribution from the top arc; the calculations are almost identical except that

this is pointing into the page and r = a, so µ0iθ/4πa. The net magnetic field at P is then

µ





0iθ

1

1

B = B1 + B2 =

−

. 

4π

b

a

E33-14

For each straight wire segment use Eq. 33-12. When the length of wire is L, the distance

to the center is W/2; when the length of wire is W the distance to the center is L/2. There are four

terms, but they are equal in pairs, so



! 

µ0i

4L

4W

B

=

+

, 

4π

W pL2/4 + W 2/4

LpL2/4 + W 2/4

√

2µ





0i

L2

W 2

2µ0i

L2 + W 2

=

√

+

=

. 

π L2 + W 2

W L

W L

π

W L
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E33-15

We imagine the ribbon conductor to be a collection of thin wires, each of thickness dx

and carrying a current di. di and dx are related by di/dx = i/w. The contribution of one of these

thin wires to the magnetic field at P is dB = µ0 di/2πx, where x is the distance from this thin wire

to the point P . We want to change variables to x and integrate, so

Z

Z

µ

Z

0i dx

µ0i

dx

B =

dB =

=

. 

2πwx

2πw

x

The limits of integration are from d to d + w, so

µ





0i

d + w

B =

ln

. 

2πw

d

E33-16

The fields from each wire are perpendicular at P . Each contributes an amount B0 =

√

√

µ0i/2πd, but since they are perpendicular there is a net field of magnitude B =

2B02 =

2µ0i/2πd. 

√

Note that a =

2d, so B = µ0i/πa. 

(a) B = (4π ×10−7T · m/A)(115 A)/π(0.122 m) = 3.77×10−4T. The direction is to the left. 

(b) Same numerical result, except the direction is up. 

E33-17

Follow along with Sample Problem 33-4. 

Reversing the direction of the second wire (so that now both currents are directed out of the

page) will also reverse the direction of B2. Then

µ





0i

1

1

B

=

B1 − B2 =

−

, 

2π

b + x

b − x

µ





0i

(b − x) − (b + x)

=

, 

2π

b2 − x2

µ





0i

x

=

. 

π

x2 − b2

E33-18

(b) By symmetry, only the horizontal component of ~

B survives, and must point to the

right. 

(a) The horizontal component of the field contributed by the top wire is given by

µ0i

µ0i b/2

µ0ib

B =

sin θ =

=

, 

2πh

2πh h

π(4R2 + b2)

since h is the hypotenuse, or h = pR2 + b2/4. But there are two such components, one from the

top wire, and an identical component from the bottom wire. 

E33-19

(a) We can use Eq. 33-21 to find the magnetic field strength at the center of the large

loop, 

µ0i

(4π ×10−7T · m/A)(13 A)

B =

=

= 6.8×10−5T. 

2R

2(0.12 m)

(b) The torque on the smaller loop in the center is given by Eq. 32-34, 

~

τ = N i ~

A × ~

B, 

but since the magnetic field from the large loop is perpendicular to the plane of the large loop, and the plane of the small loop is also perpendicular to the plane of the large loop, the magnetic field is in the plane of the small loop. This means that | ~

A × ~

B| = AB. Consequently, the magnitude of the

torque on the small loop is

τ = N iAB = (50)(1.3 A)(π)(8.2×10−3m)2(6.8×10−5T) = 9.3×10−7N · m. 
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E33-20

(a) There are two contributions to the field. One is from the circular loop, and is given

by µ0i/2R. The other is from the long straight wire, and is given by µ0i/2πR. The two fields are

out of the page and parallel, so

µ0i

B =

(1 + 1/π). 

2R

(b) The two components are now at right angles, so

µ0i p

B =

1 + 1/π2. 

2R

The direction is given by tan θ = 1/π or θ = 18◦. 

E33-21

The force per meter for any pair of parallel currents is given by Eq. 33-25, F/L = µ0i2/2πd, 

where d is the separation. The direction of the force is along the line connecting the intersection of the currents with the perpendicular plane. Each current experiences three forces; two are at right

√

angles and equal in magnitude, so |~

F12 + ~

F14|/L = pF 2 + F 2 /L =

2µ

12

14

0i2/2πa. The third force

√

points parallel to this sum, but d =

a, so the resultant force is

√

F

2µ

√

√

0i2

µ0i2

4π ××10−7N/A2(18.7 A)2

=

+

√

=

( 2 + 1/ 2) = 6.06×10−4N/m. 

L

2πa

2π 2a

2π(0.245 m)

It is directed toward the center of the square. 

E33-22

By symmetry we expect the middle wire to have a net force of zero; the two on the outside

will each be attracted toward the center, but the answers will be symmetrically distributed. 

For the wire which is the farthest left, 

F

µ









0i2

1

1

1

1

4π ××10−7N/A2(3.22 A)2

1

1

1

=

+

+

+

=

1 +

+

+

= 5.21×10−5N/m. 

L

2π

a

2a

3a

4a

2π(0.083 m)

2

3

4

For the second wire over, the contributions from the two adjacent wires should cancel. This

leaves

F

µ









0i2

1

1

4π ××10−7N/A2(3.22 A)2

1

1

=

+

+

=

+

= 2.08×10−5N/m. 

L

2π

2a

3a

2π(0.083 m)

2

3

E33-23

(a) The force on the projectile is given by the integral of

d~

F = i d~l × ~

B

over the length of the projectile (which is w). The magnetic field strength can be found from adding

together the contributions from each rail. If the rails are circular and the distance between them is small compared to the length of the wire we can use Eq. 33-13, 

µ0i

B =

, 

2πx

where x is the distance from the center of the rail. There is one problem, however, because these

are not wires of infinite length. Since the current stops traveling along the rail when it reaches the projectile we have a rod that is only half of an infinite rod, so we need to multiply by a factor of

1/2. But there are two rails, and each will contribute to the field, so the net magnetic field strength between the rails is

µ0i

µ0i

B =

+

. 

4πx

4π(2r + w − x)
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In that last term we have an expression that is a measure of the distance from the center of the

lower rail in terms of the distance x from the center of the upper rail. 

The magnitude of the force on the projectile is then

Z

r+w

F

=

i

B dx, 

r

µ

Z

r+w 



0i2

1

1

=

+

dx, 

4π

r

x

2r + w − x

µ





0i2

r + w

=

2 ln

4π

r

The current through the projectile is down the page; the magnetic field through the projectile is

into the page; so the force on the projectile, according to ~

F = i~l × ~

B, is to the right. 

(b) Numerically the magnitude of the force on the rail is

(450×103A)2(4π×10−7N/A2)

 (0.067 m) + (0.012 m) 

F =

ln

= 6.65×103 N

2π

(0.067 m)

The speed of the rail can be found from either energy conservation so we first find the work done

on the projectile, 

W = F d = (6.65×103 N)(4.0 m) = 2.66×104 J. 

This work results in a change in the kinetic energy, so the final speed is

p

p

v =

2K/m =

2(2.66×104 J)/(0.010 kg) = 2.31×103 m/s. 

E33-24

The contributions from the left end and the right end of the square cancel out. This leaves

the top and the bottom. The net force is the difference, or

(4π ×10−7N/A2)(28.6 A)(21.8 A)(0.323 m) 

1

1



F

=

−

, 

2π

(1.10×10−2m)

(10.30×10−2m)

=

3.27×10−3N. 

E33-25

The magnetic force on the upper wire near the point d is

µ0iaibL

µ0iaibL

µ0iaibL

FB =

≈

−

x, 

2π(d + x)

2πd

2πd2

where x is the distance from the equilibrium point d. The equilibrium magnetic force is equal to the

force of gravity mg, so near the equilibrium point we can write

x

FB = mg − mg . 

d

There is then a restoring force against small perturbations of magnitude mgx/d which corresponds

to a spring constant of k = mg/d. This would give a frequency of oscillation of

1 p

1 p

f =

k/m =

g/d, 

2π

2π

which is identical to the pendulum. 

E33-26

B = (4π ×10−7N/A2)(3.58 A)(1230)/(0.956m) = 5.79×10−3T. 
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E33-27

The magnetic field inside an ideal solenoid is given by Eq. 33-28 B = µ0in, where n is

the turns per unit length. Solving for n, 

B

(0.0224 T)

n =

=

= 1.00×103/m−1. 

µ0i

(4π ×10−7N/A2)(17.8 A)

The solenoid has a length of 1.33 m, so the total number of turns is

N = nL = (1.00×103/m−1)(1.33 m) = 1330, 

and since each turn has a length of one circumference, then the total length of the wire which makes

up the solenoid is (1330)π(0.026 m) = 109 m. 

E33-28

From the solenoid we have

Bs = µ0nis = µ0(11500/m)(1.94 mA) = µ0(22.3A/m). 

From the wire we have

µ0iw

µ0(6.3 A)

µ0

Bw =

=

= (1.002 A)

2πr

2πr

r

These fields are at right angles, so we are interested in when tan(40◦) = Bw/Bs, or

(1.002 A)

r =

= 5.35×10−2m. 

tan(40◦)(22.3 A/m)

E33-29

Let u = z − d. Then

µ

Z

d+L/2

0niR2

du

B

=

, 

2

d−L/2

[R2 + u2]3/2

d+L/2

µ



0niR2

u

=

√





, 

2

R2 R2 + u2 d−L/2



! 

µ0ni

d + L/2

d − L/2

=

−

. 

2

pR2 + (d + L/2)2

pR2 + (d − L/2)2

If L is much, much greater than R and d then |L/2 ± d| >> R, and R can be ignored in the

denominator of the above expressions, which then simplify to



! 

µ0ni

d + L/2

d − L/2

B

=

−

. 

2

pR2 + (d + L/2)2

pR2 + (d − L/2)2



! 

µ0ni

d + L/2

d − L/2

=

−

. 

2

p(d + L/2)2

p(d − L/2)2

=

µ0in. 

It is important that we consider the relative size of L/2 and d! 

E33-30

The net current in the loop is 1i0 + 3i0 + 7i0 − 6i0 = 5i0. Then H ~

B · d~s = 5µ0i0. 

E33-31

(a) The path is clockwise, so a positive current is into page. The net current is 2.0 A out, 

so H ~

B · d~s = −µ0i0 = −2.5×10−6T · m. 

(b) The net current is zero, so H ~

B · d~s = 0. 
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E33-32

Let R0 be the radius of the wire. On the surface of the wire B0 = µ0i/2πR0. 

Outside the wire we have B = µ0i/2πR, this is half B0 when R = 2R0. 

Inside the wire we have B = µ0iR/2πR2, this is half B

0

0 when R = R0/2. 

E33-33

(a) We don’t want to reinvent the wheel. The answer is found from Eq. 33-34, except it

looks like

µ0ir

B =

. 

2πc2

(b) In the region between the wires the magnetic field looks like Eq. 33-13, 

µ0i

B =

. 

2πr

This is derived on the right hand side of page 761. 

(c) Ampere’s law (Eq. 33-29) is H ~

B · d~s = µ0i, where i is the current enclosed. Our Amperian

loop will still be a circle centered on the axis of the problem, so the left hand side of the above

equation will reduce to 2πrB, just like in Eq. 33-32. The right hand side, however, depends on

the net current enclosed which is the current i in the center wire minus the fraction of the current

enclosed in the outer conductor. The cross sectional area of the outer conductor is π(a2 − b2), so

the fraction of the outer current enclosed in the Amperian loop is

π(r2 − b2)

r2 − b2

i

= i

. 

π(a2 − b2)

a2 − b2

The net current in the loop is then

r2 − b2

a2 − r2

i − i

= i

, 

a2 − b2

a2 − b2

so the magnetic field in this region is

µ0i a2 − r2

B =

. 

2πr a2 − b2

(d) This part is easy since the net current is zero; consequently B = 0. 

E33-34

(a) Ampere’s law (Eq. 33-29) is H ~

B · d~s = µ0i, where i is the current enclosed. Our

Amperian loop will still be a circle centered on the axis of the problem, so the left hand side of the above equation will reduce to 2πrB, just like in Eq. 33-32. The right hand side, however, depends

on the net current enclosed which is the fraction of the current enclosed in the conductor. The cross sectional area of the conductor is π(a2 − b2), so the fraction of the current enclosed in the Amperian loop is

π(r2 − b2)

r2 − b2

i

= i

. 

π(a2 − b2)

a2 − b2

The magnetic field in this region is

µ0i r2 − b2

B =

. 

2πr a2 − b2

(b) If r = a, then

µ0i a2 − b2

µ0i

B =

=

, 

2πa a2 − b2

2πa

which is what we expect. 
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If r = b, then

µ0i b2 − b2

B =

= 0, 

2πb a2 − b2

which is what we expect. 

If b = 0, then

µ0i r2 − 02

µ0ir

B =

=

2πr a2 − 02

2πa2

which is what I expected. 

E33-35

The magnitude of the magnetic field due to the cylinder will be zero at the center of

the cylinder and µ0i0/2π(2R) at point P . The magnitude of the magnetic field field due to the

wire will be µ0i/2π(3R) at the center of the cylinder but µ0i/2πR at P . In order for the net

field to have different directions in the two locations the currents in the wire and pipe must be in

different direction. The net field at the center of the pipe is µ0i/2π(3R), while that at P is then

µ0i0/2π(2R) − µ0i/2πR. Set these equal and solve for i; 

i/3 = i0/2 − i, 

or i = 3i0/8. 

E33-36

(a) B = (4π ×10−7N/A2)(0.813 A)(535)/2π(0.162 m) = 5.37×10−4T. 

(b) B = (4π ×10−7N/A2)(0.813 A)(535)/2π(0.162 m + 0.052 m) = 4.07×10−4T. 

E33-37

(a) A positive particle would experience a magnetic force directed to the right for a

magnetic field out of the page. This particle is going the other way, so it must be negative. 

(b) The magnetic field of a toroid is given by Eq. 33-36, 

µ0iN

B =

, 

2πr

while the radius of curvature of a charged particle in a magnetic field is given by Eq. 32-10

mv

R =

. 

|q|B

We use the R to distinguish it from r. Combining, 

2πmv

R =

r, 

µ0iN |q|

so the two radii are directly proportional. This means

R/(11 cm) = (110 cm)/(125 cm), 

so R = 9.7 cm. 

P33-1

The field from one coil is given by Eq. 33-19

µ0iR2

B =

. 

2(R2 + z2)3/2

There are N turns in the coil, so we need a factor of N . There are two coils and we are interested

in the magnetic field at P , a distance R/2 from each coil. The magnetic field strength will be twice the above expression but with z = R/2, so

2µ0N iR2

8µ0N i

B =

=

. 

2(R2 + (R/2)2)3/2

(5)3/2R
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P33-2

(a) Change the limits of integration that lead to Eq. 33-12:

µ

Z

L

0id

dz

B

=

, 

4π

0

(z2 + d2)3/2

L

µ



0id

z

=





, 

4π (z2 + d2)1/2 0

µ0id

L

=

. 

4π (L2 + d2)1/2

(b) The angle φ in Eq. 33-11 would always be 0, so sin φ = 0, and therefore B = 0. 

P33-3

This problem is the all important derivation of the Helmholtz coil properties. 

(a) The magnetic field from one coil is

µ0N iR2

B1 =

. 

2(R2 + z2)3/2

The magnetic field from the other coil, located a distance s away, but for points measured from the

first coil, is

µ0N iR2

B2 =

. 

2(R2 + (z − s)2)3/2

The magnetic field on the axis between the coils is the sum, 

µ0N iR2

µ0N iR2

B =

+

. 

2(R2 + z2)3/2

2(R2 + (z − s)2)3/2

Take the derivative with respect to z and get

dB

3µ0N iR2

3µ0N iR2

= −

z −

(z − s). 

dz

2(R2 + z2)5/2

2(R2 + (z − s)2)5/2

At z = s/2 this expression vanishes! We expect this by symmetry, because the magnetic field will

be strongest in the plane of either coil, so the mid-point should be a local minimum. 

(b) Take the derivative again and

d2B

3µ0N iR2

15µ0N iR2

=

−

+

z2

dz2

2(R2 + z2)5/2

2(R2 + z2)5/2

3µ

15µ

−

0N iR2

0N iR2

+

(z − s)2. 

2(R2 + (z − s)2)5/2

2(R2 + (z − s)2)5/2

We could try and simplify this, but we don’t really want to; we instead want to set it equal to zero, then let z = s/2, and then solve for s. The second derivative will equal zero when

−3(R2 + z2) + 15z2 − 3(R2 + (z − s)2) + 15(z − s)2 = 0, 

and is z = s/2 this expression will simplify to

30(s/2)2

=

6(R2 + (s/2)2), 

4(s/2)2

=

R2, 

s

=

R. 
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P33-4

(a) Each of the side of the square is a straight wire segment of length a which contributes

a field strength of

µ0i

a

B =

, 

4πr pa2/4 + r2

where r is the distance to the point on the axis of the loop, so

p

r =

a2/4 + z2. 

This field is not parallel to the z axis; the z component is Bz = B(a/2)/r. There are four of these

contributions. The off axis components cancel. Consequently, the field for the square is

µ0i

a

a/2

B

=

4

, 

4πr pa2/4 + r2 r

µ0i

a2

=

, 

2πr2 pa2/4 + r2

µ0i

a2

=

, 

2π(a2/4 + z2) pa2/2 + z2

4µ0i

a2

=

√

. 

π(a2 + 4z2)

2a2 + 4z2

(b) When z = 0 this reduces to

4µ0i

a2

4µ0i

B =

√

= √

. 

π(a2)

2a2

2 πa

P33-5

(a) The polygon has n sides. A perpendicular bisector of each side can be drawn to the

center and has length x where x/a = cos(π/n). Each side has a length L = 2a sin(π/n). Each of the

side of the polygon is a straight wire segment which contributes a field strength of

µ0i

L

B =

, 

4πx pL2/4 + x2

This field is parallel to the z axis. There are n of these contributions. The off axis components

cancel. Consequently, the field for the polygon

µ0i

L

B

=

n

, 

4πx pL2/4 + x2

µ0i

2

=

n

tan(π/n), 

4π pL2/4 + x2

µ0i 1

=

n

tan(π/n), 

2π a

since (L/2)2 + x2 = a2. 

(b) Evaluate:

lim n tan(π/n) = lim n sin(π/n) ≈ nπ/n = π. 

n→∞

n→∞

Then the answer to part (a) simplifies to

µ0i

B =

. 

2a
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P33-6

For a square loop of wire we have four finite length segments each contributing a term

which looks like Eq. 33-12, except that L is replaced by L/4 and d is replaced by L/8. Then at the

center, 

µ0i

L/4

16µ0i

B = 4

= √

. 

4πL/8 pL2/64 + L2/64

2πL

For a circular loop R = L/2π so

µ0i

πµ0

B =

=

. 

2R

L

√

Since 16/ 2 π > π, the square wins. But only by some 7%! 

P33-7

We want to use the differential expression in Eq. 33-11, except that the limits of integra-

tion are going to be different. We have four wire segments. From the top segment, 

3L/4

µ



0i

d

B



1

=

√



, 

4π

z2 + d2 −L/4



! 

µ0i

3L/4

−L/4

=

−

. 

4πd

p(3L/4)2 + d2

p(−L/4)2 + d2

For the top segment d = L/4, so this simplifies even further to

µ

√

0i

√



B1 =

2(3 5 + 5) . 

10πL

The bottom segment has the same integral, but d = 3L/4, so

µ

√

0i

√



B3 =

2( 5 + 5) . 

30πL

By symmetry, the contribution from the right hand side is the same as the bottom, so B2 = B3, 

and the contribution from the left hand side is the same as that from the top, so B4 = B1. Adding

all four terms, 

2µ

√

√

√ √

0i 



B

=

3 2(3 5 + 5) +

2( 5 + 5) , 

30πL

2µ

√


√

0i

=

(2 2 +

10). 

3πL

P33-8

Assume a current ring has a radius r and a width dr, the charge on the ring is dq = 2πσr dr, 

where σ = q/πR2. The current in the ring is di = ω dq/2π = ωσr dr. The ring contributes a field

dB = µ0 di/2r. Integrate over all the rings:

Z

R

B =

µ0ωσr dr/2r = µ0ωR/2 = µωq/2πR. 

0

P33-9

B = µ0in and mv = qBr. Combine, and

mv

(5.11×105eV/c2)(0.046c)

i =

=

= 0.271 A. 

µ0qrn

(4π ×10−7N/A2)e(0.023 m)(10000/m)

P33-10

This shape is a triangle with area A = (4d)(3d)/2 = 6d2. The enclosed current is then

i = jA = (15 A/m2)6(0.23 m)2 = 4.76 A

The line integral is then

µ0i = 6.0×10−6T · m. 
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P33-11

Assume that B does vary as the picture implies. Then the line integral along the path

shown must be nonzero, since ~

B ·~l on the right is not zero, while it is along the three other sides. 

Hence H ~

B · d~l is non zero, implying some current passes through the dotted path. But it doesn’t, 

so ~

B cannot have an abrupt change. 

P33-12

(a) Sketch an Amperian loop which is a rectangle which enclosed N wires, has a vertical

sides with height h, and horizontal sides with length L. Then H ~

B · d~l = µ0N i. Evaluate the integral

along the four sides. The vertical side contribute nothing, since ~

B is perpendicular to ~

h, and then

~

B · ~h = 0. If the integral is performed in a counterclockwise direction (it must, since the sense

of integration was determined by assuming the current is positive), we get BL for each horizontal

section. Then

µ0iN

1

B =

=

µ0in. 

2L

2

(b) As a → ∞ then tan−1(a/2R) → π/2. Then B → µ0i/2a. If we assume that i is made up of

several wires, each with current i0, then i/a = i0n. 

P33-13

Apply Ampere’s law with an Amperian loop that is a circle centered on the center of

the wire. Then

I

I

I

~

B · d~s =

B ds = B

ds = 2πrB, 

because ~

B is tangent to the path and B is uniform along the path by symmetry. The current

enclosed is

Z

ienc =

j dA. 

This integral is best done in polar coordinates, so dA = (dr)(r dθ), and then

Z

r Z 2π

ienc

=

(j0r/a) rdr dθ, 

0

0

Z

r

=

2πj0/a

r2dr, 

0

2πj0

=

r3. 

3a

When r = a the current enclosed is i, so

2πj0a2

3i

i =

or j0 =

. 

3

2πa2

The magnetic field strength inside the wire is found by gluing together the two parts of Ampere’s

law, 

2πj0

2πrB

=

µ0

r3, 

3a

µ0j0r2

B

=

, 

3a

µ0ir2

=

. 

2πa3
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P33-14

(a) According to Eq. 33-34, the magnetic field inside the wire without a hole has magnitude

B = µ0ir/2πR2 = µ0jr/2 and is directed radially. If we superimpose a second current to create the

hole, the additional field at the center of the hole is zero, so B = µ0jb/2. But the current in the

remaining wire is

i = jA = jπ(R2 − a2), 

so

µ0ib

B =

. 

2π(R2 − a2)
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E34-1

ΦB = ~

B · ~

A = (42×10−6T)(2.5 m2) cos(57◦) = 5.7×10−5Wb. 

E34-2

|E| = |dΦB/dt| = A dB/dt = (π/4)(0.112 m)2(0.157 T/s) = 1.55 mV. 

E34-3

(a) The magnitude of the emf induced in a loop is given by Eq. 34-4, 

dΦ 

|E|

B

=

N 





, 



dt 

=

N (12 mWb/s2)t + (7 mWb/s)

There is only one loop, and we want to evaluate this expression for t = 2.0 s, so

|E| = (1) (12 mWb/s2)(2.0 s) + (7 mWb/s) = 31 mV. 

(b) This part isn’t harder. The magnetic flux through the loop is increasing when t = 2.0 s. The

induced current needs to flow in such a direction to create a second magnetic field to oppose this

increase. The original magnetic field is out of the page and we oppose the increase by pointing the

other way, so the second field will point into the page (inside the loop). 

By the right hand rule this means the induced current is clockwise through the loop, or to the

left through the resistor. 

E34-4

E = −dΦB/dt = −A dB/dt. 

(a) E = −π(0.16 m)2(0.5 T)/(2 s) = −2.0×10−2V. 

(b) E = −π(0.16 m)2(0.0 T)/(2 s) = 0.0×10−2V. 

(c) E = −π(0.16 m)2(−0.5 T)/(4 s) = 1.0×10−2V. 

E34-5

(a) R = ρL/A = (1.69×10−8Ω · m)[(π)(0.104 m)]/[(π/4)(2.50×10−3m)2] = 1.12×10−3Ω. 

(b) E = iR = (9.66 A)(1.12×10−3Ω) = 1.08×10−2V. The required dB/dt is then given by

dB

E

=

= (1.08×10−2 V)/(π/4)(0.104 m)2 = 1.27 T/s. 

dt

A

E34-6

E = −A ∆B/∆t = AB/∆t. The power is P = iE = E2/R. The energy dissipated is

E2∆t

A2B2

E = P ∆t =

=

. 

R

R∆t

E34-7

(a) We could re-derive the steps in the sample problem, or we could start with the end

result. We’ll start with the result, 

di 

E = NAµ





0n 

, 

dt 

except that we have gone ahead and used the derivative instead of the ∆. 

The rate of change in the current is

di = (3.0 A/s) + (1.0 A/s2)t, 

dt

so the induced emf is

E = (130)(3.46×10−4m2)(4π×10−7Tm/A)(2.2×104/m) (3.0A/s) + (2.0A/s2)t , 

=

(3.73×10−3 V) + (2.48×10−3 V/s)t. 

(b) When t = 2.0 s the induced emf is 8.69×10−3 V, so the induced current is

i = (8.69×10−3 V)/(0.15 Ω) = 5.8×10−2 A. 

119

E34-8

(a) i = E/R = N A dB/dt. Note that A refers to the area enclosed by the outer solenoid

where B is non-zero. This A is then the cross sectional area of the inner solenoid! Then

1

di

(120)(π/4)(0.032 m)2(4π ×10−7N/A2)(220×102/m) (1.5 A)

i =

N Aµ0n

=

= 4.7×10−3A. 

R

dt

(5.3 Ω)

(0.16 s)

E34-9

P = Ei = E2/R = (A dB/dt)2/(ρL/a), where A is the area of the loop and a is the cross

sectional area of the wire. But a = πd2/4 and A = L2/4π, so

L3d2  dB 2

(0.525 m)3(1.1×10−3m)2

P =

=

(9.82×10−3T/s)2 = 4.97×10−6W. 

64πρ

dt

64π(1.69×10−8Ω · m)

E34-10

ΦB = BA = B(2.3 m)2/2. EB = −dΦB/dt = −AdB/dt, or

(2.3 m)2

EB = −

[−(0.87 T/s)] = 2.30 V, 

2

so E = (2.0 V) + (2.3 V) = 4.3 V. 

E34-11

(a) The induced emf, as a function of time, is given by Eq. 34-5, E(t) = −dΦB(t)/dt

This emf drives a current through the loop which obeys E(t) = i(t)R Combining, 

1 dΦB(t)

i(t) = −

. 

R

dt

Since the current is defined by i = dq/dt we can write

dq(t)

1 dΦB(t)

= −

. 

dt

R

dt

Factor out the dt from both sides, and then integrate:

1

dq(t)

=

−

dΦB(t), 

R

Z

Z

1

dq(t)

=

−

dΦB(t), 

R

1

q(t) − q(0) =

(ΦB(0) − ΦB(t))

R

(b) No. The induced current could have increased from zero to some positive value, then decreased

to zero and became negative, so that the net charge to flow through the resistor was zero. This

would be like sloshing the charge back and forth through the loop. 

E34-12

∆P hiB = 2ΦB = 2N BA. Then the charge to flow through is

q = 2(125)(1.57 T)(12.2×10−4m2)/(13.3 Ω) = 3.60×10−2C. 

E34-13

The part above the long straight wire (a distance b − a above it) cancels out contributions

below the wire (a distance b − a beneath it). The flux through the loop is then

Z

a

µ





0i

µ0ib

a

ΦB =

b dr =

ln

. 

2a−b 2πr

2π

2a − b
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The emf in the loop is then

dΦ

µ



a



E

B

0b

= −

=

ln

[2(4.5 A/s2)t − (10 A/s)]. 

dt

2π

2a − b

Evaluating, 

4π ×10−7N/A2(0.16 m)



(0.12 m)



E =

ln

[2(4.5 A/s2)(3.0 s)−(10 A/s)] = 2.20×10−7V. 

2π

2(0.12 m) − (0.16 m)

E34-14

Use Eq. 34-6: E = BDv = (55×10−6T)(1.10 m)(25 m/s) = 1.5×10−3V. 

E34-15

If the angle doesn’t vary then the flux, given by

Φ = ~

B · ~

A

is constant, so there is no emf. 

E34-16

(a) Use Eq. 34-6: E = BDv = (1.18T)(0.108 m)(4.86 m/s) = 0.619 V. 

(b) i = (0.619 V)/(0.415 Ω) = 1.49 A. 

(c) P = (0.619 V)(1.49 A) = 0.922 W. 

(d) F = iLB = (1.49 A)(0.108 m)(1.18T) = 0.190 N. 

(e) P = F v = (0.190 V)(4.86 m/s) = 0.923 W. 

E34-17

The magnetic field is out of the page, and the current through the rod is down. Then Eq. 

32-26 ~

F = i~

L × ~

B shows that the direction of the magnetic force is to the right; furthermore, since

everything is perpendicular to everything else, we can get rid of the vector nature of the problem

and write F = iLB. Newton’s second law gives F = ma, and the acceleration of an object from rest

results in a velocity given by v = at. Combining, 

iLB

v(t) =

t. 

m

E34-18

(b) The rod will accelerate as long as there is a net force on it. This net force comes from

F = iLB. The current is given by iR = E − BLv, so as v increases i decreases. When i = 0 the rod

stops accelerating and assumes a terminal velocity. 

(a) E = BLv will give the terminal velocity. In this case, v = E/BL. 

E34-19

E34-20

The acceleration is a = Rω2; since E = BωR2/2, we can find

a = 4E2/B2R3 = 4(1.4 V)2/(1.2 T)2(5.3×10−2m)3 = 3.7×104m/s2. 

E34-21

We will use the results of Exercise 11 that were worked out above. All we need to do is

find the initial flux; flipping the coil up-side-down will simply change the sign of the flux. 

So

ΦB(0) = ~

B · ~

A = (59 µT)(π)(0.13 m)2 sin(20◦) = 1.1×10−6 Wb. 

121

Then using the results of Exercise 11 we have

N

q

=

(ΦB(0) − ΦB(t)), 

R

950

=

((1.1×10−6 Wb) − (−1.1×10−6 Wb)), 

85 Ω

=

2.5×10−5 C. 

E34-22

(a) The flux through the loop is

Z

vt

Z

a+L

µ0i

µ0ivt

a + L

ΦB =

dx

dr

=

ln

. 

0

a

2πr

2π

a

The emf is then

dΦ

µ

a + L

E

B

0iv

= −

= −

ln

. 

dt

2π

a

Putting in the numbers, 

(4π ×10−7N/A2)(110 A)(4.86 m/s)

(0.0102 m) + (0.0983 m)

E =

ln

= 2.53×10−4V. 

2π

(0.0102 m)

(b) i = E/R = (2.53×10−4V)/(0.415 Ω) = 6.10×10−4A. 

(c) P = i2R = (6.10×10−4A)2(0.415 Ω) = 1.54×10−7W. 

(d) F = R Bil dl, or

Z

a+L

µ0i

µ0i

a + L

F = il

dr

= il

ln

. 

a

2πr

2π

a

Putting in the numbers, 

(4π ×10−7N/A2)(110 A)

(0.0102 m) + (0.0983 m)

F = (6.10×10−4A)

ln

= 3.17×10−8N. 

2π

(0.0102 m)

(e) P = F v = (3.17×10−8N)(4.86 m/s) = 1.54×10−7W. 

E34-23

(a) Starting from the beginning, Eq. 33-13 gives

µ0i

B =

. 

2πy

The flux through the loop is given by

Z

Φ

~

B =

B · d ~

A, 

but since the magnetic field from the long straight wire goes through the loop perpendicular to the

plane of the loop this expression simplifies to a scalar integral. The loop is a rectangular, so use

dA = dx dy, and let x be parallel to the long straight wire. 

Combining the above, 

Z

D+b Z a  µ 

0i

ΦB

=

dx dy, 

D

0

2πy

µ

Z

D+b

0i

dy

=

a

, 

2π

D

y

µ





0i

D + b

=

a ln

2π

D
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(b) The flux through the loop is a function of the distance D from the wire. If the loop moves

away from the wire at a constant speed v, then the distance D varies as vt. The induced emf is then

dΦ

E

B

=

−

, 

dt

µ0i

b

=

a

. 

2π

t(vt + b)

The current will be this emf divided by the resistance R. The “back-of-the-book” answer is somewhat

different; the answer is expressed in terms of D instead if t. The two answers are otherwise identical. 

E34-24

(a) The area of the triangle is A = x2 tan θ/2. In this case x = vt, so

ΦB = B(vt)2 tan θ/2, 

and then

E = 2Bv2t tan θ/2, 

(b) t = E/2Bv2 tan θ/2, so

(56.8 V)

t =

= 2.08 s. 

2(0.352 T)(5.21 m/s)2 tan(55◦)

E34-25

E = NBAω, so

(24 V)

ω =

= 39.4 rad/s. 

(97)(0.33 T)(0.0190 m2)

That’s 6.3 rev/second. 

E34-26

(a) The frequency of the emf is the same as the frequency of rotation, f . 

(b) The flux changes by BA = Bπa2 during a half a revolution. This is a sinusoidal change, so

the amplitude of the sinusoidal variation in the emf is E = ΦBω/2. Then E = Bπ2a2f . 

E34-27

We can use Eq. 34-10; the emf is E = BAω sin ωt, This will be a maximum when

sin ωt = 1. The angular frequency, ω is equal to ω = (1000)(2π)/(60) rad/s = 105 rad/s The

maximum emf is then

E = (3.5 T) [(100)(0.5 m)(0.3 m)] (105 rad/s) = 5.5 kV. 

E34-28

(a) The amplitude of the emf is E = BAω, so

A = E/2πf B = (150 V)/2π(60/s)(0.50 T) = 0.798m2. 

(b) Divide the previous result by 100. A = 79.8 cm2. 

E34-29

dΦB/dt = A dB/dt = A(−8.50 mT/s). 

(a) For this path

I

~

E · d~s = −dΦB/dt = − − π(0.212 m)2(−8.50 mT/s) = −1.20 mV. 

(b) For this path

I

~

E · d~s = −dΦB/dt = − − π(0.323 m)2(−8.50 mT/s) = −2.79 mV. 
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(c) For this path

I

~

E · d~s = −dΦB/dt = − − π(0.323 m)2(−8.50 mT/s) − π(0.323 m)2(−8.50 mT/s) = 1.59 mV. 

E34-30

dΦB/dt = A dB/dt = A(−6.51 mT/s), while H ~

E · d~s = 2πrE. 

(a) The path of integration is inside the solenoid, so

−πr2(−6.51 mT/s)

(0.022 m)(−6.51 mT/s)

E =

=

= 7.16×10−5V/m. 

2πr

2

(b) The path of integration is outside the solenoid, so

−πr2(−6.51 mT/s)

(0.063 m)2(−6.51 mT/s)

E =

=

= 1.58×10−4V/m

2πR

2(0.082 m)

E34-31

The induced electric field can be found from applying Eq. 34-13, 

I

~

dΦB

E · d~s = −

. 

dt

We start with the left hand side of this expression. The problem has cylindrical symmetry, so the

induced electric field lines should be circles centered on the axis of the cylindrical volume. If we

choose the path of integration to lie along an electric field line, then the electric field ~

E will be

parallel to d~s, and E will be uniform along this path, so

I

I

I

~

E · d~s =

E ds = E

ds = 2πrE, 

where r is the radius of the circular path. 

Now for the right hand side. The flux is contained in the path of integration, so ΦB = Bπr2. 

All of the time dependence of the flux is contained in B, so we can immediately write

dB

r dB

2πrE = −πr2

or E = −

. 

dt

2 dt

What does the negative sign mean? The path of integration is chosen so that if our right hand fingers curl around the path our thumb gives the direction of the magnetic field which cuts through the

path. Since the field points into the page a positive electric field would have a clockwise orientation. 

Since B is decreasing the derivative is negative, but we get another negative from the equation

above, so the electric field has a positive direction. 

Now for the magnitude. 

E = (4.82×10−2 m)(10.7×10−3 T /s)/2 = 2.58×10−4 N/C. 

The acceleration of the electron at either a or c then has magnitude

a = Eq/m = (2.58×10−4 N/C)(1.60×10−19 C)/(9.11×10−31 kg) = 4.53×107m/s2. 

P34-1

The induced current is given by i = E/R. The resistance of the loop is given by R = ρL/A, 

where A is the cross sectional area. Combining, and writing in terms of the radius of the wire, we

have

πr2E

i =

. 

ρL
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The length of the wire is related to the radius of the wire because we have a fixed mass. The total

volume of the wire is πr2L, and this is related to the mass and density by m = δπr2L. Eliminating

r we have

mE

i =

. 

ρδL2

The length of the wire loop is the same as the circumference, which is related to the radius R of the loop by L = 2πR. The emf is related to the changing flux by E = −dΦB/dt, but if the shape of the

loop is fixed this becomes E = −A dB/dt. Combining all of this, 

mA

dB

i =

. 

ρδ(2πR)2 dt

We dropped the negative sign because we are only interested in absolute values here. 

Now A = πR2, so this expression can also be written as

mπR2

dB

m dB

i =

=

. 

ρδ(2πR)2 dt

4πρδ dt

P34-2

For the lower surface ~

B · ~

A = (76×10−3T)(π/2)(0.037 m)2 cos(62◦) = 7.67×10−5Wb. For

the upper surface ~

B · ~

A = (76×10−3T)(π/2)(0.037 m)2 cos(28◦) = 1.44×10−4Wb.. The induced emf

is then

E = (7.67×10−5Wb + 1.44×10−4Wb)/(4.5×10−3s) = 4.9×10−2V. 

P34-3

(a) We are only interested in the portion of the ring in the yz plane. Then E = (3.32×

10−3T/s)(π/4)(0.104 m)2 = 2.82×10−5V. 

(b) From c to b. Point your right thumb along −x to oppose the increasing ~

B field. Your right

fingers will curl from c to b. 

P34-4

E ∝ NA, but A = πr2 and N2πr = L, so E ∝ 1/N. This means use only one loop to

maximize the emf. 

P34-5

This is a integral best performed in rectangular coordinates, then dA = (dx)(dy). The

magnetic field is perpendicular to the surface area, so ~

B · d ~

A = B dA. The flux is then

Z

Z

Φ

~

B

=

B · d ~

A =

B dA, 

Z

a Z a

=

(4 T/m · s2)t2y dy dx, 

0

0

 1



=

(4 T/m · s2)t2

a2

a, 

2

=

(2 T/m · s2)a3t2. 

But a = 2.0 cm, so this becomes

ΦB = (2 T/m · s2)(0.02 m)3t2 = (1.6×10−5Wb/s2)t2. 

The emf around the square is given by

dΦ

E

B

= −

= −(3.2×10−5Wb/s2)t, 

dt

and at t = 2.5 s this is −8.0×10−5V. Since the magnetic field is directed out of the page, a positive emf would be counterclockwise (hold your right thumb in the direction of the magnetic field and

your fingers will give a counter clockwise sense around the loop). But the answer was negative, so

the emf must be clockwise. 
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P34-6

(a) Far from the plane of the large loop we can approximate the large loop as a dipole, and

then

µ0iπR2

B =

. 

2x3

The flux through the small loop is then

µ0iπ2r2R2

ΦB = πr2B =

. 

2x3

(b) E = −dΦB/dt, so

3µ

E

0iπ2r2R2

=

v. 

2x4

(c) Anti-clockwise when viewed from above. 

P34-7

The magnetic field is perpendicular to the surface area, so ~

B · d ~

A = B dA. The flux is

then

Z

Z

Φ

~

B =

B · d ~

A =

B dA = BA, 

since the magnetic field is uniform. The area is A = πr2, where r is the radius of the loop. The

induced emf is

dΦ

dr

E

B

= −

= −2πrB

. 

dt

dt

It is given that B = 0.785 T, r = 1.23 m, and dr/dt = −7.50×10−2m/s. The negative sign indicate

a decreasing radius. Then

E = −2π(1.23 m)(0.785 T)(−7.50×10−2m/s) = 0.455 V. 

P34-8

(a) dΦB/dt = B dA/dt, but dA/dt is ∆A/∆t, where ∆A is the area swept out during one

rotation and ∆t = 1/f . But the area swept out is πR2, so

dΦ

|E|

B

=

= πf BR2. 

dt

(b) If the output current is i then the power is P = Ei. But P = τ ω = τ 2πf , so

P

τ =

= iBR2/2. 

2πf

P34-9

(a) E = −dΦB/dt, and ΦB = ~

B · ~

A,so

E = BLv cos θ. 

The component of the force of gravity on the rod which pulls it down the incline is FG = mg sin θ. 

The component of the magnetic force on the rod which pulls it up the incline is FB = BiL cos θ. 

Equating, 

BiL cos θ = mg sin θ, 

and since E = iR, 

E

mgR sin θ

v =

=

. 

BL cos θ

B2L2 cos2 θ

(b) P = iE = E2/R = B2L2v2 cos2 θ/R = mgv sin θ. This is identical to the rate of change of

gravitational potential energy. 
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P34-10

Let the cross section of the wire be a. 

(a) R = ρL/a = ρ(rθ + 2r)/a; with numbers, 

R = (3.4×10−3Ω)(2 + θ). 

(b) ΦB = Bθr2/2; with numbers, 

ΦB = (4.32×10−3Wb)θ. 

(c) i = E/R = Bωr2/2R = Baωr/2ρ(θ + 2), or

Baαtr

i =

. 

ρ(αt2 + 4)

Take the derivative and set it equal to zero, 

4 − at2

0 =

, 

(αt2 + 4)2

so at2 = 4, or θ = 1 at2 = 2 rad. 

2

√

(d) ω =

2αθ, so

q

(0.15 T)(1.2×10−6m2) 2(12 rad/s2)(2 rad)(0.24 m)

i =

= 2.2 A. 

(1.7×10−8Ω · m)(6 rad)

P34-11

It does say approximate, so we will be making some rather bold assumptions here. First

we will find an expression for the emf. Since B is constant, the emf must be caused by a change in

the area; in this case a shift in position. The small square where B 6= 0 has a width a and sweeps

around the disk with a speed rω. An approximation for the emf is then E = Barω. This emf causes

a current. We don’t know exactly where the current flows, but we can reasonably assume that it

occurs near the location of the magnetic field. Let us assume that it is constrained to that region of the disk. The resistance of this portion of the disk is the approximately

1 L

1 a

1

R =

=

=

, 

σ A

σ at

σt

where we have assumed that the current is flowing radially when defining the cross sectional area of

the “resistor”. The induced current is then (on the order of)

E

Barω

=

= Barωσt. 

R

1/(σt)

This current experiences a breaking force according to F = BIl, so

F = B2a2rωσt, 

where l is the length through which the current flows, which is a. 

Finally we can find the torque from τ = rF , and

τ = B2a2r2ωσt. 

127

P34-12

The induced electric field in the ring is given by Eq. 34-11: 2πRE = |dΦB/dt|. This

electric field will result in a force on the free charge carries (electrons?), given by F = Ee. The

acceleration of the electrons is then a = Ee/me. Then

e

dΦB

a =

. 

2πRme dt

Integrate both sides with respect to time to find the speed of the electrons. 

Z

Z

e

dΦB

a dt

=

dt, 

2πRme dt

e

Z

dΦB

v

=

2πRme

, 

e

=

∆ΦB. 

2πRme

The current density is given by j = nev, and the current by iA = iπa2. Combining, 

ne2a2

i =

∆P hiB. 

2Rme

Actually, it should be pointed out that ∆P hiB refers to the change in flux from external sources. The current induced in the wire will produce a flux which will exactly offset ∆P hiB so that the net flux through the superconducting ring is fixed at the value present when the ring became superconducting. 

P34-13

Assume that E does vary as the picture implies. Then the line integral along the path

shown must be nonzero, since ~

E ·~l on the right is not zero, while it is along the three other sides. 

Hence H ~

E · d~l is non zero, implying a change in the magnetic flux through the dotted path. But it

doesn’t, so ~

E cannot have an abrupt change. 

P34-14

The electric field a distance r from the center is given by

πr2dB/dT

r dB

E =

=

. 

2πr

2 dt

This field is directed perpendicular to the radial lines. 

Define h to be the distance from the center of the circle to the center of the rod, and evaluate

E = R ~

E · d~s, 

dB Z r h

E =

dx, 

dt

2 r

dB L

=

h. 

dt 2

But h2 = R2 − (L/2)2, so

dB L

E

p

=

R2 − (L/2)2. 

dt 2

P34-15

(a) ΦB = πr2Bav, so

E

(0.32 m)

E =

=

2(0.28 T)(120 π) = 34 V/m. 

2πr

2

(b) a = F/m = Eq/m = (33.8 V/m)(1.6×10−19C)/(9.1×10−31kg) = 6.0×1012m/s2. 
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E35-1

If the Earth’s magnetic dipole moment were produced by a single current around the core, 

then that current would be

µ

(8.0 × 1022J/T)

i =

=

= 2.1×109 A

A

π(3.5 × 106m)2

E35-2

(a) i = µ/A = (2.33 A · m2)/(160)π(0.0193 m)2 = 12.4 A. 

(b) τ = µB = (2.33 A · m2)(0.0346 T) = 8.06×10−2N · m. 

E35-3

(a) Using the right hand rule a clockwise current would generate a magnetic moment which

would be into the page. Both currents are clockwise, so add the moments:

µ = (7.00 A)π(0.20 m)2 + (7.00 A)π(0.30 m)2 = 2.86 A · m2. 

(b) Reversing the current reverses the moment, so

µ = (7.00 A)π(0.20 m)2 − (7.00 A)π(0.30 m)2 = −1.10 A · m2. 

E35-4

(a) µ = iA = (2.58 A)π(0.16 m)2 = 0.207 A · m2. 

(b) τ = µB sin θ = (0.207 A · m2)(1.20 T) sin(41◦) = 0.163 N · m. 

E35-5

(a) The result from Problem 33-4 for a square loop of wire was

4µ0ia2

B(z) =

. 

π(4z2 + a2)(4z2 + 2a2)1/2

For z much, much larger than a we can ignore any a terms which are added to or subtracted from

z terms. This means that

4z2 + a2 → 4z2 and (4z2 + 2a2)1/2 → 2z, 

but we can’t ignore the a2 in the numerator. 

The expression for B then simplifies to

µ0ia2

B(z) =

, 

2πz3

which certainly looks like Eq. 35-4. 

(b) We can rearrange this expression and get

µ0

B(z) =

ia2, 

2πz3

where it is rather evident that ia2 must correspond to ~

µ, the dipole moment, in Eq. 35-4. So that

must be the answer. 

E35-6

µ = iA = (0.2 A)π(0.08 m)2 = 4.02×10−3A · m2; ~µ = µˆ

n. 

(a) For the torque, 

~

τ = ~

µ × ~

B = (−9.65×10−4N · m)î + (−7.24×10−4N · m)ˆj + (8.08×10−4N · m)ˆ

k. 

(b) For the magnetic potential energy, 

U = ~

µ · ~

B = µ[(0.60)(0.25 T)] = 0.603×10−3J. 
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E35-7

µ = iA = iπ(a2 + b2/2) = iπ(a2 + b2)/2. 

E35-8

If the distance to P is very large compared to a or b we can write the Law of Biot and

Savart as

~

µ0i ~s × ~r

B =

. 

4π

r3

~s is perpendicular to ~r for the left and right sides, so the left side contributes

µ0i

b

B1 =

, 

4π (x + a/2)2

and the right side contributes

µ0i

b

B3 = −

. 

4π (x − a/2)2

The top and bottom sides each contribute an equal amount

µ0i

a sin θ

µ0i a(b/2)

B2 = B4 =

≈

. 

4π x2 + b2/4

4π

x3

Add the four terms, expand the denominators, and keep only terms in x3, 

µ0i ab

µ0 µ

B = −

= −

. 

4π x3

4π x3

The negative sign indicates that it is into the page. 

E35-9

(a) The electric field at this distance from the proton is

1

(1.60×10−19C)

E =

= 5.14×1011N/C. 

4π(8.85×10−12C2/N · m2) (5.29×10−11m)2

(b) The magnetic field at this from the proton is given by the dipole approximation, 

µ0µ

B(z)

=

, 

2πz3

(4π ×10−7N/A2)(1.41×10−26A/m2)

=

, 

2π(5.29×10−11m)3

=

1.90×10−2 T

E35-10

1.50 g of water has (2)(6.02 × 1023)(1.5)/(18) = 1.00 × 1023 hydrogen nuclei. If all are

aligned the net magnetic moment would be µ = (1.00 ×1023)(1.41×10−26J/T) = 1.41×10−3J/T. 

The field strength is then

µ0 µ

(1.41×10−3J/T)

B =

= (1.00×10−7N/A2)

= 9.3×10−13T. 

4π x3

(5.33 m)3

E35-11

(a) There is effectively a current of i = f q = qω/2π. The dipole moment is then µ = iA =

(qω/2π)(πr2) = 1 qωr2. 

2

(b) The rotational inertia of the ring is mr2 so L = Iω = mr2ω. Then

µ

(1/2)qωr2

q

=

=

. 

L

mr2ω

2m
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E35-12

The mass of the bar is

m = ρV = (7.87 g/cm3)(4.86 cm)(1.31 cm2) = 50.1 g. 

The number of atoms in the bar is

N = (6.02×1023)(50.1 g)/(55.8 g) = 5.41×1023. 

The dipole moment of the bar is then

µ = (5.41×1023)(2.22)(9.27×10−24J/T) = 11.6 J/T. 

(b) The torque on the magnet is τ = (11.6 J/T)(1.53 T) = 17.7 N · m. 

E35-13

The magnetic dipole moment is given by µ = M V , Eq. 35-13. Then

µ = (5, 300 A/m)(0.048 m)π(0.0055 m)2 = 0.024 A · m2. 

E35-14

(a) The original field is B0 = µ0in. The field will increase to B = κmB0, so the increase is

∆B = (κ1 − 1)µ0in = (3.3×10−4)(4π×10−7N/A2)(1.3 A)(1600/m) = 8.6×10−7T. 

(b) M = (κ1 − 1)B0/µ0 = (κ1 − 1)in = (3.3×10−4)(1.3 A)(1600/m) = 0.69 A/m. 

E35-15

The energy to flip the dipoles is given by U = 2µB. The temperature is then

2µB

4(1.2×10−23J/T)(0.5 T)

T =

=

= 0.58 K. 

3k/2

3(1.38×10−23J/K)

E35-16

The Curie temperature of iron is 770◦C, which is 750◦C higher than the surface temper-

ature. This occurs at a depth of (750◦C)/(30 C◦/km) = 25 km. 

E35-17

(a) Look at the figure. 

At 50% (which is 0.5 on the vertical axis), the curve is at

B0/T ≈ 0.55 T/K. Since T = 300 K, we have B0 ≈ 165 T. 

(b) Same figure, but now look at the 90% mark. B0/T ≈ 1.60 T/K, so B0 ≈ 480 T. 

(c) Good question. I think both fields are far beyond our current abilities. 

E35-18

(a) Look at the figure. At 50% (which is 0.5 on the vertical axis), the curve is at B0/T ≈

0.55 T/K. Since B0 = 1.8 T, we have T ≈ (1.8 T)/(0.55 T/K) = 3.3 K. 

(b) Same figure, but now look at the 90% mark. B0/T ≈ 1.60 T/K, so T ≈ (1.8 T)/(1.60 T/K) =

1.1 K. 

E35-19

Since (0.5 T)/(10 K) = 0.05 T/K, and all higher temperatures have lower values of the

ratio, and this puts all points in the region near where Curie’s Law (the straight line) is valid, then the answer is yes. 

E35-20

Using Eq. 35-19, 

V M

MrM

(108g/mol)(511×103A/m)

µn =

=

=

= 8.74×10−21A/m2

N

Aρ

(10490 kg/m3)(6.02×1023/mol)
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E35-21

(a) B = µ0µ/2z3, so

(4π ×10−7N/A2)(1.5×10−23J/T)

B =

= 9.4×10−6T. 

2(10×10−9m)3

(b) U = 2µB = 2(1.5×10−23J/T)(9.4×10−6T) = 2.82×10−28J. 

E35-22

ΦB = (43×10−6T)(295, 000×106m2) = 1.3×107Wb. 

E35-23

(a) We’ll assume, however, that all of the iron atoms are perfectly aligned. Then the

dipole moment of the earth will be related to the dipole moment of one atom by

µEarth = N µFe, 

where N is the number of iron atoms in the magnetized sphere. If mA is the relative atomic mass

of iron, then the total mass is

N mA

mA µEarth

m =

=

, 

A

A

µFe

where A is Avogadro’s number. Next, the volume of a sphere of mass m is

m

mA µEarth

V =

=

, 

ρ

ρA

µFe

where ρ is the density. 

And finally, the radius of a sphere with this volume would be

 3V 1/3

 3µ

1/3

EarthmA

r =

=

. 

4π

4πρµFeA

Now we find the radius by substituting in the known values, 



!1/3

3(8.0×1022J/T)(56 g/mol)

r =

= 1.8×105m. 

4π(14×106g/m3)(2.1×10−23J/T)(6.0×1023/mol)

(b) The fractional volume is the cube of the fractional radius, so the answer is

(1.8×105 m/6.4×106)3 = 2.2×10−5. 

E35-24

(a) At magnetic equator Lm = 0, so

µ0µ

(1.00×10−7N/A2)(8.0×1022J/T)

B =

=

= 31µT. 

4πr3

(6.37×106m)3

There is no vertical component, so the inclination is zero. 

(b) Here Lm = 60◦, so

µ

q

q

0µ

(1.00×10−7N/A2)(8.0×1022J/T)

B =

1 + 3 sin2 Lm =

1 + 3 sin2(60◦) = 56µT. 

4πr3

(6.37×106m)3

The inclination is given by

arctan(Bv/Bh) = arctan(2 tan Lm) = 74◦. 

(c) At magnetic north pole Lm = 90◦, so

µ0µ

2(1.00×10−7N/A2)(8.0×1022J/T)

B =

=

= 62µT. 

2πr3

(6.37×106m)3

There is no horizontal component, so the inclination is 90◦. 
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E35-25

This problem is effectively solving 1/r3 = 1/2 for r measured in Earth radii. 

Then

r = 1.26rE, and the altitude above the Earth is (0.26)(6.37×106m) = 1.66×106m. 

E35-26

The radial distance from the center is r = (6.37×106m) − (2900×103m) = 3.47×106m. 

The field strength is

µ0µ

2(1.00×10−7N/A2)(8.0×1022J/T)

B =

=

= 380µT. 

2πr3

(3.47×106m)3

E35-27

Here Lm = 90◦ − 11.5◦ = 78.5◦, so

µ

q

q

0µ

(1.00×10−7N/A2)(8.0×1022J/T)

B =

1 + 3 sin2 Lm =

1 + 3 sin2(78.5◦) = 61µT. 

4πr3

(6.37×106m)3

The inclination is given by

arctan(Bv/Bh) = arctan(2 tan Lm) = 84◦. 

E35-28

The flux out the “other” end is (1.6×10−3T)π(0.13 m)2 = 85µWb. The net flux through

the surface is zero, so the flux through the curved surface is 0 − (85µWb) − (−25µWb) = −60µWb.. 

The negative indicates inward. 

E35-29

The total magnetic flux through a closed surface is zero. There is inward flux on faces

one, three, and five for a total of -9 Wb. There is outward flux on faces two and four for a total of

+6 Wb. The difference is +3 Wb; consequently the outward flux on the sixth face must be +3 Wb. 

E35-30

The stable arrangements are (a) and (c). The torque in each case is zero. 

E35-31

The field on the x axis between the wires is

µ





0i

1

1

B =

+

. 

2π

2r + x

2r − x

Since H ~

B · d ~

A = 0, we can assume the flux through the curved surface is equal to the flux through

the xz plane within the cylinder. This flux is

Z

r  µ 



0i

1

1

ΦB

=

L

+

dx, 

−r

2π

2r + x

2r − x

µ





0i

3r

r

=

L

ln

− ln

, 

2π

r

3r

µ0i

=

L

ln 3. 

π

P35-1

We can imagine the rotating disk as being composed of a number of rotating rings of

radius r, width dr, and circumference 2πr. The surface charge density on the disk is σ = q/πR2, 

and consequently the (differential) charge on any ring is

2qr

dq = σ(2πr)(dr) =

dr

R2

The rings “rotate” with angular frequency ω, or period T = 2π/ω. The effective (differential) current for each ring is then

dq

qrω

di =

=

dr. 

T

πR2
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Each ring contributes to the magnetic moment, and we can glue all of this together as

Z

µ

=

dµ, 

Z

=

πr2 di, 

Z

R qr3ω

=

dr, 

0

R2

qR2ω

=

. 

4

P35-2

(a) The sphere can be sliced into disks. The disks can be sliced into rings. Each ring has

some charge qi, radius ri, and mass mi; the period of rotation for a ring is T = 2π/ω, so the current in the ring is qi/T = ωqi/2π. The magnetic moment is

µi = (ωqi/2π)πr2 = ωq

/2. 

i

ir2

i

Note that this is closely related to the expression for angular momentum of a ring: li = ωmir2. 

i

Equating, 

µi = qili/2mi. 

If both mass density and charge density are uniform then we can write qi/mi = q/m, 

Z

Z

µ =

dµ = (q/2m)

dl = qL/2m

For a solid sphere L = ωI = 2ωmR2/5, so

µ = qωR2/5. 

(b) See part (a)

P35-3

(a) The orbital speed is given by K = mv2/2. The orbital radius is given by mv = qBr, or

r = mv/qB. The frequency of revolution is f = v/2πr. The effective current is i = qf . Combining

all of the above to find the dipole moment, 

v

vr

mv2

K

µ = iA = q

πr2 = q

= q

=

. 

2πr

2

2qB

B

(b) Since q and m cancel out of the above expression the answer is the same! 

(c) Work it out:

µ

(5.28×1021/m3)(6.21×10−20 J)

(5.28×1021/m3)(7.58×10−21 J)

M =

=

+

= 312 A/m. 

V

(1.18 T)

(1.18 T)

P35-4

(b) Point the thumb or your right hand to the right. Your fingers curl in the direction of

the current in the wire loop. 

(c) In the vicinity of the wire of the loop ~

B has a component which is directed radially outward. 

Then ~

B × d~s has a component directed to the left. Hence, the net force is directed to the left. 

P35-5

(b) Point the thumb or your right hand to the left. Your fingers curl in the direction of the

current in the wire loop. 

(c) In the vicinity of the wire of the loop ~

B has a component which is directed radially outward. 

Then ~

B × d~s has a component directed to the right. Hence, the net force is directed to the right. 
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P35-6

(a) Let x = µB/kT . Adopt the convention that N+ refers to the atoms which have parallel

alignment and N− those which are anti-parallel. Then N+ + N− = N , so

N+ = N ex/(ex + e−x), 

and

N− = N e−x/(ex + e−x), 

Note that the denominators are necessary so that N+ + N− = N . Finally, 

ex − e−x

M = µ(N+ − N−) = µN

. 

ex + e−x

(b) If µB  kT then x is very small and e±x ≈ 1 ± x. The above expression reduces to

(1 + x) − (1 − x)

µ2B

M = µN

= µN x =

. 

(1 + x) + (1 − x)

kT

(c) If µB  kT then x is very large and e±x → ∞ while e−x → 0. The above expression reduces

to

N = µN. 

P35-7

(a) Centripetal acceleration is given by a = rω2. Then

a − a0

=

r(ω0 + ∆ω)2 − rω2, 

0

=

2rω0∆ω + r(∆ω0)2, 

≈ 2rω0∆ω. 

(b) The change in centripetal acceleration is caused by the additional magnetic force, which has

magnitude FB = qvB = erωB. Then

a − a0

eB

∆ω =

=

. 

2rω0

2m

Note that we boldly canceled ω against ω0 in this last expression; we are assuming that ∆ω is small, 

and for these problems it is. 

P35-8

(a) i = µ/A = (8.0×1022J/T)/π(6.37×106m)2 = 6.3×108A. 

(b) Far enough away both fields act like perfect dipoles, and can then cancel. 

(c) Close enough neither field acts like a perfect dipole and the fields will not cancel. 

√

P35-9

(a) B =

B 2

2

h

+ Bv , so

µ

q

q

0µ

µ0µ

B =

cos2 Lm + 4 sin2 Lm =

1 + 3 sin2 Lm. 

4πr3

4πr3

(b) tan φi = Bv/Bh = 2 sin Lm/ cos Lm = 2 tan Lm. 
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E36-1

The important relationship is Eq. 36-4, written as

iL

(5.0 mA)(8.0 mH)

ΦB =

=

= 1.0×10−7Wb

N

(400)

E36-2

(a) Φ = (34)(2.62×10−3T)π(0.103 m)2 = 2.97×10−3Wb. 

(b) L = Φ/i = (2.97×10−3Wb)/(3.77 A) = 7.88×10−4H. 

E36-3

n = 1/d, where d is the diameter of the wire. Then

L

µ0A

(4π ×10−7H/m)(π/4)(4.10×10−2m)2

= µ0n2A =

=

= 2.61×10−4H/m. 

l

d2

(2.52×10−3m)2

E36-4

(a) The emf supports the current, so the current must be decreasing. 

(b) L = E/(di/dt) = (17 V)/(25×103A/s) = 6.8×10−4H. 

E36-5

(a) Eq. 36-1 can be used to find the inductance of the coil. 

EL

(3.0 mV)

L =

=

= 6.0×10−4H. 

di/dt

(5.0 A/s)

(b) Eq. 36-4 can then be used to find the number of turns in the coil. 

iL

(8.0 A)(6.0×10−4H)

N =

=

= 120

ΦB

(40µWb)

E36-6

Use the equation between Eqs. 36-9 and 36-10. 

(4π ×10−7H/m)(0.81 A)(536)(5.2×10−2m)

(5.2×10−2m) + (15.3×10−2m)

ΦB

=

ln

, 

2π

(15.3×10−2m)

=

1.32×10−6Wb. 

E36-7

L = κmµ0n2Al = κmµ0N 2A/l, or

L = (968)(4π ×10−7H/m)(1870)2(π/4)(5.45×10−2m)2/(1.26 m) = 7.88 H. 

E36-8

In each case apply E = L∆i/∆t. 

(a) E = (4.6 H)(7 A)/(2×10−3s) = 1.6×104V. 

(b) E = (4.6 H)(2 A)/(3×10−3s) = 3.1×103V. 

(c) E = (4.6 H)(5 A)/(1×10−3s) = 2.3×104V. 

E36-9

(a) If two inductors are connected in parallel then the current through each inductor will

add to the total current through the circuit, i = i1 + i2, Take the derivative of the current with

respect to time and then di/dt = di1/dt + di2/dt, 

The potential difference across each inductor is the same, so if we divide by E and apply we get

di/dt

di1/dt

di2/dt

=

+

, 

E

E

E

But

di/dt

1

=

, 

E

L
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so the previous expression can also be written as

1

1

1

=

+

. 

Leq

L1

L2

(b) If the inductors are close enough together then the magnetic field from one coil will induce

currents in the other coil. Then we will need to consider mutual induction effects, but that is a topic not covered in this text. 

E36-10

(a) If two inductors are connected in series then the emf across each inductor will add to

the total emf across both, E = E1 + E2, 

Then the current through each inductor is the same, so if we divide by di/dt and apply we get

E

E1

E2

=

+

, 

di/dt

di/dt

di/dt

But

E

= L, 

di/dt

so the previous expression can also be written as

Leq = L1 + L2. 

(b) If the inductors are close enough together then the magnetic field from one coil will induce

currents in the other coil. Then we will need to consider mutual induction effects, but that is a topic not covered in this text. 

E36-11

Use Eq. 36-17, but rearrange:

t

(1.50 s)

τL =

=

= 0.317 s. 

ln[i0/i]

ln[(1.16 A)/(10.2×10−3A)]

Then R = L/τL = (9.44 H)/(0.317 s) = 29.8 Ω. 

E36-12

(a) There is no current through the resistor, so ER = 0 and then EL = E. 

(b) EL = Ee−2 = (0.135)E. 

(c) n = − ln(EL/E) = −ln(1/2) = 0.693. 

E36-13

(a) From Eq. 36-4 we find the inductance to be

N ΦB

(26.2×10−3Wb)

L =

=

= 4.78×10−3H. 

i

(5.48 A)

Note that ΦB is the flux, while the quantity N ΦB is the number of flux linkages. 

(b) We can find the time constant from Eq. 36-14, 

τL = L/R = (4.78×10−3H)/(0.745 Ω) = 6.42×10−3 s. 

The we can invert Eq. 36-13 to get



Ri(t) 

t

=

−τL ln 1 −

, 

E



(0.745 A)(2.53 A) 

=

−(6.42×10−3 s) ln 1 −

= 2.42×10−3 s. 

(6.00 V)
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E36-14

(a) Rearrange:

di

E = iR + L

, 

dt

E

L di

− i =

, 

R

R dt

R

di

dt

=

. 

L

E/R − i

(b) Integrate:

Z

t R

Z

i

di

−

dt

=

, 

0

L

0

i − E/R

R

i + E/R

− t = ln

, 

L

E/R

E e−t/τL = i + E/R, 

R

E 



1 − e−t/τL

=

i. 

R

E36-15

di/dt = (5.0 A/s). Then

di

E = iR + L

= (3.0 A)(4.0 Ω) + (5.0 A/s)t(4.0 Ω) + (6.0 H)(5.0 A/s) = 42 V + (20 V/s)t. 

dt

E36-16

(1/3) = (1 − e−t/τL), so

t

(5.22 s)

τL = −

= −

= 12.9 s. 

ln(2/3)

ln(2/3)

E36-17

We want to take the derivative of the current in Eq. 36-13 with respect to time, 

di

E 1

E

=

e−t/τL =

e−t/τL . 

dt

R τL

L

Then τL = (5.0×10−2H)/(180 Ω) = 2.78×10−4s. Using this we find the rate of change in the current

when t = 1.2 ms to be

di

(45 V)

=

e−(1.2×10−3s)/(2.78×10−4s) = 12 A/s. 

dt

((5.0×10−2H)

E36-18

(b) Consider some time ti:

EL(ti) = Ee−ti/τL. 

Taking a ratio for two different times, 

EL(t1) = e(t2−t1)/τL, 

EL(t2)

or

t2 − t1

(2 ms) − (1 ms)

τL =

=

= 3.58 ms

ln[EL(t1)/EL(t2)]

ln[(18.24 V)/(13.8 V)]

(a) Choose any time, and

E = ELet/τL = (18.24 V)e(1 ms)/(3.58 ms) = 24 V. 

138

E36-19

(a) When the switch is just closed there is no current through the inductor. So i1 = i2 is

given by

E

(100 V)

i1 =

=

= 3.33 A. 

R1 + R2

(10 Ω) + (20 Ω)

(b) A long time later there is current through the inductor, but it is as if the inductor has no

effect on the circuit. Then the effective resistance of the circuit is found by first finding the equivalent resistance of the parallel part

1/(30 Ω) + 1/(20 Ω) = 1/(12 Ω), 

and then finding the equivalent resistance of the circuit

(10 Ω) + (12 Ω) = 22 Ω. 

Finally, i1 = (100 V)/(22 Ω) = 4.55 A and

∆V2 = (100 V) − (4.55 A)(10 Ω) = 54.5 V; 

consequently, i2 = (54.5 V)/(20 Ω) = 2.73 A. It didn’t ask, but i2 = (4.55 A) − (2.73 A) = 1.82 A. 

(c) After the switch is just opened the current through the battery stops, while that through the

inductor continues on. Then i2 = i3 = 1.82 A. 

(d) All go to zero. 

E36-20

(a) For toroids L = µ0N 2h ln(b/a)/2π. The number of turns is limited by the inner radius:

N d = 2πa. In this case, 

N = 2π(0.10 m)/(0.00096 m) = 654. 

The inductance is then

(4π ×10−7H/m)(654)2(0.02 m)

(0.12 m)

L =

ln

= 3.1×10−4H. 

2π

(0.10 m)

(b) Each turn has a length of 4(0.02 m) = 0.08 m. The resistance is then

R = N (0.08 m)(0.021 Ω/m) = 1.10 Ω

The time constant is

τL = L/R = (3.1×10−4H)/(1.10 Ω) = 2.8×10−4s. 

E36-21

(I) When the switch is just closed there is no current through the inductor or R2, so the

potential difference across the inductor must be 10 V. The potential difference across R1 is always

10 V when the switch is closed, regardless of the amount of time elapsed since closing. 

(a) i1 = (10 V)/(5.0 Ω) = 2.0 A. 

(b) Zero; read the above paragraph. 

(c) The current through the switch is the sum of the above two currents, or 2.0 A. 

(d) Zero, since the current through R2 is zero. 

(e) 10 V, since the potential across R2 is zero. 

(f) Look at the results of Exercise 36-17. When t = 0 the rate of change of the current is

di/dt = E/L. Then

di/dt = (10 V)/(5.0 H) = 2.0 A/s. 

(II) After the switch has been closed for a long period of time the currents are stable and the

inductor no longer has an effect on the circuit. Then the circuit is a simple two resistor parallel

network, each resistor has a potential difference of 10 V across it. 
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(a) Still 2.0 A; nothing has changed. 

(b) i2 = (10 V)/(10 Ω) = 1.0 A. 

(c) Add the two currents and the current through the switch will be 3.0 A. 

(d) 10 V; see the above discussion. 

(e) Zero, since the current is no longer changing. 

(f) Zero, since the current is no longer changing. 

E36-22

U = (71 J/m3)(0.022 m3) = 1.56 J. Then using U = i2L/2 we get

p

p

i =

2U/L =

2(1.56 J)/(0.092 H) = 5.8 A. 

E36-23

(a) L = 2U/i2 = 2(0.0253 J)/(0.062 A)2 = 13.2 H. 

(b) Since the current is squared in the energy expression, doubling the current would quadruple

the energy. Then i0 = 2i0 = 2(0.062 A) = 0.124 A. 

E36-24

(a) B = µ0in and u = B2/2µ0, or

u = µ0i2n2/2 = (4π×10−7N/A2)(6.57 A)2(950/0.853 m)2/2 = 33.6 J/m3. 

(b) U = uAL = (33.6 J/m3)(17.2×10−4m2)(0.853 m) = 4.93×10−2J. 

E36-25

uB = B2/2µ0, and from Sample Problem 33-2 we know B, hence

(12.6 T)2

uB =

= 6.32×107J/m3. 

2(4π ×10−7N/A2)

E36-26

(a) uB = B2/2µ0, so

(100×10−12T)2

1

uB =

= 2.5×10−2 eV/cm3. 

2(4π ×10−7N/A2) (1.6×10−19J/eV)

(b) x = (10)(9.46×1015m) = 9.46×1016m. Using the results from part (a) expressed in J/m3 we

find the energy contained is

U = (3.98×10−15J/m3)(9.46×1016m)3 = 3.4×1036J

E36-27

The energy density of an electric field is given by Eq. 36-23; that of a magnetic field is

given by Eq. 36-22. Equating, 

0

1

E2

=

B2, 

2

2µ0

B

E

=

√

. 

0µ0

The answer is then

p

E = (0.50 T)/

(8.85×10−12C2/N · m2)(4π×10−7N/A2) = 1.5×108 V/m. 

E36-28

The rate of internal energy increase in the resistor is given by P = i∆VR. The rate of

energy storage in the inductor is dU/dt = Li di/dt = i∆VL. Since the current is the same through

both we want to find the time when ∆VR = ∆VL. Using Eq. 36-15 we find

1 − e−t/τL

=

e−t/τL , 

ln 2

=

t/τL, 

so t = (37.5 ms) ln 2 = 26.0 ms. 
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E36-29

(a) Start with Eq. 36-13:

i

=

E(1 − e−t/τL)/R, 

iR

1 −

=

e−t/τL , 

E

−t

τL

=

, 

ln(1 − iR/E)

−(5.20×10−3s)

=

, 

ln[1 − (1.96×10−3A)(10.4×103Ω)/(55.0 V)]

=

1.12×10−2s. 

Then L = τLR = (1.12×10−2s)(10.4×103Ω) = 116 H. 

(b) U = (1/2)(116 H)(1.96×10−3A)2 = 2.23×10−4J. 

E36-30

(a) U = E∆q; q = R idt. 

Z

E 



U

=

E

1 − e−t/τL dt, 

R

E2 

2

=

t + τLe−t/τL

, 

R

0

E2

E2L

=

t +

(e−t/τL − 1). 

R

R2

Using the numbers provided, 

τL = (5.48 H)/(7.34 Ω) = 0.7466 s. 

Then

(12.2 V)2 h

i

U =

(2 s) + (0.7466 s)(e−(2 s)/0.7466 s) − 1) = 26.4 J

(7.34 Ω)

(b) The energy stored in the inductor is UL = Li2/2, or

LE2 Z 

2

UL

=

1 − e−t/τL

dt, 

2R2

=

6.57 J. 

(c) UR = U − UL = 19.8 J. 

E36-31

This shell has a volume of

4π

V =

(R

3

E + a)3 − RE

. 

3

Since a << RE we can expand the polynomials but keep only the terms which are linear in a. Then V ≈ 4πR 2

E a = 4π(6.37×106m)2(1.6×104m) = 8.2×1018m3. 

The magnetic energy density is found from Eq. 36-22, 

1

(60×10−6 T)2

uB =

B2 =

= 1.43×10−3J/m3. 

2µ0

2(4π ×10−7N/A2)

The total energy is then (1.43×10−3J/m3)(8.2eex18m3) = 1.2×1016J. 
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E36-32

(a) B = µ0i/2πr and uB = B2/2µ0 = µ0i2/8π2r2, or

uB = (4π×10−7H/m)(10 A)2/8π2(1.25×10−3m)2 = 1.0 J/m3. 

(b) E = ∆V /l = iR/l and uE = 0E2/2 = 0i2(R/l)2/2. Then

uE = (8.85×10−12F/m)(10 A)2(3.3×10−3Ω/m)2/2 = 4.8×10−15J/m3. 

E36-33

i = p2U/L = p2(11.2×10−6J)/(1.48×10−3H) = 0.123 A. 

E36-34

C = q2/2U = (1.63×10−6C)2/2(142×10−6J) = 9.36×10−9F. 

√

E36-35

1/2πf =

LC so L = 1/4π2f 2C, or

L = 1/4π2(10×103Hz)2(6.7×10−6F) = 3.8×10−5H. 

E36-36

q

2

2

max /2C = Limax /2, or

√

p

imax = qmax/ LC = (2.94×10−6C)/ (1.13×10−3H)(3.88×10−6F) = 4.44×10−2A. 

E36-37

Closing a switch has the effect of “shorting” out the relevant circuit element, which

effectively removes it from the circuit. If S1 is closed we have τC = RC or C = τC /R, if instead S2

is closed we have τL = L/R or L = RτL, but if instead S3 is closed we have a LC circuit which will

oscillate with period

2π

√

T =

= 2π LC. 

ω

Substituting from the expressions above, 

2π

√

T =

= 2π τLτC . 

ω

E36-38

The capacitors can be used individually, or in series, or in parallel. The four possible

capacitances are then 2.00µF, 5.00µF, 2.00µF + 5.00µF = 7.00µF, and (2.00µF )(5.00µF)(2.00µF +

5.00µF) = 1.43µF. The possible resonant frequencies are then

r

1

1

=

f, 

2π

LC

s

1

1

=

1330 Hz, 

2π

(10.0 mH)(1.43µF )

s

1

1

=

1130 Hz, 

2π

(10.0 mH)(2.00µF )

s

1

1

=

712 Hz, 

2π

(10.0 mH)(5.00µF )

s

1

1

=

602 Hz. 

2π

(10.0 mH)(7.00µF )
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E36-39

(a) k = (8.13 N)/(0.0021 m) = 3.87×103N/m. ω = pk/m = p(3870 N/m)/(0.485 kg) =

89.3 rad/s. 

(b) T = 2π/ω = 2π/(89.3 rad/s) = 7.03×10−2s. 

(c) LC = 1/ω2, so

C = 1/(89.3 rad/s)2(5.20 H) = 2.41×10−5F. 

√

E36-40

The period of oscillation is T = 2π LC = 2πp(52.2mH)(4.21µF) = 2.95 ms. It requires

one-quarter period for the capacitor to charge, or 0.736 ms. 

E36-41

(a) An LC circuit oscillates so that the energy is converted from all magnetic to all

electrical twice each cycle. It occurs twice because once the energy is magnetic with the current

flowing in one direction through the inductor, and later the energy is magnetic with the current

flowing the other direction through the inductor. 

The period is then four times 1.52µs, or 6.08µs. 

(b) The frequency is the reciprocal of the period, or 164000 Hz. 

(c) Since it occurs twice during each oscillation it is equal to half a period, or 3.04µs. 

E36-42

(a) q = C∆V = (1.13×10−9F)(2.87 V) = 3.24×10−9C. 

(c) U = q2/2C = (3.24×10−9C)2/2(1.13×10−9F) = 4.64×10−9J. 

(b) i = p2U/L = p2(4.64×10−9J)/(3.17×10−3H) = 1.71×10−3A. 

E36-43

(a) im = qmω and qm = CV m. Multiplying the second expression by L we get Lqm =

V m/ω2. Combining, Limω = V m. Then

ω

(50 V)

f =

=

= 6.1×103/s. 

2π

2π(0.042 H)(0.031 A)

(b) See (a) above. 

(c) C = 1/ω2L = 1/(2π6.1×103/s)2(0.042 H) = 1.6×10−8F. 

√

E36-44

(a) f = 1/2π LC = 1/2πp(6.2×10−6F)(54×10−3H) = 275 Hz. 

(b) Note that from Eq. 36-32 we can deduce imax = ωqmax. The capacitor starts with a charge

q = C∆V = (6.2×10−6F)(34 V) = 2.11×10−4C. Then the current amplitude is

√

p

imax = qmax/ LC = (2.11×10−4C)/ (6.2×10−6F)(54×10−3H) = 0.365 A. 

√

E36-45

(a) ω = 1/ LC = 1/p(10×10−6F)(3.0×10−3H) = 5800 rad/s. 

(b) T = 2π/ω = 2π/(5800 rad/s) = 1.1×10−3s. 

E36-46

f = (2×105Hz)(1 + θ/180◦). C = 4π2/f 2L, so

4π2

(9.9×10−7F)

C =

=

. 

(2×105Hz)2(1 + θ/180◦)2(1 mH)

(1 + θ/180◦)2

√

E36-47

(a) UE = UB/2 and UE + UB = U , so 3UE = U , or 3(q2/2C) = q2

/2C, so q = q

3. 

max

max/

(b) Solve q = qmax cos ωt, or

T

√

t =

arccos 1/ 3 = 0.152T. 

2π
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E36-48

(a) Add the contribution from the inductor and the capacitor, 

(24.8×10−3H)(9.16×10−3A)2

(3.83×10−6C)2

U =

+

= 1.99×10−6J. 

2

2(7.73×10−6F)

(b) qm = p2(7.73×10−6F)(1.99×10−6J) = 5.55×10−6C. 

(c) im = p2(1.99×10−6J)/(24.8×10−3H) = 1.27×10−2A. 

√

E36-49

(a) The frequency of such a system is given by Eq. 36-26, f = 1/2π LC. Note that

maximum frequency occurs with minimum capacitance. Then

s

f

r

1

C2

(365 pF)

=

=

= 6.04. 

f2

C1

(10 pF)

(b) The desired ratio is 1.60/0.54 = 2.96 Adding a capacitor in parallel will result in an effective

capacitance given by

C1,eff = C1 + Cadd, 

with a similar expression for C2. We want to choose Cadd so that

s

f1

C2,eff

=

= 2.96. 

f2

C1,eff

Solving, 

C2,eff

=

C1,eff (2.96)2, 

C2 + Cadd

=

(C1 + Cadd)8.76, 

C2 − 8.76C1

Cadd

=

, 

7.76

(365 pF) − 8.76(10 pF)

=

= 36 pF. 

7.76

The necessary inductance is then

1

1

L =

=

= 2.2×10−4H. 

4π2f 2C

4π2(0.54×106Hz)2(401×10−12F)

E36-50

The key here is that UE = C(∆V )2/2. We want to charge a capacitor with one-ninth the

capacitance to have three times the potential difference. Since 32 = 9, it is reasonable to assume

that we want to take all of the energy from the first capacitor and give it to the second. Closing

S1 and S2 will not work, because the energy will be shared. Instead, close S2 until the capacitor

has completely discharged into the inductor, then simultaneously open S2 while closing S1. The

inductor will then discharge into the second capacitor. Open S1 when it is “full”. 

√

E36-51

(a) ω = 1/ LC. 

im

p

qm =

= (2.0 A)

(3.0×10−3H)(2.7×10−6F) = 1.80×10−4C

ω

(b) dUC /dt = qi/C. Since q = qm sin ωt and i = im cos ωt then dUC /dt is a maximum when

sin ωt cos ωt is a maximum, or when sin 2ωt is a maximum. This happens when 2ωt = π/2, or

t = T /8. 

(c) dUC /dt = qmim/2C, or

dUC /dt = (1.80×10−4C)(2.0 A)/2(2.7×10−6F) = 67 W. 
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E36-52

After only complete cycles q = qmaxe−Rt/2L. Not only that, but t = N τ , where τ = 2π/ω0. 

Finally, ω0 = p(1/LC) − (R/2L)2. Since the first term under the square root is so much larger than

√

the second, we can ignore the effect of damping on the frequency, and simply use ω0 ≈ ω = 1/ LC. 

Then

√

√

q = q

LC/L

C/L

maxe−N Rτ /2L = qmaxe−N πR

= qmaxe−NπR

. 

Finally, πRpC/L = π(7.22 Ω)p(3.18 µF)/(12.3 H) = 1.15×10−2. Then

N = 5

:

q = (6.31µC)e−5(0.0115) = 5.96µC, 

N = 5

:

q = (6.31µC)e−10(0.0115) = 5.62µC, 

N = 5

:

q = (6.31µC)e−100(0.0115) = 1.99µC. 

E36-53

Use Eq. 36-40, and since U ∝ q2, we want to solve e−Rt/L = 1/2, then

L

t =

ln 2. 

R

E36-54

Start by assuming that the presence of the resistance does not significantly change the

√

frequency. Then ω = 1/ LC, q = qmaxe−Rt/2L, t = N τ , and τ = 2π/ω. Combining, 

√

√

q = q

LC/L

C/L

maxe−N Rτ /2L = qmaxe−N πR

= qmaxe−NπR

. 

Then

pL/C

p(220mH)/(12µF)

R = −

ln(q/qmax) = −

ln(0.99) = 8700 Ω. 

N π

(50)π

It remains to be verified that 1/LC  (R/2L)2. 

E36-55

The damped (angular) frequency is given by Eq. 36-41; the fractional change would then

be

ω − ω0 = 1 − p1 − (R/2Lω)2 = 1 − p1 − (R2C/4L). 

ω

Setting this equal to 0.01% and then solving for R, 

r

s

4L

4(12.6×10−3H)

R =

(1 − (1 − 0.0001)2) =

(1.9999×10−4) = 2.96 Ω. 

C

(1.15×10−6F)

P36-1

The inductance of a toroid is

µ0N 2h

b

L =

ln

. 

2π

a

If the toroid is very large and thin then we can write b = a + δ, where δ << a. The natural log then can be approximated as

b



δ 

δ

ln

= ln

1 +

≈ . 

a

a

a

The product of δ and h is the cross sectional area of the toroid, while 2πa is the circumference, 

which we will call l. The inductance of the toroid then reduces to

µ0N 2 δ

µ0N 2A

L ≈

=

. 

2π

a

l

But N is the number of turns, which can also be written as N = nl, where n is the turns per unit

length. Substitute this in and we arrive at Eq. 36-7. 
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P36-2

(a) Since ni is the net current per unit length and is this case i/W , we can simply write

B = µ0i/W . 

(b) There is only one loop of wire, so

L = φB/i = BA/i = µ0iπR2/W i = µ0πR2/W. 

P36-3

Choose the y axis so that it is parallel to the wires and directly between them. The field

in the plane between the wires is

µ





0i

1

1

B =

+

. 

2π

d/2 + x

d/2 − x

The flux per length l of the wires is

Z

d/2−a

µ

Z

d/2−a 



0i

1

1

ΦB

=

l

B dx = l

+

dx, 

−d/2+a

2π

−d/2+a

d/2 + x

d/2 − x

µ

Z

d/2−a 



0i

1

=

2l

dx, 

2π

−d/2+a

d/2 + x

µ0i

d − a

=

2l

ln

. 

2π

a

The inductance is then

φB

µ0l

d − a

L =

=

ln

. 

i

π

a

P36-4

(a) Choose the y axis so that it is parallel to the wires and directly between them. The

field in the plane between the wires is

µ





0i

1

1

B =

+

. 

2π

d/2 + x

d/2 − x

The flux per length l between the wires is

Z

d/2−a

µ

Z

d/2−a 



0i

1

1

Φ1

=

B dx =

+

dx, 

−d/2+a

2π

−d/2+a

d/2 + x

d/2 − x

µ

Z

d/2−a 



0i

1

=

2

dx, 

2π

−d/2+a

d/2 + x

µ0i

d − a

=

2

ln

. 

2π

a

The field in the plane inside one of the wires, but still between the centers is

µ





0i

1

d/2 − x

B =

+

. 

2π

d/2 + x

a2

The additional flux is then

Z

d/2

µ

Z

d/2





0i

1

d/2 − x

Φ2

=

2

B dx = 2

+

dx, 

d/2−a

2π

d/2−a

d/2 + x

a2

µ





0i

d

1

=

2

ln

+

. 

2π

d − a

2
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The flux per meter between the axes of the wire is the sum, or

µ





0i

d

1

ΦB

=

ln

+

, 

π

a

2

(4π ×10−7H/m)(11.3 A) 

(21.8, mm)

1 

=

ln

+

, 

π

(1.3 mm)

2

=

1.5×10−5Wb/m. 

(b) The fraction f inside the wires is



d

1  

d

1 

f

=

ln

+

/

ln

+

, 

d − a

2

a

2



(21.8, mm)

1   (21.8, mm)

1 

=

+

/

+

, 

(21.8, mm) − (1.3 mm)

2

(1.3 mm)

2

=

0.09. 

(c) The net flux is zero for parallel currents. 

P36-5

The magnetic field in the region between the conductors of a coaxial cable is given by

µ0i

B =

, 

2πr

so the flux through an area of length l, width b − a, and perpendicular to ~

B is

Z

Z

Φ

~

B

=

B · d ~

A =

B dA, 

Z

b Z l µ0i

=

dz dr, 

a

0

2πr

µ0il

b

=

ln

. 

2π

a

We evaluated this integral is cylindrical coordinates: dA = (dr)(dz). As you have been warned so

many times before, learn these differentials! 

The inductance is then

ΦB

µ0l

b

L =

=

ln

. 

i

2π

a

P36-6

(a) So long as the fuse is not blown there is effectively no resistance in the circuit. Then

the equation for the current is E = L di/dt, but since E is constant, this has a solution i = Et/L. 

The fuse blows when t = imaxL/E = (3.0 A)(5.0 H)/(10 V) = 1.5 s. 

(b) Note that once the fuse blows the maximum steady state current is 2/3 A, so there must be

an exponential approach to that current. 

P36-7

The initial rate of increase is di/dt = E/L. Since the steady state current is E/R, the

current will reach the steady state value in a time given by E/R = i = Et/L, or t = L/R. But that’s

τL. 

P36-8

(a) U = 1 Li2 = (152 H)(32 A)2/2 = 7.8×104J. 

2

(b) If the coil develops at finite resistance then all of the energy in the field will be dissipated as heat. The mass of Helium that will boil off is

m = Q/Lv = (7.8×104J)/(85 J/mol)/(4.00g/mol) = 3.7 kg. 
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P36-9

(a) B = (µ0N i)/(2πr), so

B2

µ0N 2i2

u =

=

. 

2µ0

8π2r2

(b) U = R u dV = R urdr dθ dz. The field inside the toroid is uniform in z and θ, so

Z

b µ0N2i2

U

=

2πh

r dr, 

a

8π2r2

hµ0N 2i2

b

=

ln

. 

4π

a

(c) The answers are the same! 

P36-10

The energy in the inductor is originally U = Li2/2. The internal energy in the resistor

0

increases at a rate P = i2R. Then

Z

∞

Z

∞

Ri2τL

Li2

P dt = R

i2e−2t/τL dt =

0

=

0 . 

0

0

0

2

2

P36-11

(a) In Chapter 33 we found the magnetic field inside a wire carrying a uniform current

density is

µ0ir

B =

. 

2πR2

The magnetic energy density in this wire is

1

µ0i2r2

uB =

B2 =

. 

2µ0

8π2R4

We want to integrate in cylindrical coordinates over the volume of the wire. Then the volume

element is dV = (dr)(r dθ)(dz), so

Z

UB

=

uBdV, 

Z

R Z l Z 2π µ0i2r2

=

dθ dz rdr, 

0

0

0

8π2R4

µ

Z

R

0i2l

=

r3 dr, 

4πR4

0

µ0i2l

=

. 

16π

(b) Solve

L

UB =

i2

2

for L, and

2UB

µ0l

L =

=

. 

i2

8π

P36-12

1/C = 1/C1 + 1/C2 and L = L1 + L2. Then

s

1

√

r

C1C2

C2/ω2 + C1/ω2

1

=

LC =

(L

0

0

1 + L2)

=

=

. 

ω

C1 + C2

C1 + C2

ω0
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P36-13

(a) There is no current in the middle inductor; the loop equation becomes

d2q

q

d2q

q

L

+

+ L

+

= 0. 

dt2

C

dt2

C

Try q = qm cos ωt as a solution:

1

1

−Lω2 +

− Lω2 +

= 0; 

C

C

√

which requires ω = 1/ LC. 

(b) Look at only the left hand loop; the loop equation becomes

d2q

q

d2q

L

+

+ 2L

= 0. 

dt2

C

dt2

Try q = qm cos ωt as a solution:

1

−Lω2 +

− 2Lω2 = 0; 

C

√

which requires ω = 1/ 3LC. 

P36-14

(b) (ω0 − ω)/ω is the fractional shift; this can also be written as

ω0

p

=

1 − (LC)(R/2L)2 − 1, 

ω − 1

p

=

1 − R2C/4L − 1, 

s

(100 Ω)2(7.3×10−6F)

=

1 −

− 1 = −2.1×10−3. 

4(4.4 H)

P36-15

We start by focusing on the charge on the capacitor, given by Eq. 36-40 as

q = qme−Rt/2L cos(ω0t + φ). 

After one oscillation the cosine term has returned to the original value but the exponential term has attenuated the charge on the capacitor according to

q = qme−RT/2L, 

where T is the period. The fractional energy loss on the capacitor is then

U0 − U

q2

= 1 −

= 1 − e−RT/L. 

U0

q2m

For small enough damping we can expand the exponent. Not only that, but T = 2π/ω, so

∆U ≈ 2πR/ωL. 

U
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P36-16

We are given 1/2 = e−t/2τL when t = 2πn/ω0. Then

2πn

2πn

πnR

ω0 =

=

=

. 

t

2(L/R) ln 2

L ln 2

From Eq. 36-41, 

ω2 − ω02

=

(R/2L)2, 

(ω − ω0)(ω + ω0) = (R/2L)2, 

(ω − ω0)2ω0

≈ (R/2L)2, 

ω − ω0

(R/2L)2

=

≈

, 

ω

2ω02

(ln 2)2

=

, 

8π2n2

0.0061

=

. 

n2
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E37-1

The frequency, f , is related to the angular frequency ω by

ω = 2πf = 2π(60 Hz) = 377 rad/s

The current is alternating because that is what the generator is designed to produce. It does this

through the configuration of the magnets and coils of wire. One complete turn of the generator will

(could?) produce one “cycle”; hence, the generator is turning 60 times per second. Not only does

this set the frequency, it also sets the emf, since the emf is proportional to the speed at which the coils move through the magnetic field. 

E37-2

(a) XL = ωL, so

f = XL/2πL = (1.28×103Ω)/2π(0.0452 H) = 4.51×103/s. 

(b) XC = 1/ωC, so

C = 1/2πf XC = 1/2π(4.51×103/s)(1.28×103Ω) = 2.76×10−8F. 

(c) The inductive reactance doubles while the capacitive reactance is cut in half. 

√

E37-3

(a) XL = XC implies ωL = 1/ωC or ω = 1/ LC, so

p

ω = 1/

(6.23×10−3H)(11.4×10−6F) = 3750 rad/s. 

(b) XL = ωL = (3750 rad/s)(6.23×10−3H) = 23.4 Ω

(c) See (a) above. 

E37-4

(a) im = E/XL = E/ωL, so

im = (25.0 V)/(377 rad/s)(12.7 H) = 5.22×10−3A. 

(b) The current and emf are 90◦ out of phase. When the current is a maximum, E = 0. 

(c) ωt = arcsin[E(t)/Em], so

(−13.8 V)

ωt = arcsin

= 0.585 rad. 

(25.0 V)

and

i = (5.22×10−3A) cos(0.585) = 4.35×10−3A. 

(d) Taking energy. 

E37-5

(a) The reactance of the capacitor is from Eq. 37-11, XC = 1/ωC. The AC generator

from Exercise 4 has E = (25.0 V) sin(377 rad/s)t. So the reactance is

1

1

XC =

=

= 647 Ω. 

ωC

(377 rad/s)(4.1µF)

The maximum value of the current is found from Eq. 37-13, 

(∆VC )max)

(25.0 V)

im =

=

= 3.86×10−2A. 

XC

(647 Ω)

(b) The generator emf is 90◦ out of phase with the current, so when the current is a maximum

the emf is zero. 
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(c) The emf is -13.8 V when

(−13.8 V)

ωt = arcsin

= 0.585 rad. 

(25.0 V)

The current leads the voltage by 90◦ = π/2, so

i = im sin(ωt − φ) = (3.86×10−2A) sin(0.585 − π/2) = −3.22×10−2A. 

(d) Since both the current and the emf are negative the product is positive and the generator is

supplying energy to the circuit. 

E37-6

R = (ωL − 1/omegaC)/ tan φ and ω = 2πf = 2π(941/s) = 5910 rad/s , so

(5910 rad/s)(88.3×10−3H) − 1/(5910 rad/s)(937×10−9F)

R =

= 91.5 Ω. 

tan(75◦)

E37-7

E37-8

(a) XL doesn’t change, so XL = 87 Ω. 

(b) XC = 1/ωC = 1/2π(60/s)(70×10−6F) = 37.9Ω. 

(c) Z = p(160 Ω)2 + (87 Ω − 37.9 Ω)2 = 167 Ω. 

(d) im = (36 V)/(167 Ω) = 0.216 A. 

(e) tan φ = (87 Ω − 37.9 Ω)/(160 Ω) = 0.3069, so

φ = arctan(0.3069) = 17◦. 

E37-9

A circuit is considered inductive if XL > XC , this happens when im lags Em. If, on the

other hand, XL < XC , and im leads Em, we refer to the circuit as capacitive. This is discussed on page 850, although it is slightly hidden in the text of column one. 

(a) At resonance, XL = XC . Since XL = ωL and XC = 1/ωC we expect that XL grows with

increasing frequency, while XC decreases with increasing frequency. 

Consequently, at frequencies above the resonant frequency XL > XC and the circuit is predomi-

nantly inductive. But what does this really mean? It means that the inductor plays a major role in

the current through the circuit while the capacitor plays a minor role. The more inductive a circuit

is, the less significant any capacitance is on the behavior of the circuit. 

For frequencies below the resonant frequency the reverse is true. 

(b) Right at the resonant frequency the inductive effects are exactly canceled by the capacitive

effects. The impedance is equal to the resistance, and it is (almost) as if neither the capacitor or

inductor are even in the circuit. 

E37-10

The net y component is XC − XL. The net x component is R. The magnitude of the

resultant is

p

Z =

R2 + (XC − XL)2, 

while the phase angle is

−(XC − XL)

tan φ =

. 

R

E37-11

Yes. 

At resonance ω = 1/p(1.2 H)(1.3×10−6F) = 800 rad/s and Z = R. Then im = E/Z =

(10 V)/(9.6 Ω) = 1.04 A, so

[∆VL]m = imXL = (1.08 A)(800 rad/s)(1.2 H) = 1000 V. 
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E37-12

(a) Let O = XL − XC and A = R, then H2 = A2 + O2 = Z2, so

sin φ = (XL − XC)/Z

and

cos φ = R/Z. 

E37-13

(a) The voltage across the generator is the generator emf, so when it is a maximum from

Sample Problem 37-3, it is 36 V. This corresponds to ωt = π/2. 

(b) The current through the circuit is given by i = im sin(ωt − φ). We found in Sample Problem

37-3 that im = 0.196 A and φ = −29.4◦ = 0.513 rad. 

For a resistive load we apply Eq. 37-3, 

∆VR = imR sin(ωt − φ) = (0.196 A)(160Ω) sin((π/2) − (−0.513)) = 27.3 V. 

(c) For a capacitive load we apply Eq. 37-12, 

∆VC = imXC sin(ωt − φ − π/2) = (0.196 A)(177Ω) sin(−(−0.513)) = 17.0 V. 

(d) For an inductive load we apply Eq. 37-7, 

∆VL = imXL sin(ωt − φ + π/2) = (0.196 A)(87Ω) sin(π − (−0.513)) = −8.4 V. 

(e) (27.3 V) + (17.0 V) + (−8.4 V) = 35.9 V. 

E37-14

If circuit 1 and 2 have the same resonant frequency then L1C1 = L2C2. The series

combination for the inductors is

L = L1 + L2, 

The series combination for the capacitors is

1/C = 1/C1 + 1/C2, 

so

C1C2

L1C1C2 + L2C2C1

LC = (L1 + L2)

=

= L1C1, 

C1 + C2

C1 + C2

which is the same as both circuit 1 and 2. 

E37-15

(a) Z = (125 V)/(3.20 A) = 39.1 Ω. 

(b) Let O = XL − XC and A = R, then H2 = A2 + O2 = Z2, so

cos φ = R/Z. 

Using this relation, 

R = (39.1 Ω) cos(56.3◦) = 21.7 Ω. 

(c) If the current leads the emf then the circuit is capacitive. 

E37-16

(a) Integrating over a single cycle, 

1 Z T

1 Z T 1

sin2 ωt dt

=

(1 − cos 2ωt) dt, 

T

0

T

0

2

1

1

=

T =

. 

2T

2

(b) Integrating over a single cycle, 

1 Z T

1 Z T 1

sin ωt cos ωt dt

=

sin 2ωtdt, 

T

0

T

0

2

=

0. 
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E37-17

The resistance would be given by Eq. 37-32, 

P av

(0.10)(746 W)

R =

=

= 177 Ω. 

i

2

rms

(0.650 A)2

This would not be the same as the direct current resistance of the coils of a stopped motor, because

there would be no inductive effects. 

E37-18

Since irms = Erms/Z, then

E2rmsR

P av = i2rmsR =

. 

Z2

E37-19

(a) Z = p(160 Ω)2 + (177 Ω)2 = 239 Ω; then

1 (36 V)2(160 Ω)

P av =

= 1.82 W. 

2

(239 Ω)2

(b) Z = p(160 Ω)2 + (87 Ω)2 = 182 Ω; then

1 (36 V)2(160 Ω)

P av =

= 3.13 W. 

2

(182 Ω)2

E37-20

(a) Z = p(12.2 Ω)2 + (2.30 Ω)2 = 12.4 Ω

(b) P av = (120 V)2(12.2 Ω)/(12.4 Ω)2 = 1140 W. 

(c) irms = (120 V)/(12.4 Ω) = 9.67 A. 

√

E37-21

The rms value of any sinusoidal quantity is related to the maximum value by

2 vrms =

√

vmax. Since this factor of

2 appears in all of the expressions, we can conclude that if the rms values

are equal then so are the maximum values. This means that

(∆VR)max = (∆VC )max = (∆VL)max

or imR = imXC = imXL or, with one last simplification, R = XL = XC . Focus on the right hand

side of the last equality. If XC = XL then we have a resonance condition, and the impedance (see

Eq. 37-20) is a minimum, and is equal to R. Then, according to Eq. 37-21, 

Em

im =

, 

R

which has the immediate consequence that the rms voltage across the resistor is the same as the

rms voltage across the generator. So everything is 100 V. 

√

E37-22

(a) The antenna is “in-tune” when the impedance is a minimum, or ω = 1/ LC. So

p


f = ω/2π = 1/2π

(8.22×10−6H)(0.270×10−12F) = 1.07×108Hz. 

(b) irms = (9.13 µV)/(74.7 Ω) = 1.22×10−7A. 

(c) XC = 1/2πf C, so

VC = iXC = (1.22×10−7A)/2π(1.07×108Hz)(0.270 ×10−12F) = 6.72×10−4V. 
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E37-23

Assuming no inductors or capacitors in the circuit, then the circuit effectively behaves as

a DC circuit. The current through the circuit is i = E/(r + R). The power delivered to R is then

P = i∆V = i2R = E2R/(r + R)2. Evaluate dP/dR and set it equal to zero to find the maximum. 

Then

dP

r − R

0 =

= E2R

, 

dR

(r + R)3

which has the solution r = R. 

E37-24

(a) Since P

2

2

av = im R/2 = E m R/2Z 2, then P av is a maximum when Z is a minimum, and

√

vise-versa. Z is a minimum at resonance, when Z = R and f = 1/2π LC. When Z is a minimum

C = 1/4π2f 2L = 1/4π2(60 Hz)2(60 mH) = 1.2×10−7F. 

(b) Z is a maximum when XC is a maximum, which occurs when C is very small, like zero. 

(c) When XC is a maximum P = 0. When P is a maximum Z = R so

P = (30 V)2/2(5.0 Ω) = 90 W. 

(d) The phase angle is zero for resonance; it is 90◦ for infinite XC or XL. 

(e) The power factor is zero for a system which has no power. The power factor is one for a

system in resonance. 

E37-25

(a) The resistance is R = 15.0 Ω. The inductive reactance is

1

1

XC =

=

= 61.3 Ω. 

ωC

2π(550 s−1)(4.72µF)

The inductive reactance is given by

XL = ωL = 2π(550 s−1)(25.3 mH) = 87.4 Ω. 

The impedance is then

q

Z =

(15.0 Ω)2 + ((87.4 Ω) − (61.3 Ω))2 = 30.1 Ω. 

Finally, the rms current is

Erms

(75.0 V)

irms =

=

= 2.49 A. 

Z

(30.1 Ω)

(b) The rms voltages between any two points is given by

(∆V )rms = irmsZ, 

where Z is not the impedance of the circuit but instead the impedance between the two points in

question. When only one device is between the two points the impedance is equal to the reactance

(or resistance) of that device. 

We’re not going to show all of the work here, but we will put together a nice table for you

Points

Impedance Expression

Impedance Value

(∆V )rms, 

ab

Z = R

Z = 15.0 Ω

37.4 V, 

bc

Z = XC

Z = 61.3 Ω

153 V, 

cd

Z = XL

Z = 87.4 Ω

218 V, 

bd

Z = |XL − XC|

Z = 26.1 Ω

65 V, 

ac

Z = pR2 + X2

Z = 63.1 Ω

157 V, 

C

Note that this last one was ∆Vac, and not ∆Vad, because it is more entertaining. You probably

should use ∆Vad for your homework. 

(c) The average power dissipated from a capacitor or inductor is zero; that of the resistor is

PR = [(∆VR)rms]2/R = (37.4 V)2/(15.0Ω) = 93.3 W. 
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E37-26

(a) The energy stored in the capacitor is a function of the charge on the capacitor; although

the charge does vary with time it varies periodically and at the end of the cycle has returned to the original values. As such, the energy stored in the capacitor doesn’t change from one period to the

next. 

(b) The energy stored in the inductor is a function of the current in the inductor; although the

current does vary with time it varies periodically and at the end of the cycle has returned to the

original values. As such, the energy stored in the inductor doesn’t change from one period to the

next. 

(c) P = Ei = Emim sin(ωt) sin(ωt − φ), so the energy generated in one cycle is

Z

T

Z

T

U

=

P dt = Emim

sin(ωt) sin(ωt − φ)dt, 

0

0

Z

T

=

Emim

sin(ωt) sin(ωt − φ)dt, 

0

T

=

Emim cos φ. 

2

(d) P = i 2

m R sin2(ωt − φ), so the energy dissipated in one cycle is

Z

T

Z

T

U

=

P dt = i 2

m R

sin2(ωt − φ)dt, 

0

0

Z

T

=

i 2

m R

sin2(ωt − φ)dt, 

0

T

=

i 2

m R. 

2

(e) Since cos φ = R/Z and Em/Z = im we can equate the answers for (c) and (d). 

E37-27

Apply Eq. 37-41, 

N s

(780)

∆V s = ∆V p

= (150 V)

= 1.8×103 V. 

N p

(65)

E37-28

(a) Apply Eq. 37-41, 

N s

(10)

∆V s = ∆V p

= (120 V)

= 2.4 V. 

N p

(500)

(b) is = (2.4 V)/(15 Ω) = 0.16 A; 

N s

(10)

ip = is

= (0.16 A)

= 3.2×10−3A. 

N p

(500)

E37-29

The autotransformer could have a primary connected between taps T1 and T2 (200 turns), 

T1 and T3 (1000 turns), and T2 and T3 (800 turns). 

The same possibilities are true for the secondary connections. Ignoring the one-to-one connections

there are 6 choices— three are step up, and three are step down. The step up ratios are 1000/200 = 5, 800/200 = 4, and 1000/800 = 1.25. The step down ratios are the reciprocals of these three values. 
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E37-30

ρ = (1.69×10−8Ω · m)[1 − (4.3×10−3/C◦)(14.6◦C)] = 1.58×10−8Ω · m. The resistance of

the two wires is

ρL

(1.58×10−8Ω · m)2(1.2×103m)

R =

=

= 14.9 Ω. 

A

π(0.9×10−3m)2

P = i2R = (3.8 A)2(14.9 Ω) = 220 W. 

E37-31

The supply current is

√

ip = (0.270 A)(74×103V/ 2)/(220 V) = 64.2 A. 

The potential drop across the supply lines is

∆V = (64.2 A)(0.62 Ω) = 40 V. 

This is the amount by which the supply voltage must be increased. 

E37-32

Use Eq. 37-46:

p

N p/N s =

(1000 Ω)/(10 Ω) = 10. 

P37-1

(a) The emf is a maximum when ωt − π/4 = π/2, so t = 3π/4ω = 3π/4(350 rad/s) =

6.73×10−3s. 

(b) The current is a maximum when ωt − 3π/4 = π/2, so t = 5π/4ω = 5π/4(350 rad/s) =

1.12×10−2s. 

(c) The current lags the emf, so the circuit contains an inductor. 

(d) XL = Em/im and XL = ωL, so

Em

(31.4 V)

L =

=

= 0.144 H. 

imω

(0.622 A)(350 rad/s)

P37-2

(a) The emf is a maximum when ωt − π/4 = π/2, so t = 3π/4ω = 3π/4(350 rad/s) =

6.73×10−3s. 

(b) The current is a maximum when ωt+π/4 = π/2, so t = π/4ω = π/4(350 rad/s) = 2.24×10−3s. 

(c) The current leads the emf, so the circuit contains an capacitor. 

(d) XC = Em/im and XC = 1/ωC, so

im

(0.622 A)

C =

=

= 5.66×10−5F. 

Emω

(31.4 V)(350 rad/s)

P37-3

(a) Since the maximum values for the voltages across the individual devices are propor-

tional to the reactances (or resistances) for devices in series (the constant of proportionality is the maximum current), we have XL = 2R and XC = R. 

From Eq. 37-18, 

XL − XC

2R − R

tan φ =

=

= 1, 

R

R

or φ = 45◦. 

(b) The impedance of the circuit, in terms of the resistive element, is

√

p

p

Z =

R2 + (XL − XC)2 =

R2 + (2R − R)2 =

2 R. 

But Em = imZ, so Z = (34.4 V)/(0.320 A) = 108Ω. Then we can use our previous work to finds that

R = 76Ω. 
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P37-4

When the switch is open the circuit is an LRC circuit. In position 1 the circuit is an RLC

circuit, but the capacitance is equal to the two capacitors of C in parallel, or 2C. In position 2 the circuit is a simple LC circuit with no resistance. 

The impedance when the switch is in position 2 is Z2 = |ωL − 1/ωC|. But

Z2 = (170 V)/(2.82 A) = 60.3 Ω. 

The phase angle when the switch is open is φ0 = 20◦. But

ωL − 1/ωC

Z2

tan φ0 =

=

, 

R

R

so R = (60.3 Ω)/ tan(20◦) = 166 Ω. 

The phase angle when the switch is in position 1 is

ωL − 1/ω2C

tan φ1 =

, 

R

so ωL − 1/ω2C = (166 Ω) tan(10◦) = 29.2 Ω. Equating the ωL part, 

(29.2 Ω) + 1/ω2C

=

(−60.3 Ω) + 1/ωC, 

C

=

1/2(377 rad/s)[(60.3 Ω) + (29.2 Ω)] = 1.48×10−5F. 

Finally, 

(−60.3Ω) + 1/(377 rad/s)(1.48×10−5F)

L =

= 0.315 H. 

(377 rad/s)

P37-5

All three wires have emfs which vary sinusoidally in time; if we choose any two wires the

phase difference will have an absolute value of 120◦. We can then choose any two wires and expect

(by symmetry) to get the same result. We choose 1 and 2. The potential difference is then

V1 − V2 = V m (sin ωt − sin(ωt − 120◦)) . 

We need to add these two sine functions to get just one. We use

1

1

sin α − sin β = 2 sin (α − β) cos (α + β). 

2

2

Then

1

1

V1 − V2

=

2V m sin (120◦) cos (2ωt − 120◦), 

2

2

√3

=

2V m(

) cos(ωt − 60◦), 

2

√

=

3V m sin(ωt + 30◦). 

P37-6

(a) cos φ = cos(−42◦) = 0.74. 

(b) The current leads. 

(c) The circuit is capacitive. 

(d) No. Resonance circuits have a power factor of one. 

(e) There must be at least a capacitor and a resistor. 

(f) P = (75 V)(1.2 A)(0.74)/2 = 33 W. 
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√

P37-7

(a) ω = 1/ LC = 1/p(0.988 H)(19.3×10−6F) = 229 rad/s. 

(b) im = (31.3 V)/(5.12 Ω) = 6.11 A. 

(c) The current amplitude will be halved when the impedance is doubled, or when Z = 2R. This

occurs when 3R2 = (ωL − 1/ωC)2, or

3R2ω2 = ω4L2 − 2ω2L/C + 1/C2. 

The solution to this quadratic is

√

2L + 3CR2 ±

9C2R4 + 12CR2L

ω2 =

, 

2L2C

so ω1 = 224.6 rad/s and ω2 = 233.5 rad/s. 

(d) ∆ω/ω = (8.9 rad/s)/(229 rad/s) = 0.039. 

P37-8

(a) The current amplitude will be halved when the impedance is doubled, or when Z = 2R. 

This occurs when 3R2 = (ωL − 1/ωC)2, or

3R2ω2 = ω4L2 − 2ω2L/C + 1/C2. 

The solution to this quadratic is

√

2L + 3CR2 ±

9C2R4 + 12CR2L

ω2 =

, 

2L2C

Note that ∆ω = ω+ − ω−; with a wee bit of algebra, 

∆ω(ω+ + ω−) = ω2+ − ω2−. 

Also, ω+ + ω− ≈ 2ω. Hence, 

√9C2R4 + 12CR2L

ω∆ω

≈

, 

2L2C

√

ω2R 9C2R2 + 12LC

ω∆ω

≈

, 

2L

√

ωR 9ω2C2R2 + 12

ω∆ω

≈

, 

2L

∆ω

Rp9CR2/L + 12

≈

, 

ω

2Lω

√3R

≈

, 

ωL

assuming that CR2  4L/3. 

P37-9

P37-10

Use Eq. 37-46. 

P37-11

(a) The resistance of this bulb is

(∆V )2

(120 V)2

R =

=

= 14.4 Ω. 

P

(1000 W)
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The power is directly related to the brightness; if the bulb is to be varied in brightness by a factor of 5 then it would have a minimum power of 200 W. The rms current through the bulb at this power

would be

p

p

irms =

P/R =

(200 W)/(14.4 Ω) = 3.73 A. 

The impedance of the circuit must have been

Erms

(120 V)

Z =

=

= 32.2 Ω. 

irms

(3.73 A)

The inductive reactance would then be

p

p

XL =

Z2 − R2 =

(32.2 Ω)2 − (14.4 Ω)2 = 28.8 Ω. 

Finally, the inductance would be

L = XL/ω = (28.8 Ω)/(2π(60.0 s−1)) = 7.64 H. 

(b) One could use a variable resistor, and since it would be in series with the lamp a value of

32.2 Ω − 14.4Ω = 17.8 Ω

would work. But the resistor would get hot, while on average there is no power radiated from a pure

inductor. 
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E38-1

The maximum value occurs where r = R; there Bmax = 1 µ

2

00R dE/dt. 

For r < R B is

half of Bmax when r = R/2. For r > R B is half of Bmax when r = 2R. Then the two values of r

are 2.5 cm and 10.0 cm. 

E38-2

For a parallel plate capacitor E = σ/0 and the flux is then ΦE = σA/0 = q/0. Then

dΦE

dq

d

dV

id = 0

=

=

CV = C

. 

dt

dt

dt

dt

E38-3

Use the results of Exercise 2, and change the potential difference across the plates of the

capacitor at a rate

dV

id

(1.0 mA)

=

=

= 1.0 kV/s. 

dt

C

(1.0µF)

Provide a constant current to the capacitor

dQ

d

dV

i =

=

CV = C

= id. 

dt

dt

dt

E38-4

Since E is uniform between the plates ΦE = EA, regardless of the size of the region of

interest. Since jd = id/A, 

id

1

dΦE

dE

jd =

=

0

= 0

. 

A

A

dt

dt

E38-5

(a) In this case id = i = 1.84 A. 

(b) Since E = q/0A, dE/dt = i/0A, or

dE/dt = (1.84 A)/(8.85×10−12F/m)(1.22 m)2 = 1.40×1011V/m. 

(c) id = 0dΦE/dt = 0adE/dt. a here refers to the area of the smaller square. Combine this

with the results of part (b) and

id = ia/A = (1.84 A)(0.61 m/1.22 m)2 = 0.46 A. 

(d) H ~

B · d~s = µ0id = (4π×10−7H/m)(0.46 A) = 5.78×10−7T · m. 

E38-6

Substitute Eq. 38-8 into the results obtained in Sample Problem 38-1. Outside the capacitor

ΦE = πR2E, so

µ0 0πR2dE

µ0

B =

=

id. 

2πr

dt

2πr

Inside the capacitor the enclosed flux is ΦE = πr2E; but we want instead to define id in terms of

the total ΦE inside the capacitor as was done above. Consequently, inside the conductor

µ0r 0πR2dE

µ0r

B =

=

id. 

2πR2

dt

2πR2

E38-7

Since the electric field is uniform in the area and perpendicular to the surface area we

have

Z

Z

Z

Φ

~

E =

E · d ~

A =

E dA = E

dA = EA. 

The displacement current is then

dE

dE

id = 0A

= (8.85×10−12F/m)(1.9 m2)

. 

dt

dt
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(a) In the first region the electric field decreases by 0.2 MV/m in 4µs, so

(−0.2×106V/m)

id = (8.85×10−12F/m)(1.9 m2)

= −0.84 A. 

(4×10−6s)

(b) The electric field is constant so there is no change in the electric flux, and hence there is no

displacement current. 

(c) In the last region the electric field decreases by 0.4 MV/m in 5µs, so

(−0.4×106V/m)

id = (8.85×10−12F/m)(1.9 m2)

= −1.3 A. 

(5×10−6s)

E38-8

(a) Because of the circular symmetry H ~

B · d~s = 2πrB, where r is the distance from the

center of the circular plates. Not only that, but id = jdA = πr2jd. Equate these two expressions, 

and

B = µ0rjd/2 = (4π×10−7H/m)(0.053 m)(1.87×101A/m)/2 = 6.23×10−7T. 

(b) dE/dt = id/0A = jd/0 = (1.87×101A/m)/(8.85×10−12F/m) = 2.11×10−12V/m. 

E38-9

The magnitude of E is given by

(162 V)

E =

sin 2π(60/s)t; 

(4.8×10−3m)

Using the results from Sample Problem 38-1, 

µ



00R dE

B



m

=



, 

2

dt t=0

(4π ×10−7H/m)(8.85×10−12F/m)(0.0321 m)

(162 V)

=

2π(60/s)

, 

2

(4.8×10−3m)

=

2.27×10−12T. 

E38-10

(a) Eq. 33-13 from page 764 and Eq. 33-34 from page 762. 

(b) Eq. 27-11 from page 618 and the equation from Ex. 27-25 on page 630. 

(c) The equations from Ex. 38-6 on page 876. 

(d) Eqs. 34-16 and 34-17 from page 785. 

E38-11

(a) Consider the path abef a. The closed line integral consists of two parts: b → e and

e → f → a → b. Then

I

~

dΦ

E · d~s = − dt

can be written as

Z

Z

~

d

E · d~s +

~

E · d~s = −

Φabef . 

b→e

e→f →a→b

dt

Now consider the path bcdeb. The closed line integral consists of two parts: b → c → d → e and

e → b. Then

I

~

dΦ

E · d~s = − dt

can be written as

Z

Z

~

d

E · d~s +

~

E · d~s = −

Φbcde. 

b→c→d→e

e→b

dt

162

These two expressions can be added together, and since

Z

Z

~

E · d~s = −

~

E · d~s

e→b

b→e

we get

Z

Z

~

d

E · d~s +

~

E · d~s = −

(Φabef + Φbcde) . 

e→f →a→b

b→c→d→e

dt

The left hand side of this is just the line integral over the closed path ef adcde; the right hand side is the net change in flux through the two surfaces. Then we can simplify this expression as

I

~

dΦ

E · d~s = −

. 

dt

(b) Do everything above again, except substitute B for E. 

(c) If the equations were not self consistent we would arrive at different values of E and B

depending on how we defined our surfaces. This multi-valued result would be quite unphysical. 

E38-12

(a) Consider the part on the left. It has a shared surface s, and the other surfaces l. 

Applying Eq. I, 

I

Z

Z

q

~

~

~

l/0 =

E · d ~

A =

E · d ~

A +

E · d ~

A. 

s

l

Note that d ~

A is directed to the right on the shared surface. 

Consider the part on the right. It has a shared surface s, and the other surfaces r. Applying Eq. 

I, 

I

Z

Z

q

~

~

~

r /0 =

E · d ~

A =

E · d ~

A +

E · d ~

A. 

s

r

Note that d ~

A is directed to the left on the shared surface. 

Adding these two expressions will result in a canceling out of the part

Z

~

E · d ~

A

s

since one is oriented opposite the other. We are left with

q

Z

Z

I

r + ql =

~

E · d ~

A +

~

E · d ~

A =

~

E · d ~

A. 

0

r

l

E38-13

E38-14

(a) Electric dipole is because the charges are separating like an electric dipole. Magnetic

dipole because the current loop acts like a magnetic dipole. 

E38-15

A series LC circuit will oscillate naturally at a frequency

ω

1

f =

=

√

2π

2π LC

We will need to combine this with v = f λ, where v = c is the speed of EM waves. 

We want to know the inductance required to produce an EM wave of wavelength λ = 550×10−9m, 

so

λ2

(550 × 10−9m)2

L =

=

= 5.01 × 10−21 H. 

4π2c2C

4π2(3.00 × 108m/s)2(17 × 10−12 F)

This is a small inductance! 
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E38-16

(a) B = E/c, and B must be pointing in the negative y direction in order that the wave

be propagating in the positive x direction. Then Bx = Bz = 0, and

By = −Ez/c = −(2.34×10−4V/m)/(3.00×108m/s) = (−7.80×10−13T) sin k(x − ct). 

(b) λ = 2π/k = 2π/(9.72×106/m) = 6.46×10−7m. 

E38-17

The electric and magnetic field of an electromagnetic wave are related by Eqs. 38-15

and 38-16, 

E

(321µV/m)

B =

=

= 1.07 pT. 

c

(3.00 × 108m/s)

E38-18

Take the partial of Eq. 38-14 with respect to x, 

∂ ∂E

∂ ∂B

=

−

, 

∂x ∂x

∂x ∂t

∂2E

∂2B

=

−

. 

∂x2

∂x∂t

Take the partial of Eq. 38-17 with respect to t, 

∂ ∂B

∂ ∂E

−

=

µ00

, 

∂t ∂x

∂t ∂t

∂2B

∂2E

−

=

µ00

. 

∂t∂x

∂t2

Equate, and let µ00 = 1/c2, then

∂2E

1 ∂2E

=

. 

∂x2

c2 ∂t2

Repeat, except now take the partial of Eq. 38-14 with respect to t, and then take the partial of Eq. 

38-17 with respect to x. 

E38-19

(a) Since sin(kx − ωt) is of the form f (kx ± ωt), then we only need do part (b). 

(b) The constant Em drops out of the wave equation, so we need only concern ourselves with

f (kx ± ωt). Letting g = kx ± ωt, 

∂2f

∂2f

=

c2

, 

∂t2

∂x2

∂2f  ∂g 2

∂2f  ∂g 2

=

c2

, 

∂g2

∂t

∂g2

∂x

∂g

∂g

=

c

, 

∂t

∂x

ω

=

ck. 

E38-20

Use the right hand rule. 

E38-21

U = P t = (100×1012W)(1.0×10−9s) = 1.0×105J. 

E38-22

E = Bc = (28×10−9T)(3.0×108m/s) = 8.4 V/m. It is in the positive x direction. 
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E38-23

Intensity is given by Eq. 38-28, which is simply an expression of power divided by surface

area. To find the intensity of the TV signal at α-Centauri we need to find the distance in meters; 

r = (4.30 light-years)(3.00×108 m/s)(3.15×107 s/year) = 4.06 × 1016 m. 

The intensity of the signal when it has arrived at out nearest neighbor is then

P

(960 kW)

I =

=

= 4.63 × 10−29 W/m2

4πr2

4π(4.06 × 1016 m)2

E38-24

(a) From Eq. 38-22, S = cB2/µ0. B = Bm sin ωt. The time average is defined as

1 Z T

cB 2 Z T

2

m

cBm

S dt =

cos2 ωt dt =

. 

T

0

µ0T

0

2µ0

(b) Sav = (3.0×108m/s)(1.0×10−4T)2/2(4π×10−7H/m) = 1.2×106W/m2. 

E38-25

I = P/4πr2, so

p

p

r =

P/4πI =

(1.0×103W)/4π(130 W/m2) = 0.78 m. 

E38-26

uE = 0E2/2 = 0(cB)2/2 = B2/2µ0 = uB. 

E38-27

(a) Intensity is related to distance by Eq. 38-28. If r1 is the original distance from the

street lamp and I1 the intensity at that distance, then

P

I1 =

. 

4πr21

There is a similar expression for the closer distance r2 = r1 −162 m and the intensity at that distance I2 = 1.50I1. We can combine the two expression for intensity, 

I2

=

1.50I1, 

P

P

=

1.50

, 

4πr2

4πr2

2

1

r2

=

1.50r2, 

1

2

√

r1

=

1.50 (r1 − 162 m). 

The last line is easy enough to solve and we find r1 = 883 m. 

(b) No, we can’t find the power output from the lamp, because we were never provided with an

absolute intensity reference. 

√

E38-28

(a) Em =

2µ0cI, so

p

Em =

2(4π ×10−7H/m)(3.00×108m/s)(1.38×103W/m2) = 1.02×103V/m. 

(b) Bm = Em/c = (1.02×103V/m)/(3.00×108m/s) = 3.40×10−6T. 

E38-29

(a) Bm = Em/c = (1.96 V/m)/(3.00×108m/s) = 6.53×10−9T. 

(b) I = E 2

m /2µ0c = (1.96 V)2/2(4π ×10−7H/m)(3.00×108m/s) = 5.10×10−3W/m2. 

(c) P = 4πr2I = 4π(11.2 m)2(5.10×10−3W/m2) = 8.04 W. 
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E38-30

(a) The intensity is

P

(1×10−12W)

I =

=

= 1.96×10−27W/m2. 

A

4π(6.37×106m)2

The power received by the Arecibo antenna is

P = IA = (1.96×10−27W/m2)π(305 m)2/4 = 1.4×10−22W. 

(b) The power of the transmitter at the center of the galaxy would be

P = IA = (1.96×10−27W)π(2.3×104ly)2(9.46×1015m/ly)2 = 2.9×1014W. 

E38-31

(a) The electric field amplitude is related to the intensity by Eq. 38-26, 

E2

I =

m , 

2µ0c

or

p

p

Em =

2µ0cI =

2(4π ×10−7H/m)(3.00×108m/s)(7.83µW/m2) = 7.68×10−2 V/m. 

(b) The magnetic field amplitude is given by

Em

(7.68 × 10−2 V/m)

Bm =

=

= 2.56 × 10−10 T

c

(3.00 × 108m/s)

(c) The power radiated by the transmitter can be found from Eq. 38-28, 

P = 4πr2I = 4π(11.3 km)2(7.83µW/m2) = 12.6 kW. 

E38-32

(a) The power incident on (and then reflected by) the target craft is P1 = I1A = P0A/2πr2. 

The intensity of the reflected beam is I2 = P1/2πr2 = P0A/4π2r4. Then

I2 = (183×103W)(0.222 m2)/4π2(88.2×103m)4 = 1.70×10−17W/m2. 

(b) Use Eq. 38-26:

p

p

Em =

2µ0cI =

2(4π ×10−7H/m)(3.00×108m/s)(1.70×10−17W/m2) = 1.13×10−7 V/m. 

√

√

(c) Brms = Em/ 2c = (1.13×10−7 V/m)/ 2(3.00×108m/s) = 2.66×10−16T. 

E38-33

Radiation pressure for absorption is given by Eq. 38-34, but we need to find the energy

absorbed before we can apply that. We are given an intensity, a surface area, and a time, so

∆U = (1.1×103W/m2)(1.3 m2)(9.0×103s) = 1.3×107J. 

The momentum delivered is

p = (∆U )/c = (1.3×107J)/(3.00×108m/s) = 4.3×10−2kg · m/s. 

E38-34

(a) F/A = I/c = (1.38×103W/m2)/(3.00×108m/s) = 4.60×10−6Pa. 

(b) (4.60×10−6Pa)/(101×105Pa) = 4.55×10−11. 

E38-35

F/A = 2P/Ac = 2(1.5×109W)/(1.3×10−6m2)(3.0×108m/s) = 7.7×106Pa. 
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E38-36

F/A = P/4πr2c, so

F/A = (500 W)/4π(1.50 m)2(3.00×108m/s) = 5.89×10−8Pa. 

E38-37

(a) F = IA/c, so

(1.38×103W/m2)π(6.37×106m)2

F =

= 5.86×108N. 

(3.00×108m/s)

E38-38

(a) Assuming MKSA, the units are

m F V N

m C V sN

Ns

=

=

. 

s m m Am

s Vm m Cm

m2s

(b) Assuming MKSA, the units are

A2 V N

A2 J

N

1 J

J

=

=

=

. 

N m Am

N Cm Am

sm m

m2s

E38-39

We can treat the object as having two surfaces, one completely reflecting and the other

completely absorbing. If the entire surface has an area A then the absorbing part has an area f A

while the reflecting part has area (1 − f )A. The average force is then the sum of the force on each

part, 

I

2I

F av =

f A +

(1 − f )A, 

c

c

which can be written in terms of pressure as

F av

I

=

(2 − f ). 

A

c

E38-40

We can treat the object as having two surfaces, one completely reflecting and the other

completely absorbing. If the entire surface has an area A then the absorbing part has an area f A

while the reflecting part has area (1 − f )A. The average force is then the sum of the force on each

part, 

I

2I

F av =

f A +

(1 − f )A, 

c

c

which can be written in terms of pressure as

F av

I

=

(2 − f ). 

A

c

The intensity I is that of the incident beam; the reflected beam will have an intensity (1 − f )I. 

Each beam will contribute to the energy density— I/c and (1 − f )I/c, respectively. Add these two

energy densities to get the net energy density outside the surface. The result is (2 − f )I/c, which is the left hand side of the pressure relation above. 

E38-41

The bullet density is ρ = N m/V . Let V = Ah; the kinetic energy density is K/V =

1 N mv2/Ah. h/v, however, is the time taken for N balls to strike the surface, so that

2

F

N mv

N mv2

2K

P =

=

=

=

. 

A

At

Ah

V
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E38-42

F = IA/c; P = IA; a = F/m; and v = at. Combine:

v = P t/mc = (10×103W)(86400 s)/(1500 kg)(3×108m/s) = 1.9×10−3m/s. 

E38-43

The force of radiation on the bottom of the cylinder is F = 2IA/c. The force of gravity

on the cylinder is

W = mg = ρHAg. 

Equating, 2I/c = ρHg. The intensity of the beam is given by I = 4P/πd2. Solving for H, 

8P

8(4.6 W)

H =

=

= 4.9×10−7m. 

πcρgd2

π(3.0×108m/s)(1200 kg/m3)(9.8 m/s2)(2.6×10−3m)2

E38-44

F = 2IA/c. The value for I is in Ex. 38-37, among other places. Then

F = (1.38×103W/m2)(3.1×106m2)/(3.00×108m/s) = 29 N. 

P38-1

For the two outer circles use Eq. 33-13. For the inner circle use E = V /d, Q = CV , 

C = 0A/d, and i = dQ/dt. Then

dQ

0A dV

dE

i =

=

= 0A

. 

dt

d

dt

dt

The change in flux is dΦE/dt = A dE/dt. Then

I

~

dΦE

B · d~l = µ00

= µ0i, 

dt

so B = µ0i/2πr. 

P38-2

(a) id = i. Assuming ∆V = (174×103V) sin ωt, then q = C∆V and i = dq/dt = Cd(∆V )/dt. 

Combine, and use ω = 2π(50.0/s), 

id = (100×10−12F)(174×103V)2π(50.0/s) = 5.47×10−3A. 

P38-3

(a) i = id = 7.63µA. 

(b) dΦE/dt = id/0 = (7.63µA)/(8.85×10−12F/m) = 8.62×105V/m. 

(c) i = dq/dt = Cd(∆V )/dt; C = 0A/d; [d(∆V )/dt]m = Emω. Combine, and

0A

0AEmω

(8.85×10−12F/m)π(0.182 m)2(225 V)(128 rad/s)

d =

=

=

= 3.48×10−3m. 

C

i

(7.63µA)

P38-4

(a) q = R i dt = α R t dt = αt2/2. 

(b) E = σ/0 = q/0A = αt2/2πR20. 

(d) 2πrB = µ00πr2dE/dt, so

B = µ0r(dE/dt)/2 = µ0αrt/2πR2. 

(e) Check Exercise 38-10! 

P38-5

(a) ~

E = Eˆj and ~

B = B ˆ

k. Then ~

S = ~

E × ~

B/µ0, or

~

S = −EB/mu ˆ

0 i. 

Energy only passes through the yz faces; it goes in one face and out the other. The rate is P =

SA = EBa2/mu0. 

(b) The net change is zero. 
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P38-6

(a) For a sinusoidal time dependence |dE/dt|m = ωEm = 2πf Em. Then

|dE/dt|m = 2π(2.4×109/s)(13×103V/m) = 1.96×1014V/m · s. 

(b) Using the result of part (b) of Sample Problem 38-1, 

1

1

B =

(4π ×10−7H/m)(8.9×10−12F/m)(2.4×10−2m) (1.96×1014V/m · s) = 1.3×10−5T. 

2

2

P38-7

Look back to Chapter 14 for a discussion on the elliptic orbit. On page 312 it is pointed

out that the closest distance to the sun is Rp = a(1 − e) while the farthest distance is Ra = a(1 + e), where a is the semi-major axis and e the eccentricity. 

The fractional variation in intensity is

∆I

I

≈

p − I a , 

I

Ia

Ip

=

− 1, 

Ia

R 2

a

=

− 1, 

R 2

p

(1 + e)2

=

− 1. 

(1 − e)2

We need to expand this expression for small e using (1 + e)2 ≈ 1 + 2e, and (1 − e)−2 ≈ 1 + 2e, and

finally (1 + 2e)2 ≈ 1 + 4e. Combining, 

∆I ≈ (1 + 2e)2 − 1 ≈ 4e. 

I

P38-8

The beam radius grows as r = (0.440 µrad)R, where R is the distance from the origin. The

beam intensity is

P

(3850 W)

I =

=

= 4.3×10−2W. 

πr2

π(0.440 µrad)2(3.82×108m)2

P38-9

Eq. 38-14 requires

∂E

∂B

=

−

, 

∂x

∂t

Emk cos kx sin ωt

=

Bmω cos kx sin ωt, 

Emk

=

Bmω. 

Eq. 38-17 requires

∂E

∂B

µ00

=

−

, 

∂t

∂x

µ00Emω sin kx cos ωt

=

Bmk sin kx cos ωt, 

µ00Emω

=

Bmk. 

Dividing one expression by the other, 

µ00k2 = ω2, 
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or

ω

1

= c = √

k

µ00

. 

Not only that, but Em = cBm. You’ve seen an expression similar to this before, and you’ll see

expressions similar to it again. 

(b) We’ll assume that Eq. 38-21 is applicable here. Then

1

EmBm

S

=

=

sin kx sin ωt cos kx cos ωt, 

µ0

µ0

E2

=

m sin 2kx sin 2ωt

4µ0c

is the magnitude of the instantaneous Poynting vector. 

(c) The time averaged power flow across any surface is the value of

1 Z T Z ~S · d~Adt, 

T

0

where T is the period of the oscillation. We’ll just gloss over any concerns about direction, and

assume that the ~

S will be constant in direction so that we will, at most, need to concern ourselves

about a constant factor cos θ. We can then deal with a scalar, instead of vector, integral, and we

can integrate it in any order we want. We want to do the t integration first, because an integral over sin ωt for a period T = 2π/ω is zero. Then we are done! 

(d) There is no energy flow; the energy remains inside the container. 

P38-10

(a) The electric field is parallel to the wire and given by

E = V /d = iR/d = (25.0 A)(1.00 Ω/300 m) = 8.33×10−2V/m

(b) The magnetic field is in rings around the wire. Using Eq. 33-13, 

µ0i

(4π ×10−7H/m)(25 A)

B =

=

= 4.03×10−3T. 

2πr

2π(1.24×10−3m)

(c) S = EB/µ0, so

S = (8.33×10−2V/m)(4.03×10−3T)/(4π×10−7H/m) = 267 W/m2. 

P38-11

(a) We’ve already calculated B previously. It is

µ0i

E

B =

where i =

. 

2πr

R

The electric field of a long straight wire has the form E = k/r, where k is some constant. But

Z

Z

b

∆V = −

~

E · d~s = −

E dr = −k ln(b/a). 

a

In this problem the inner conductor is at the higher potential, so

−∆V

E

k =

=

, 

ln(b/a)

ln(b/a)
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and then the electric field is

E

E =

. 

r ln(b/a)

This is also a vector field, and if E is positive the electric field points radially out from the central conductor. 

(b) The Poynting vector is

~

1

S =

~

E × ~

B; 

µ0

~

E is radial while ~

B is circular, so they are perpendicular. Assuming that E is positive the direction

of ~

S is away from the battery. Switching the sign of E (connecting the battery in reverse) will flip

the direction of both ~

E and ~

B, so ~

S will pick up two negative signs and therefore still point away

from the battery. 

The magnitude is

EB

E2

S =

=

µ0

2πR ln(b/a)r2

(c) We want to evaluate a surface integral in polar coordinates and so dA = (dr)(rdθ). We have

already established that ~

S is pointing away from the battery parallel to the central axis. Then we

can integrate

Z

Z

P

=

~

S · d ~

A =

S dA, 

Z

b Z 2π

E2

=

dθ r dr, 

a

0

2πR ln(b/a)r2

Z

b

E2

=

dr, 

a

R ln(b/a)r

E2

=

. 

R

(d) Read part (b) above. 

P38-12

(a) ~

B is oriented as rings around the cylinder. If the thumb is in the direction of current

then the fingers of the right hand grip ion the direction of the magnetic field lines. ~

E is directed

parallel to the wire in the direction of the current. ~

S is found from the cross product of these two, 

and must be pointing radially inward. 

(b) The magnetic field on the surface is given by Eq. 33-13:

B = µ0i/2πa. 

The electric field on the surface is given by

E = V /l = iR/l

Then S has magnitude

i iR

i2R

S = EB/µ0 =

=

. 

2πa l

2πal

R ~

S · d ~

A is only evaluated on the surface of the cylinder, not the end caps. ~

S is everywhere parallel

to d ~

A, so the dot product reduces to S dA; S is uniform, so it can be brought out of the integral; 

R dA = 2πal on the surface. 

Hence, 

Z

~

S · d ~

A = i2R, 

as it should. 
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P38-13

(a) f = vlambda = (3.00×108m/s)/(3.18 m) = 9.43×107 Hz. 

(b) ~

Bmust be directed along the z axis. The magnitude is

B = E/c = (288 V/m)/(3.00×108m/s) = 9.6×10−7T. 

(c) k = 2π/λ = 2π/(3.18 m) = 1.98/m while ω = 2πf , so

ω = 2π(9.43×107Hz) = 5.93×108 rad/s. 

(d) I = EmBm/2µ0, so

(288 V)(9.6×10−7T)

I =

= 110 W. 

2(4π ×10−7H/m)

(e) P = I/c = (110 W)/(3.00×108m/s) = 3.67×10−7Pa. 

P38-14

(a) ~

B is oriented as rings around the cylinder. If the thumb is in the direction of current

then the fingers of the right hand grip ion the direction of the magnetic field lines. ~

E is directed

parallel to the wire in the direction of the current. ~

S is found from the cross product of these two, 

and must be pointing radially inward. 

(b) The magnitude of the electric field is

V

Q

Q

it

E =

=

=

=

. 

d

Cd

0A

0A

The magnitude of the magnetic field on the outside of the plates is given by Sample Problem 38-1, 

µ00R dE

µ00iR

µ00R

B =

=

=

E. 

2

dt

20A

2t

~

S has magnitude

EB

0R

S =

=

E2. 

µ0

2t

Integrating, 

Z

~

0R

0E2

S · d ~

A =

E22πRd = Ad

. 

2t

t

But E is linear in t, so d(E2)/dt = 2E2/t; and then

Z





~

d

1

S · d ~

A = Ad

0E2 . 

dt

2

P38-15

(a) I = P/A = (5.00×10−3W)/π(1.05)2(633×10−9m)2 = 3.6×109W/m2. 

(b) p = I/c = (3.6×109W/m2)/(3.00×108m/s) = 12 Pa

(c) F = pA = P/c = (5.00×10−3W)/(3.00×108m/s) = 1.67×10−11N. 

(d) a = F/m = F/ρV , so

(1.67×10−11N)

a =

= 2.9×103m/s2. 

4(4880 kg/m3)(1.05)3(633×10−9)3/3
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P38-16

The force from the sun is F = GM m/r2. The force from radiation pressure is

2IA

2P A

F =

=

. 

c

4πr2c

Equating, 

4πGM m

A =

, 

2P/c

so

4π(6.67×10−11N · m2/kg2)(1.99×1030kg)(1650 kg)

A =

= 1.06×106m2. 

2(3.9×1026W)/(3.0×108m/s)

That’s about one square kilometer. 
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E39-1

Both scales are logarithmic; choose any data point from the right hand side such as

c = f λ ≈ (1 Hz)(3×108m) = 3×108m/s, 

and another from the left hand side such as

c = f λ ≈ (1×1021 Hz)(3×10−13m) = 3×108m/s. 

E39-2

(a) f = v/λ = (3.0×108m/s)/(1.0×104)(6.37×106m) = 4.7×10−3 Hz. If we assume that

this is the data transmission rate in bits per second (a generous assumption), then it would take 140

days to download a web-page which would take only 1 second on a 56K modem! 

(b) T = 1/f = 212 s = 3.5 min. 

E39-3

(a) Apply v = f λ. Then

f = (3.0×108m/s)/(0.067×10−15m) = 4.5×1024 Hz. 

(b) λ = (3.0×108m/s)/(30 Hz) = 1.0×107m. 

E39-4

Don’t simply take reciprocal of linewidth! f = c/λ, so δf = (−c/λ2)δλ. Ignore the negative, 

and

δf = (3.00×108m/s)(0.010×10−9m)/(632.8×10−9m)2 = 7.5×109 Hz. 

E39-5

(a) We refer to Fig. 39-6 to answer this question. The limits are approximately 520 nm

and 620 nm. 

(b) The wavelength for which the eye is most sensitive is 550 nm. This corresponds to to a

frequency of

f = c/λ = (3.00 × 108 m/s)/(550 × 10−9m) = 5.45 × 1014 Hz. 

This frequency corresponds to a period of T = 1/f = 1.83 × 10−15s. 

E39-6

f = c/λ. The number of complete pulses is f t, or

f t = ct/λ = (3.00×108m/s)(430×10−12s)/(520×10−9m) = 2.48×105. 

E39-7

(a) 2(4.34 y) = 8.68 y. 

(b) 2(2.2×106 y) = 4.4×106 y. 

E39-8

(a) t = (150×103m)/(3×108m/s) = 5×10−4s. 

(b) The distance traveled by the light is (1.5×1011m) + 2(3.8×108m), so

t = (1.51×1011m)/(3×108m/s) = 503 s. 

(c) t = 2(1.3×1012m)/(3×108m/s) = 8670 s. 

(d) 1054 − 6500 ≈ 5400 BC. 

E39-9

This is a question of how much time it takes light to travel 4 cm, because the light traveled

from the Earth to the moon, bounced off of the reflector, and then traveled back. The time to travel

4 cm is ∆t = (0.04 m)/(3 × 108 m/s) = 0.13 ns. Note that I interpreted the question differently than

the answer in the back of the book. 
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E39-10

Consider any incoming ray. The path of the ray can be projected onto the xy plane, the

xz plane, or the yz plane. If the projected rays is exactly reflected in all three cases then the three dimensional incoming ray will be reflected exactly reversed. But the problem is symmetric, so it is

sufficient to show that any plane works. 

Now the problem has been reduced to Sample Problem 39-2, so we are done. 

E39-11

We will choose the mirror to lie in the xy plane at z = 0. There is no loss of generality

in doing so; we had to define our coordinate system somehow. The choice is convenient in that

any normal is then parallel to the z axis. Furthermore, we can arbitrarily define the incident ray

to originate at (0, 0, z1). Lastly, we can rotate the coordinate system about the z axis so that the

reflected ray passes through the point (0, y3, z3). 

The point of reflection for this ray is somewhere on the surface of the mirror, say (x2, y2, 0). This distance traveled from the point 1 to the reflection point 2 is

q

p

d12 =

(0 − x2)2 + (0 − y2)2 + (z1 − 0)2 =

x2 + y2 + z2

2

2

1

and the distance traveled from the reflection point 2 to the final point 3 is

q

p

d23 =

(x2 − 0)2 + (y2 − y3)2 + (0 − z3)2 =

x2 + (y

. 

2

2 − y3)2 + z2

3

The only point which is free to move is the reflection point, (x2, y2, 0), and that point can only

move in the xy plane. Fermat’s principle states that the reflection point will be such to minimize

the total distance, 

q

q

d12 + d23 =

x2 + y2 + z2 +

x2 + (y

. 

2

2

1

2

2 − y3)2 + z2

3

We do this minimization by taking the partial derivative with respect to both x2 and y2. But

we can do part by inspection alone. Any non-zero value of x2 can only add to the total distance, 

regardless of the value of any of the other quantities. Consequently, x2 = 0 is one of the conditions for minimization. 

We are done! Although you are invited to finish the minimization process, once we know that

x2 = 0 we have that point 1, point 2, and point 3 all lie in the yz plane. The normal is parallel to

the z axis, so it also lies in the yz plane. Everything is then in the yz plane. 

E39-12

Refer to Page 442 of Volume 1. 

E39-13

(a) θ1 = 38◦. 

(b) (1.58) sin(38◦) = (1.22) sin θ2. Then θ2 = arcsin(0.797) = 52.9◦. 

E39-14

ng = nv sin θ1/ sin θ2 = (1.00) sin(32.5◦)/ sin(21.0◦) = 1.50. 

E39-15

n = c/v = (3.00×108m/s)/(1.92×108m/s) = 1.56. 

E39-16

v = c/n = (3.00×108m/s)/(1.46) = 2.05×108m/s. 

E39-17

The speed of light in a substance with index of refraction n is given by v = c/n. An

electron will then emit Cerenkov radiation in this particular liquid if the speed exceeds

v = c/n = (3.00 × 108 m/s)/(1.54) = 1.95×108 m/s. 
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E39-18

Since t = d/v = nd/c, ∆t = ∆n d/c. Then

∆t = (1.00029 − 1.00000)(1.61×103m)/(3.00×108m/s) = 1.56×10−9s. 

E39-19

The angle of the refracted ray is θ2 = 90◦, the angle of the incident ray can be found by

trigonometry, 

(1.14 m)

tan θ1 =

= 1.34, 

(0.85 m)

or θ1 = 53.3◦. 

We can use these two angles, along with the index of refraction of air, to find that the index of

refraction of the liquid from Eq. 39-4, 

sin θ2

(sin 90◦)

n1 = n2

= (1.00)

= 1.25. 

sin θ1

(sin 53.3◦)

There are no units attached to this quantity. 

E39-20

For an equilateral prism φ = 60◦. Then

sin[ψ + φ]/2

sin[(37◦) + (60◦)]/2

n =

=

= 1.5. 

sin[φ/2]

sin[(60◦)/2]

E39-21

p

E39-22

t = d/v; but L/d = cos θ2 =

1 − sin2 θ2 and v = c/n. Combining, 

nL

n2L

(1.63)2(0.547 m)

t =

=

=

= 3.07×10−9s. 

p

p

q

c

1 − sin2 θ2

c

n2 − sin2 θ1

(3×108m/s) (1.632) − sin2(24◦)

E39-23

The ray of light from the top of the smokestack to the life ring is θ1, where tan θ1 = L/h

with h the height and L the distance of the smokestack. 

Snell’s law gives n1 sin θ1 = n2 sin θ2, so

θ1 = arcsin[(1.33) sin(27◦)/(1.00)] = 37.1◦. 

Then L = h tan θ1 = (98 m) tan(37.1◦) = 74 m. 

E39-24

The length of the shadow on the surface of the water is

x1 = (0.64 m)/ tan(55◦) = 0.448 m. 

The ray of light which forms the “end” of the shadow has an angle of incidence of 35◦, so the ray

travels into the water at an angle of

 (1.00)



θ2 = arcsin

sin(35◦)

= 25.5◦. 

(1.33)

The ray travels an additional distance

x2 = (2.00 m − 0.64 m)/ tan(90◦ − 25.5◦) = 0.649 m

The total length of the shadow is

(0.448 m) + (0.649 m) = 1.10 m. 
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E39-25

We’ll rely heavily on the figure for our arguments. Let x be the distance between the

points on the surface where the vertical ray crosses and the bent ray crosses. 

θ2

 x

 d app

θ1

 d

In this exercise we will take advantage of the fact that, for small angles θ, sin θ ≈ tan θ ≈ θ In

this approximation Snell’s law takes on the particularly simple form n1θ1 = n2θ2 The two angles

here are conveniently found from the figure, 

x

θ1 ≈ tan θ1 =

, 

d

and

x

θ2 ≈ tan θ2 =

. 

dapp

Inserting these two angles into the simplified Snell’s law, as well as substituting n1 = n and n2 = 1.0, n1θ1

=

n2θ2, 

x

x

n

=

, 

d

dapp

d

dapp

=

. 

n

E39-26

(a) You need to address the issue of total internal reflection to answer this question. 

(b) Rearrange

sin[ψ + φ]/2

n =

sin[φ/2]

/

and θ = (ψ + φ)/2 to get

θ = arcsin (n sin[φ/2]) = arcsin ((1.60) sin[(60◦)/2]) = 53.1◦. 

E39-27

Use the results of Ex. 39-35. The apparent thickness of the carbon tetrachloride layer, as

viewed by an observer in the water, is

dc,w = nwdc/nc = (1.33)(41 mm)/(1.46) = 37.5 mm. 

The total “thickness” from the water perspective is then (37.5 mm) + (20 mm) = 57.5 mm. The

apparent thickness of the entire system as view from the air is then

dapp = (57.5 mm)/(1.33) = 43.2 mm. 
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E39-28

(a) Use the results of Ex. 39-35. dapp = (2.16 m)/(1.33) = 1.62 m. 

(b) Need a diagram here! 

E39-29

(a) λn = λ/n = (612 nm)/(1.51) = 405 nm. 

(b) L = nLn = (1.51)(1.57 pm) = 2.37 pm. There is actually a typo: the “p” in “pm” was

supposed to be a µ. This makes a huge difference for part (c)! 

E39-30

(a) f = c/λ = (3.00×108m/s)/(589 nm) = 5.09×1014Hz. 

(b) λn = λ/n = (589 nm)/(1.53) = 385 nm. 

(c) v = f λ = (5.09×1014Hz)(385 nm) = 1.96×108m/s. 

E39-31

(a) The second derivative of

p

p

L =

a2 + x2 +

b2 + (d − x)2

is

a2(b2 + (d − 2)2)3/2 + b2(a2 + x2)3/2 . 

(b2 + (d − 2)2)3/2(a2 + x2)3/2

This is always a positive number, so dL/dx = 0 is a minimum. 

(a) The second derivative of

p

p

L = n1

a2 + x2 + n2

b2 + (d − x)2

is

n1a2(b2 + (d − 2)2)3/2 + n2b2(a2 + x2)3/2 . 

(b2 + (d − 2)2)3/2(a2 + x2)3/2

This is always a positive number, so dL/dx = 0 is a minimum. 

E39-32

(a) The angle of incidence on the face ac will be 90◦ − φ. Total internal reflection occurs

when sin(90◦ − φ) > 1/n, or

φ < 90◦ − arcsin[1/(1.52)] = 48.9◦. 

(b) Total internal reflection occurs when sin(90◦ − φ) > nw/n, or

φ < 90◦ − arcsin[(1.33)/(1.52)] = 29.0◦. 

E39-33

(a) The critical angle is given by Eq. 39-17, 

n2

(1.586)

θc = sin−1

= sin−1

= 72.07◦. 

n1

(1.667)

(b) Critical angles only exist when “attempting” to travel from a medium of higher index of

refraction to a medium of lower index of refraction; in this case from A to B. 

E39-34

If the fire is at the water’s edge then the light travels along the surface, entering the

water near the fish with an angle of incidence of effectively 90◦. Then the angle of refraction in

the water is numerically equivalent to a critical angle, so the fish needs to look up at an angle of

θ = arcsin(1/1.33) = 49◦ with the vertical. That’s the same as 41◦ with the horizontal. 
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E39-35

Light can only emerge from the water if it has an angle of incidence less than the critical

angle, or

θ < θc = arcsin 1/n = arcsin 1/(1.33) = 48.8◦. 

The radius of the circle of light is given by r/d = tan θc, where d is the depth. The diameter is twice this radius, or

2(0.82 m) tan(48.8◦) = 1.87 m. 

E39-36

The refracted angle is given by n sin θ1 = sin(39◦). This ray strikes the left surface with

an angle of incidence of 90◦ − θ1. Total internal reflection occurs when

sin(90◦ − θ1) = 1/n; 

but sin(90◦ − θ1) = cos θ1, so we can combine and get tan θ = sin(39◦) with solution θ1 = 32.2◦. The

index of refraction of the glass is then

n = sin(39◦)/ sin(32.2) = 1.18. 

E39-37

The light strikes the quartz-air interface from the inside; it is originally “white”, so if

the reflected ray is to appear “bluish” (reddish) then the refracted ray should have been “reddish” 

(bluish). Since part of the light undergoes total internal reflection while the other part does not, 

then the angle of incidence must be approximately equal to the critical angle. 

(a) Look at Fig. 39-11, the index of refraction of fused quartz is given as a function of the

wavelength. As the wavelength increases the index of refraction decreases. The critical angle is a

function of the index of refraction; for a substance in air the critical angle is given by sin θc = 1/n. 

As n decreases 1/n increases so θc increases. For fused quartz, then, as wavelength increases θc also increases. 

In short, red light has a larger critical angle than blue light. If the angle of incidence is midway

between the critical angle of red and the critical angle of blue, then the blue component of the light will experience total internal reflection while the red component will pass through as a refracted ray. 

So yes, the light can be made to appear bluish. 

(b) No, the light can’t be made to appear reddish. See above. 

(c) Choose an angle of incidence between the two critical angles as described in part (a). Using

a value of n = 1.46 from Fig. 39-11, 

θc = sin−1(1/1.46) = 43.2◦. 

Getting the effect to work will require considerable sensitivity. 

E39-38

(a) There needs to be an opaque spot in the center of each face so that no refracted ray

emerges. The radius of the spot will be large enough to cover rays which meet the surface at less

than the critical angle. This means tan θc = r/d, where d is the distance from the surface to the

spot, or 6.3 mm. Since

θc = arcsin 1/(1.52) = 41.1◦, 

then r = (6.3 mm) tan(41.1◦) = 5.50 mm. 

(b) The circles have an area of a = π(5.50 mm)2 = 95.0 mm2. Each side has an area of (12.6 mm)2; 

the fraction covered is then (95.0 mm2)/(12.6 mm)2 = 0.598. 

E39-39

For u  c the relativistic Doppler shift simplifies to

∆f = −f0u/c = −u/λ0, 

so

u = λ0∆f = (0.211 m)∆f. 
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E39-40

c = f λ, so 0 = f ∆λ + λ∆f . Then ∆λ/λ = −∆f /f . Furthermore, f0 − f , from Eq. 39-21, 

is f0u/c for small enough u. Then

∆λ

f − f0

u

= −

=

. 

λ

f0

c

E39-41

The Doppler theory for light gives

1 − u/c

1 − (0.2)

f = f0

= f

= 0.82 f

p

0

0. 

1 − u2/c2

p1 − (0.2)2

The frequency is shifted down to about 80%, which means the wavelength is shifted up by an

additional 25%. Blue light (480 nm) would appear yellow/orange (585 nm). 

E39-42

Use Eq. 39-20:

1 − u/c

1 − (0.892)

f = f0

= (100 Mhz)

= 23.9 MHz. 

p1 − u2/c2

p1 − (0.892)2

E39-43

(a) If the wavelength is three times longer then the frequency is one-third, so for the

classical Doppler shift

f0/3 = f0(1 − u/c), 

or u = 2c. 

(b) For the relativistic shift, 

1 − u/c

f0/3

=

f0

, 

p1 − u2/c2

p1 − u2/c2 = 3(1 − u/c), 

c2 − u2

=

9(c − u)2, 

0

=

10u2 − 18uc + 8c2. 

The solution is u = 4c/5. 

E39-44

(a) f0/f = λ/λ0. This shift is small, so we apply the approximation:

 λ







0

(462 nm)

u = c

− 1 = (3×108m/s)

− 1 = 1.9×107m/s. 

λ

(434 nm)

(b) A red shift corresponds to objects moving away from us. 

E39-45

The sun rotates once every 26 days at the equator, while the radius is 7.0×108m. The

speed of a point on the equator is then

2πR

2π(7.0×108m)

v =

=

= 2.0×103 m/s. 

T

(2.2×106s)

This corresponds to a velocity parameter of

β = u/c = (2.0×103 m/s)/(3.0×108 m/s) = 6.7×10−6. 

This is a case of small numbers, so we’ll use the formula that you derived in Exercise 39-40:

∆λ = λβ = (553 nm)(6.7×10−6) = 3.7×10−3 nm. 
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E39-46

Use Eq. 39-23 written as

(1 − u/c)λ2 = λ2(1 + u/c), 

0

which can be rearranged as

λ2 − λ2

(540 nm)2 − (620 nm)2

u/c =

0 =

= −0.137. 

λ2 + λ2

(540 nm)2 + (620 nm)2

0

The negative sign means that you should be going toward the red light. 

E39-47

(a) f1 = cf /(c + v) and f2 = cf /(c − v). 

∆f = (f2 − f ) − (f − f1) = f2 + f1 − 2f, 

so

∆f

c

c

=

+

− 2, 

f

c + v

c − v

2v2

=

, 

c2 − v2

2(8.65×105m/s)2

=

, 

(3.00×108m/s)2 − (8.65×105m/s)2

=

1.66×10−5. 

√

(b) f1 = f (c − u)/sqrtc2 − u2 and f2 = f (c + u)/ c2 − u2. 

∆f = (f2 − f ) − (f − f1) = f2 + f1 − 2f, 

so

∆f

2c

=

√

− 2, 

f

c2 − u2

2(3.00×108m/s)

=

− 2, 

p(3.00×108m/s)2 − (8.65×105m/s)2

=

8.3×10−6. 

E39-48

(a) No relative motion, so every 6 minutes. 

(b) The Doppler effect at this speed is

1 − u/c

1 − (0.6)

=

= 0.5; 

p1 − u2/c2

p1 − (0.6)2

this means the frequency is one half, so the period is doubled to 12 minutes. 

(c) If C send the signal at the instant the signal from A passes, then the two signals travel together to C, so C would get B’s signals at the same rate that it gets A’s signals: every six minutes. 

E39-49

E39-50

The transverse Doppler effect is λ = λ0/p1 − u2/c2. Then

p

λ = (589.00 nm)/

1 − (0.122)2 = 593.43 nm. 

The shift is (593.43 nm) − (589.00 nm) = 4.43 nm. 
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E39-51

The frequency observed by the detector from the first source is (Eq. 39-31)

p

f = f1

1 − (0.717)2 = 0.697f1. 

The frequency observed by the detector from the second source is (Eq. 39-30)

p1 − (0.717)2

0.697f2

f = f2

=

. 

1 + (0.717) cos θ

1 + (0.717) cos θ

We need to equate these and solve for θ. Then

0.697f2

0.697f1

=

, 

1 + 0.717 cos θ

1 + 0.717 cos θ

=

f2/f1, 

cos θ

=

(f2/f1 − 1) /0.717, 

θ

=

101.1◦. 

Subtract from 180◦ to find the angle with the line of sight. 

E39-52

P39-1

Consider the triangle in Fig. 39-45. The true position corresponds to the speed of light, 

the opposite side corresponds to the velocity of earth in the orbit. Then

θ = arctan(29.8×103m/s)/(3.00×108m/s) = 20.500. 

P39-2

The distance to Jupiter from point x is dx = rj − re. The distance to Jupiter from point y

is

q

d2 =

r2 + r2. 

e

j

The difference in distance is related to the time according to

(d2 − d1)/t = c, 

so

p(778×109m)2 + (150×109m)2 − (778×109m) + (150×109m) = 2.7×108m/s. 

(600 s)

P39-3

sin(30◦)/(4.0 m/s) = sin θ/(3.0 m/s). Then θ = 22◦. Water waves travel more slowly in

shallower water, which means they always bend toward the normal as they approach land. 

P39-4

(a) If the ray is normal to the water’s surface then it passes into the water undeflected. 

Once in the water the problem is identical to Sample Problem 39-2. The reflected ray in the water

is parallel to the incident ray in the water, so it also strikes the water normal, and is transmitted normal. 

(b) Assume the ray strikes the water at an angle θ1. It then passes into the water at an angle

θ2, where

nw sin θ2 = na sin θ1. 

Once the ray is in the water then the problem is identical to Sample Problem 39-2. The reflected

ray in the water is parallel to the incident ray in the water, so it also strikes the water at an angle θ2. When the ray travels back into the air it travels with an angle θ3, where

nw sin θ2 = na sin θ3. 

Comparing the two equations yields θ1 = θ3, so the outgoing ray in the air is parallel to the incoming ray. 
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P39-5

(a) As was done in Ex. 39-25 above we use the small angle approximation of

sin θ ≈ θ ≈ tan θ

The incident angle is θ; if the light were to go in a straight line we would expect it to strike a

distance y1 beneath the normal on the right hand side. The various distances are related to the

angle by

θ ≈ tan θ ≈ y1/t. 

The light, however, does not go in a straight line, it is refracted according to (the small angle

approximation to) Snell’s law, n1θ1 = n2θ2, which we will simplify further by letting θ1 = θ, n2 = n, and n1 = 1, θ = nθ2. The point where the refracted ray does strike is related to the angle by

θ2 ≈ tan θ2 = y2/t. Combining the three expressions, 

y1 = ny2. 

The difference, y1 − y2 is the vertical distance between the displaced ray and the original ray as

measured on the plate glass. A little algebra yields

y1 − y2

=

y1 − y1/n, 

=

y1 (1 − 1/n) , 

n − 1

=

tθ

. 

n

The perpendicular distance x is related to this difference by

cos θ = x/(y1 − y2). 

In the small angle approximation cos θ ≈ 1 − θ2/2. If θ is sufficiently small we can ignore the square term, and x ≈ y2 − y1. 

(b) Remember to use radians and not degrees whenever the small angle approximation is applied. 

Then

(1.52) − 1

x = (1.0 cm)(0.175 rad)

= 0.060 cm. 

(1.52)

P39-6

(a) At the top layer, 

n1 sin θ1 = sin θ; 

at the next layer, 

n2 sin θ2 = n1 sin θ1; 

at the next layer, 

n3 sin θ3 = n2 sin θ2. 

Combining all three expressions, 

n3 sin θ3 = sin θ. 

(b) θ3 = arcsin[sin(50◦)/(1.00029)] = 49.98◦. Then shift is (50◦) − (49.98◦) = 0.02◦. 

P39-7

The “big idea” of Problem 6 is that when light travels through layers the angle that it

makes in any layer depends only on the incident angle, the index of refraction where that incident

angle occurs, and the index of refraction at the current point. 

That means that light which leaves the surface of the runway at 90◦ to the normal will make an

angle

n0 sin 90◦ = n0(1 + ay) sin θ
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at some height y above the runway. It is mildly entertaining to note that the value of n0 is unim-

portant, only the value of a! 

The expression

1

sin θ =

≈ 1 − ay

1 + ay

can be used to find the angle made by the curved path against the normal as a function of y. The

slope of the curve at any point is given by

dy

cos θ

= tan(90◦ − θ) = cot θ =

. 

dx

sin θ

Now we need to know cos θ. It is

p

cos θ =

1 − sin2 θ ≈ p2ay. 

Combining

√

dy

2ay

≈

, 

dx

1 − ay

and now we integrate. We will ignore the ay term in the denominator because it will always be

small compared to 1. Then

Z

d

Z

h

dy

dx

=

√

, 

0

0

2ay

r

s

2h

2(1.7 m)

d

=

=

= 1500 m. 

a

(1.5×10−6m−1)

P39-8

The energy of a particle is given by E2 = p2c2 + m2c4. This energy is related to the mass

by E = γmc2. γ is related to the speed by γ = 1/p1 − u2/c2. Rearranging, 

s

u

r

1

m2c2

=

1 −

=

1 −

, 

c

γ2

p2 + m2c2

s

p2

=

. 

p2 + m2c2

Since n = c/u we can write this as

s

s

m2c2

 mc2 2

n =

1 +

=

1 +

. 

p2

pc

For the pion, 

s

 (135 MeV) 2

n =

1 +

= 1.37. 

(145 MeV)

For the muon, 

s

 (106 MeV) 2

n =

1 +

= 1.24. 

(145 MeV)
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P39-9

(a) Before adding the drop of liquid project the light ray along the angle θ so that θ = 0. 

Increase θ slowly until total internal reflection occurs at angle θ1. Then

ng sin θ1 = 1

is the equation which can be solved to find ng. 

Now put the liquid on the glass and repeat the above process until total internal reflection occurs

at angle θ2. Then

ng sin θ2 = nl. 

Note that ng < ng for this method to work. 

(b) This is not terribly practical. 

P39-10

Let the internal angle at Q be θQ. Then n sin θQ = 1, because it is a critical angle. Let

the internal angle at P be θP . Then θP + θQ = 90◦. Combine this with the other formula and

q

1 = n sin(90 − θP ) = n cos θQ = n 1 − sin2 θP . 

Not only that, but sin θ1 = n sin θP , or

p

1 = n

1 − (sin θ1)2/n2, 

which can be solved for n to yield

q

n =

1 + sin2 θ1. 

√

(b) The largest value of the sine function is one, so nmax =

2. 

P39-11

(a) The fraction of light energy which escapes from the water is dependent on the critical

angle. Light radiates in all directions from the source, but only that which strikes the surface at an angle less than the critical angle will escape. This critical angle is

sin θc = 1/n. 

We want to find the solid angle of the light which escapes; this is found by integrating

Z

2π Z θc

Ω =

sin θ dθ dφ. 

0

0

This is not a hard integral to do. The result is

Ω = 2π(1 − cos θc). 

There are 4π steradians in a spherical surface, so the fraction which escapes is

1

1

q

f =

(1 − cos θc) = (1 −

1 − sin2 θc). 

2

2

The last substitution is easy enough. We never needed to know the depth h. 

(b) f = 1 (1 − p1 − (1/(1.3))2) = 0.18. 

2
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P39-12

(a) The beam of light strikes the face of the fiber at an angle θ and is refracted according

to

n1 sin θ1 = sin θ. 

The beam then travels inside the fiber until it hits the cladding interface; it does so at an angle of 90◦ − θ1 to the normal. It will be reflected if it exceeds the critical angle of

n1 sin θc = n2, 

or if

sin(90◦ − θ1) ≥ n2/n1, 

which can be written as

cos θ1 ≥ n2/n1. 

but if this is the cosine, then we can use sin2 + cos2 = 1 to find the sine, and

q

sin θ1 ≤

1 − n2/n2. 

2

1

Combine this with the first equation and

q

θ ≤ arcsin

n2

. 

1 − n2

2

(b) θ = arcsin p(1.58)2 − (1.53)2 = 23.2◦. 

P39-13

Consider the two possible extremes: a ray of light can propagate in a straight line

directly down the axis of the fiber, or it can reflect off of the sides with the minimum possible angle of incidence. Start with the harder option. 

The minimum angle of incidence that will still involve reflection is the critical angle, so

n2

sin θc =

. 

n1

This light ray has farther to travel than the ray down the fiber axis because it is traveling at an

angle. The distance traveled by this ray is

n1

L0 = L/ sin θc = L

, 

n2

The time taken for this bouncing ray to travel a length L down the fiber is then

L0

L0n1

L n2

t0 =

=

=

1 . 

v

c

c n2

Now for the easier ray. It travels straight down the fiber in a time

L

t =

n1. 

c

The difference is

L  n2



Ln1

t0 − t = ∆t =

1 − n1 =

(n1 − n2). 

c

n2

cn2

(b) For the numbers in Problem 12 we have

(350×103 m)(1.58)

∆t =

((1.58) − (1.53)) = 6.02×10−5s. 

(3.00×108m/s)(1.53)
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P39-14

P39-15

We can assume the airplane speed is small compared to the speed of light, and use Eq. 

39-21. ∆f = 990 Hz; so

|∆f| = f0u/c = u/λ0, 

hence u = (990/s)(0.12 m) = 119 m/s. The actual answer for the speed of the airplane is half this

because there were two Doppler shifts: once when the microwaves struck the plane, and one when the

reflected beam was received by the station. Hence, the plane approaches with a speed of 59.4 m/s. 
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E40-1

(b) Since i = −o, vi = di/dt = −do/dt = −vo. 

(a) In order to change from the frame of reference of the mirror to your own frame of reference

you need to subtract vo from all velocities. Then your velocity is vo − v0 = 0, the mirror is moving

with velocity 0 − vo = −vo and your image is moving with velocity −vo − vo = −2vo. 

E40-2

You are 30 cm from the mirror, the image is 10 cm behind the mirror. You need to focus

40 cm away. 

E40-3

If the mirror rotates through an angle α then the angle of incidence will increase by an

angle α, and so will the angle of reflection. But that means that the angle between the incident

angle and the reflected angle has increased by α twice. 

E40-4

Sketch a line from Sarah through the right edge of the mirror and then beyond. Sarah can

see any image which is located between that line and the mirror. By similar triangles, the image

of Bernie will be d/2 = (3.0 m)/2 = 1/5 m from the mirror when it becomes visible. Since i = −o, 

Bernie will also be 1.5 m from the mirror. 

E40-5

The images are fainter than the object. Several sample rays are shown. 

E40-6

The image is displaced. The eye would need to look up to see it. 

E40-7

The apparent depth of the swimming pool is given by the work done for Exercise 39-

25, dapp = d/n The water then “appears” to be only 186 cm/1.33 = 140 cm deep. The apparent

distance between the light and the mirror is then 250 cm + 140 cm = 390 cm; consequently the

image of the light is 390 cm beneath the surface of the mirror. 

E40-8

Three. There is a single direct image in each mirror and one more image of an image in

one of the mirrors. 
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E40-9

We want to know over what surface area of the mirror are rays of light reflected from the

object into the eye. By similar triangles the diameter of the pupil and the diameter of the part of

the mirror (d) which reflects light into the eye are related by

d

(5.0 mm)

=

, 

(10 cm)

(24 cm) + (10 cm)

which has solution d = 1.47 mm The area of the circle on the mirror is

A = π(1.47 mm)2/4 = 1.7 mm2. 

E40-10

(a) Seven; (b) Five; and (c) Two. This is a problem of symmetry. 

E40-11

Seven. Three images are the ones from Exercise 8. But each image has an image in the

ceiling mirror. That would make a total of six, except that you also have an image in the ceiling

mirror (look up, eh?). So the total is seven! 

E40-12

A point focus is not formed. The envelope of rays is called the caustic. You can see a

similar effect when you allow light to reflect off of a spoon onto a table. 

E40-13

The image is magnified by a factor of 2.7, so the image distance is 2.7 times farther from

the mirror than the object. An important question to ask is whether or not the image is real or

virtual. If it is a virtual image it is behind the mirror and someone looking at the mirror could see it. If it were a real image it would be in front of the mirror, and the man, who serves as the object and is therefore closer to the mirror than the image, would not be able to see it. 

So we shall assume that the image is virtual. The image distance is then a negative number. 

The focal length is half of the radius of curvature, so we want to solve Eq. 40-6, with f = 17.5 cm

and i = −2.7o

1

1

1

0.63

=

+

=

, 

(17.5 cm)

o

−2.7o

o

which has solution o = 11 cm. 

E40-14

The image will be located at a point given by

1

1

1

1

1

1

=

−

=

−

=

. 

i

f

o

(10 cm)

(15 cm)

(30 cm)

The vertical scale is three times the horizontal scale in the figure below. 
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E40-15

This problem requires repeated application of 1/f = 1/o + 1/i, r = 2f , m = −i/o, or

the properties of plane, convex, or concave mirrors. All dimensioned variables below (f, r, i, o) are measured in centimeters. 

(a) Concave mirrors have positive focal lengths, so f = +20; r = 2f = +40; 

1/i = 1/f − 1/o = 1/(20) − 1/(10) = 1/(−20); 

m = −i/o = −(−20)/(10) = 2; the image is virtual and upright. 

(b) m = +1 for plane mirrors only; r = ∞ for flat surface; f = ∞/2 = ∞; i = −o = −10; the

image is virtual and upright. 

(c) If f is positive the mirror is concave; r = 2f = +40; 

1/i = 1/f − 1/o = 1/(20) − 1/(30) = 1/(60); 

m = −i/o = −(60)/(30) = −2; the image is real and inverted. 

(d) If m is negative then the image is real and inverted; only Concave mirrors produce real images

(from real objects); i = −mo = −(−0.5)(60) = 30; 

1/f = 1/o + 1/i = 1/(30) + 1/(60) = 1/(20); 

r = 2f = +40. 

(e) If r is negative the mirror is convex; f = r/2 = (−40)/2 = −20; 

1/o = 1/f − 1/i = 1/(−20) − 1/(−10) = 1/(20); 

m = −(−10)/(20) = 0.5; the image is virtual and upright. 

(f) If m is positive the image is virtual and upright; if m is less than one the image is reduced, 

but only convex mirrors produce reduced virtual images (from real objects); f = −20 for convex

mirrors; r = 2f = −40; let i = −mo = −o/10, then

1/f = 1/o + 1/i = 1/o − 10/o = −9/o, 

so o = −9f = −9(−20) = 180; i = −o/10 = −(180)/10 = −18. 

(g) r is negative for convex mirrors, so r = −40; f = r/2 = −20; convex mirrors produce only

virtual upright images (from real objects); so i is negative; and

1/o = 1/f − 1/i = 1/(−20) − 1/(−4) = 1/(5); 

m = −i/o = −(−4)/(5) = 0.8. 

(h) Inverted images are real; only concave mirrors produce real images (from real objects); 

inverted images have negative m; i = −mo = −(−0.5)(24) = 12; 

1/f = 1/o + 1/i = 1/(24) + 1/(12) = 1/(8); 

r = 2f = 16. 
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E40-16

Use the angle definitions provided by Eq. 40-8. From triangle OaI we have

α + γ = 2θ, 

while from triangle IaC we have

β + θ = γ. 

Combining to eliminate θ we get

α − γ = −2β. 

Substitute Eq. 40-8 and eliminate s, 

1

1

2

−

= − , 

o

i

r

or

1

1

2

+

=

, 

o

−i

−r

which is the same as Eq. 40-4 if i → −i and r → −r. 

E40-17

(a) Consider the point A. Light from this point travels along the line ABC and will be

parallel to the horizontal center line from the center of the cylinder. Since the tangent to a circle defines the outer limit of the intersection with a line, this line must describe the apparent size. 

(b) The angle of incidence of ray AB is given by

sin θ1 = r/R. 

The angle of refraction of ray BC is given by

sin θ2 = r∗/R. 

Snell’s law, and a little algebra, yields

n1 sin θ1

=

n2 sin θ2, 

r

r∗

n1

=

n2

, 

R

R

nr

=

r∗. 

In the last line we used the fact that n2 = 1, because it is in the air, and n1 = n, the index of

refraction of the glass. 

E40-18

This problem requires repeated application of (n2 − n1)/r = n1/o + n2/i. All dimensioned

variables below (r, i, o) are measured in centimeters. 

(a)

(1.5) − (1.0)

(1.0)

−

= −0.08333, 

(30)

(10)

so i = (1.5)/(−0.08333) = −18, and the image is virtual. 

(b)

(1.0)

(1.5)

+

= −0.015385, 

(10)

(−13)

so r = (1.5 − 1.0)/(−0.015385) = −32.5, and the image is virtual. 

(c)

(1.5) − (1.0)

(1.5)

−

= 0.014167, 

(30)

(600)
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so o = (1.0)/(0.014167) = 71. The image was real since i > 0. 

(d) Rearrange the formula to solve for n2, then

 1



 1

1 

n2

− 1i = n1

+

. 

r

r

o

Substituting the numbers, 



1

1





1

1 

n2

−

= (1.0)

+

, 

(−20)

(−20)

(−20)

(20)

which has any solution for n2! Since i < 0 the image is virtual. 

(e)

(1.5)

(1.0)

+

= −0.016667, 

(10)

(−6)

so r = (1.0 − 1.5)/(−0.016667) = 30, and the image is virtual. 

(f)

(1.0) − (1.5)

(1.0)

−

= 0.15, 

(−30)

(−7.5)

so o = (1.5)/(0.15) = 10. The image was virtual since i < 0. 

(g)

(1.0) − (1.5)

(1.5)

−

= −3.81×10−2, 

(30)

(70)

so i = (1.0)/(−3.81×10−2) = −26, and the image is virtual. 

(h) Solving Eq. 40-10 for n2 yields

1/o + 1/r

n2 = n1

, 

1/r − 1/i

so

1/(100) + 1/(−30)

n2 = (1.5)

= 1.0

1/(−30) − 1/(600)

and the image is real. 

E40-19

(b) If the beam is small we can use Eq. 40-10. Parallel incoming rays correspond to an

object at infinity. Solving for n2 yields

1/o + 1/r

n2 = n1

, 

1/r − 1/i

so if o → ∞ and i = 2r, then

1/∞ + 1/r

n2 = (1.0)

= 2.0

1/r − 1/2r

(c) There is no solution if i = r! 

E40-20

The image will be located at a point given by

1

1

1

1

1

1

=

−

=

−

=

. 

i

f

o

(10 cm)

(6 cm)

(−15 cm)
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E40-21

The image location can be found from Eq. 40-15, 

1

1

1

1

1

1

=

−

=

−

=

, 

i

f

o

(−30 cm)

(20 cm)

−12 cm

so the image is located 12 cm from the thin lens, on the same side as the object. 

E40-22

For a double convex lens r1 > 0 and r2 < 0 (see Fig. 40-21 and the accompanying text). 

Then the problem states that r2 = −r1/2. The lens maker’s equation can be applied to get

1

 1

1 

3(n − 1)

= (n − 1)

−

=

, 

f

r1

r2

r1

so r1 = 3(n − 1)f = 3(1.5 − 1)(60 mm) = 90 mm, and r2 = −45 mm. 

E40-23

The object distance is essentially o = ∞, so 1/f = 1/o + 1/i implies f = i, and the image

forms at the focal point. In reality, however, the object distance is not infinite, so the magnification is given by m = −i/o ≈ −f /o, where o is the Earth/Sun distance. The size of the image is then

hi = hof /o = 2(6.96×108m)(0.27 m)/(1.50×1011m) = 2.5 mm. 

The factor of two is because the sun’s radius is given, and we need the diameter! 

E40-24

(a) The flat side has r2 = ∞, so 1/f = (n − 1)/r, where r is the curved side. Then

f = (0.20 m)/(1.5 − 1) = 0.40 m. 

(b) 1/i = 1/f − 1/o = 1/(0.40 m) − 1/(0.40 m) = 0. Then i is ∞. 

E40-25

(a) 1/f = (1.5 − 1)[1/(0.4 m) − 1/(−0.4 m)] = 1/(0.40 m). 

(b) 1/f = (1.5 − 1)[1/(∞) − 1/(−0.4 m)] = 1/(0.80 m). 

(c) 1/f = (1.5 − 1)[1/(0.4 m) − 1/(0.6 m)] = 1/(2.40 m). 

(d) 1/f = (1.5 − 1)[1/(−0.4 m) − 1/(0.4 m)] = 1/(−0.40 m). 

(e) 1/f = (1.5 − 1)[1/(∞) − 1/(0.8 m)] = 1/(−0.80 m). 

(f) 1/f = (1.5 − 1)[1/(0.6 m) − 1/(0.4 m)] = 1/(−2.40 m). 

E40-26

(a) 1/f = (n − 1)[1/(−r) − 1/r], so 1/f = 2(1 − n)/r. 1/i = 1/f − 1/o so if o = r, then

1/i = 2(1 − n)/r − 1/r = (1 − 2n)/r, 

so i = r/(1 − 2n). For n > 0.5 the image is virtual. 

(b) For n > 0.5 the image is virtual; the magnification is

m = −i/o = −r/(1 − 2n)/r = 1/(2n − 1). 

E40-27

According to the definitions, o = f + x and i = f + x0. Starting with Eq. 40-15, 

1

1

1

+

=

, 

o

i

f

i + o

1

=

, 

oi

f

2f + x + x0

1

=

, 

(f + x)(f + x0)

f

2f 2 + f x + f x0

=

f 2 + f x + f x0 + xx0, 

f 2

=

xx0. 
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E40-28

(a) You can’t determine r1, r2, or n. i is found from

1

1

1

1

=

−

=

, 

i

+10

+20

+20

the image is real and inverted. m = −(20)/(20) = −1. 

(b) You can’t determine r1, r2, or n. The lens is converging since f is positive. i is found from

1

1

1

1

=

−

=

, 

i

+10

+5

−10

the image is virtual and upright. m = −(−10)/(+5) = 2. 

(c) You can’t determine r1, r2, or n. Since m is positive and greater than one the lens is

converging. Then f is positive. i is found from

1

1

1

1

=

−

=

, 

i

+10

+5

−10

the image is virtual and upright. m = −(−10)/(+5) = 2. 

(d) You can’t determine r1, r2, or n. Since m is positive and less than one the lens is diverging. 

Then f is negative. i is found from

1

1

1

1

=

−

=

, 

i

−10

+5

−3.3

the image is virtual and upright. m = −(−3.3)/(+5) = 0.66. 

(e) f is found from

1



1

1 

1

= (1.5 − 1)

−

=

. 

f

+30

−30

+30

The lens is converging. i is found from

1

1

1

1

=

−

=

, 

i

+30

+10

−15

the image is virtual and upright. m = −(−15)/(+10) = 1.5. 

(f) f is found from

1



1

1 

1

= (1.5 − 1)

−

=

. 

f

−30

+30

−30

The lens is diverging. i is found from

1

1

1

1

=

−

=

, 

i

−30

+10

−7.5

the image is virtual and upright. m = −(−7.5)/(+10) = 0.75. 

(g) f is found from

1



1

1 

1

= (1.5 − 1)

−

=

. 

f

−30

−60

−120

The lens is diverging. i is found from

1

1

1

1

=

−

=

, 

i

−120

+10

−9.2

the image is virtual and upright. m = −(−9.2)/(+10) = 0.92. 

(h) You can’t determine r1, r2, or n. Upright images have positive magnification. i is found from

i = −(0.5)(10) = −5; 
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f is found from

1

1

1

1

=

+

=

, 

f

+10

−5

−10

so the lens is diverging. 

(h) You can’t determine r1, r2, or n. Real images have negative magnification. i is found from

i = −(−0.5)(10) = 5; 

f is found from

1

1

1

1

=

+

=

, 

f

+10

5

+3.33

so the lens is converging. 

E40-29

o + i = 0.44 m = L, so

1

1

1

1

1

L

=

+

=

+

=

, 

f

o

i

o

L − o

o(L − o)

which can also be written as o2 − oL + f L = 0. This has solution

L ± pL2 − 4f L

(0.44 m) ± p(0.44 m) − 4(0.11 m)(0.44 m)

o =

=

= 0.22 m. 

2

2

There is only one solution to this problem, but sometimes there are two, and other times there are

none! 

E40-30

(a) Real images (from real objects) are only produced by converging lenses. 

(b) Since hi = −h0/2, then i = o/2. But d = i+o = o+o/2 = 3o/2, so o = 2(0.40 m)/3 = 0.267 m, 

and i = 0.133 m. 

(c) 1/f = 1/o + 1/i = 1/(0.267 m) + 1/(0.133 m) = 1/(0.0889 m). 

E40-31

Step through the exercise one lens at a time. The object is 40 cm to the left of a

converging lens with a focal length of +20 cm. The image from this first lens will be located by

solving

1

1

1

1

1

1

=

−

=

−

=

, 

i

f

o

(20 cm)

(40 cm)

40 cm

so i = 40 cm. Since i is positive it is a real image, and it is located to the right of the converging lens. This image becomes the object for the diverging lens. 

The image from the converging lens is located 40 cm - 10 cm from the diverging lens, but it is

located on the wrong side: the diverging lens is “in the way” so the rays which would form the image

hit the diverging lens before they have a chance to form the image. That means that the real image

from the converging lens is a virtual object in the diverging lens, so that the object distance for the diverging lens is o = −30 cm. 

The image formed by the diverging lens is located by solving

1

1

1

1

1

1

=

−

=

−

=

, 

i

f

o

(−15 cm)

(−30 cm)

−30 cm

or i = −30 cm. This would mean the image formed by the diverging lens would be a virtual image, 

and would be located to the left of the diverging lens. 

The image is virtual, so it is upright. The magnification from the first lens is

m1 = −i/o = −(40 cm)/(40 cm)) = −1; 
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the magnification from the second lens is

m2 = −i/o = −(−30 cm)/(−30 cm)) = −1; 

which implies an overall magnification of m1m2 = 1. 

E40-32

(a) The parallel rays of light which strike the lens of focal length f will converge on the

focal point. This point will act like an object for the second lens. If the second lens is located a

distance L from the first then the object distance for the second lens will be L − f . Note that this will be a negative value for L < f , which means the object is virtual. The image will form at a point 1/i = 1/(−f ) − 1/(L − f ) = L/f (f − L). 

Note that i will be positive if L < f , so the rays really do converge on a point. 

(b) The same equation applies, except switch the sign of f . Then

1/i = 1/(f ) − 1/(L − f ) = L/f (L − f ). 

This is negative for L < f , so there is no real image, and no converging of the light rays. 

(c) If L = 0 then i = ∞, which means the rays coming from the second lens are parallel. 

E40-33

The image from the converging lens is found from

1

1

1

1

=

−

=

i1

(0.58 m)

(1.12 m)

1.20 m

so i1 = 1.20 m, and the image is real and inverted. 

This real image is 1.97 m − 1.20 m = 0.77 m in front of the plane mirror. It acts as an object

for the mirror. The mirror produces a virtual image 0.77 m behind the plane mirror. This image is

upright relative to the object which formed it, which was inverted relative to the original object. 

This second image is 1.97 m + 0.77 m = 2.74 m away from the lens. This second image acts as an

object for the lens, the image of which is found from

1

1

1

1


=

−

=

i3

(0.58 m)

(2.74 m)

0.736 m

so i3 = 0.736 m, and the image is real and inverted relative to the object which formed it, which was inverted relative to the original object. So this image is actually upright. 

E40-34

(a) The first lens forms a real image at a location given by

1/i = 1/f − 1/o = 1/(0.1 m) − 1/(0.2 m) = 1/(0.2 m). 

The image and object distance are the same, so the image has a magnification of 1. This image is

0.3 m − 0.2 m = 0.1 m from the second lens. The second lens forms an image at a location given by

1/i = 1/f − 1/o = 1/(0.125 m) − 1/(0.1 m) = 1/(−0.5 m). 

Note that this puts the final image at the location of the original object! The image is magnified by a factor of (0.5 m)/(0.1 m) = 5. 

(c) The image is virtual, but inverted. 
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E40-35

If the two lenses “pass” the same amount of light then the solid angle subtended by each

lens as seen from the respective focal points must be the same. If we assume the lenses have the

same round shape then we can write this as do/f o = de/f e. Then

de

f o

=

= mθ, 

do

f e

or de = (72 mm)/36 = 2 mm. 

E40-36

(a) f = (0.25 m)/(200) ≈ 1.3 mm. Then 1/f = (n − 1)(2/r) can be used to find r; 

r = 2(n − 1)f = 2(1.5 − 1)(1.3 mm) = 1.3 mm. 

(b) The diameter would be twice the radius. In effect, these were tiny glass balls. 

E40-37

(a) In Fig. 40-46(a) the image is at the focal point. This means that in Fig. 40-46(b)

i = f = 2.5 cm, even though f 0 6= f . Solving, 

1

1

1

1

=

+

=

. 

f

(36 cm)

(2.5 cm)

2.34 cm

(b) The effective radii of curvature must have decreased. 

E40-38

(a) s = (25 cm) − (4.2 cm) − (7.7 cm) = 13.1 cm. 

(b) i = (25 cm) − (7.7 cm) = 17.3 cm. Then

1

1

1

1

=

−

=

o

(4.2 cm)

(17.3 cm)

5.54 cm. 

The object should be placed 5.5 − 4.2 = 1.34 cm beyond F1. 

(c) m = −(17.3)/(5.5) = −3.1. 

(d) mθ = (25 cm)/(7.7 cm) = 3.2. 

(e) M = mmθ = −10. 

E40-39

Microscope magnification is given by Eq. 40-33. We need to first find the focal length

of the objective lens before we can use this formula. We are told in the text, however, that the

microscope is constructed so the at the object is placed just beyond the focal point of the objective lens, then f ob ≈ 12.0 mm. Similarly, the intermediate image is formed at the focal point of the

eyepiece, so f ey ≈ 48.0 mm. The magnification is then

−s(250 mm)

(285 mm)(250 mm)

m =

= −

= 124. 

f obf ey

(12.0 mm)(48.0 mm)

A more accurate answer can be found by calculating the real focal length of the objective lens, which is 11.4 mm, but since there is a huge uncertainty in the near point of the eye, I see no point in trying to be more accurate than this. 

P40-1

The old intensity is Io = P/4πd2, where P is the power of the point source. With the

mirror in place there is an additional amount of light which needs to travel a total distance of 3d

in order to get to the screen, so it contributes an additional P/4π(3d)2 to the intensity. The new

intensity is then

In = P/4πd2 + P/4π(3d)2 = (10/9)P/4πd2 = (10/9)Io. 
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P40-2

(a) vi = di/dt; but i = f o/(o − f ) and f = r/2 so

d 

ro





r

2 do



r

2

vi =

= −

= −

vo. 

dt

2o − r

2o − r

dt

2o − r

(b) Put in the numbers! 



(15 cm)

2

vi = −

(5.0 cm/s) = −6.2×10−2 cm/s. 

2(75 cm) − (15 cm)

(c) Put in the numbers! 



(15 cm)

2

vi = −

(5.0 cm/s) = −70 m/s

2(7.7 cm) − (15 cm)

(d) Put in the numbers! 



(15 cm)

2

vi = −

(5.0 cm/s) = −5.2 cm/s. 

2(0.15 cm) − (15 cm)

P40-3

(b) There are two ends to the object of length L, one of these ends is a distance o1 from

the mirror, and the other is a distance o2 from the mirror. The images of the two ends will be

located at i1 and i2. 

Since we are told that the object has a short length L we will assume that a differential approach

to the problem is in order. Then

L = ∆o = o1 − o2 and L0 = ∆i = i1 − i2, 

Finding the ratio of L0/L is then reduced to

L0

∆i

di

=

≈

. 

L

∆o

do

We can take the derivative of Eq. 40-15 with respect to changes in o and i, 

di

do

+

= 0, 

i2

o2

or

L0

di

i2

≈

= −

= −m2, 

L

do

o2

where m is the lateral magnification. 

(a) Since i is given by

1

1

1

o − f

=

−

=

, 

i

f

o

of

the fraction i/o can also be written

i

of

f

=

=

. 

o

o(o − f )

o − f

Then

i2



f

2

L ≈ −

= −

o2

o − f
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P40-4

The left surface produces an image which is found from n/i = (n − 1)/R − 1/o, but since

the incoming rays are parallel we take o = ∞ and the expression simplifies to i = nR/(n − 1). This

image is located a distance o = 2R − i = (n − 2)R/(n − 1) from the right surface, and the image

produced by this surface can be found from

1/i = (1 − n)/(−R) − n/o = (n − 1)/R − n(n − 1)/(n − 2)R = 2(1 − n)/(n − 2)R. 

Then i = (n − 2)R/2(n − 1). 

P40-5

The “1” in Eq. 40-18 is actually nair; the assumption is that the thin lens is in the air. If

that isn’t so, then we need to replace “1” with n0, so Eq. 40-18 becomes

n0

n

n − n0

−

=

. 

o

|i0|

r1

A similar correction happens to Eq. 40-21:

n

n0

n − n0

+

= −

. 

|i0|

i

r2

Adding these two equations, 

n0

n0

 1

1 

+

= (n − n0)

−

. 

o

i

r1

r2

This yields a focal length given by

1

n − n0  1

1 

=

−

. 

f

n

r1

r2

P40-6

Start with Eq. 40-4

1

1

1

+

=

, 

o

i

f

|f|

|f|

|f|

+

=

, 

o

i

f

1

1

+

=

±1, 

y

y0

where + is when f is positive and − is when f is negative. 

The plot on the right is for +, that on the left for −. 

Real image and objects occur when y or y0 is positive. 
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P40-7

(a) The image (which will appear on the screen) and object are a distance D = o + i

apart. We can use this information to eliminate one variable from Eq. 40-15, 

1

1

1

+

=

, 

o

i

f

1

1

1

+

=

, 

o

D − o

f

D

1

=

, 

o(D − o)

f

o2 − oD + f D = 0. 

This last expression is a quadratic, and we would expect to get two solutions for o. These solutions

will be of the form “something” plus/minus “something else”; the distance between the two locations

for o will evidently be twice the “something else”, which is then

p

p

d = o+ − o− =

(−D)2 − 4(f D) =

D(D − 4f ). 

(b) The ratio of the image sizes is m+/m−, or i+o−/i−o+. Now it seems we must find the actual

values of o+ and o−. From the quadratic in part (a) we have

D ± pD(D − 4f )

D ± d

o± =

=

, 

2

2

so the ratio is

o





−

D − d

=

. 

o+

D + d

But i− = o+, and vice-versa, so the ratio of the image sizes is this quantity squared. 

P40-8

1/i = 1/f − 1/o implies i = f o/(o − f ). i is only real if o ≥ f . The distance between the

image and object is

of

o2

y = i + o =

+ o =

. 

o − f

o − f

This quantity is a minimum when dy/do = 0, which occurs when o = 2f . Then i = 2f , and y = 4f . 

P40-9

(a) The angular size of each lens is the same when viewed from the shared focal point. This

means W1/f1 = W2/f2, or

W2 = (f2/f1)W1. 

(b) Pass the light through the diverging lens first; choose the separation of the lenses so that

the focal point of the converging lens is at the same location as the focal point of the diverging lens which is on the opposite side of the diverging lens. 

(c) Since I ∝ 1/A, where A is the area of the beam, we have I ∝ 1/W 2. Consequently, 

I2/I1 = (W1/W2)2 = (f1/f2)2

P40-10

The location of the image in the mirror is given by

1

1

1

=

−

. 

i

f

a + b
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The location of the image in the plate is given by i0 = −a, which is located at b − a relative to the mirror. Equating, 

1

1

1

+

=

, 

b − a

b + a

f

2b

1

=

, 

b2 − a2

f

b2 − a2

=

2bf, 

p

a

=

b2 − 2bf , 

p

=

(7.5 cm)2 − 2(7.5 cm)(−28.2 cm) = 21.9 cm. 

P40-11

We’ll solve the problem by finding out what happens if you put an object in front of the

combination of lenses. 

Let the object distance be o1. The first lens will create an image at i1, where

1

1

1

=

−

i1

f1

o1

This image will act as an object for the second lens. 

If the first image is real (i1 positive) then the image will be on the “wrong” side of the second

lens, and as such the real image will act like a virtual object. In short, o2 = −i1 will give the correct sign to the object distance when the image from the first lens acts like an object for the second lens. 

The image formed by the second lens will then be at

1

1

1

=

−

, 

i2

f2

o2

1

1

=

+

, 

f2

i2

1

1

1

=

+

−

. 

f2

f1

o1

In this case it appears as if the combination

1

1

+

f2

f1

is equivalent to the reciprocal of a focal length. We will go ahead and make this connection, and

1

1

1

f1 + f2

=

+

=

. 

f

f2

f1

f1f2

The rest is straightforward enough. 

P40-12

(a) The image formed by the first lens can be found from

1

1

1

1

=

−

=

. 

i1

f1

2f1

2f1

This is a distance o2 = 2(f1 + f2) = 2f2 from the mirror. The image formed by the mirror is at an

image distance given by

1

1

1

1

=

−

=

. 

i2

f2

2f2

2f2

Which is at the same point as i1!. This means it will act as an object o3 in the lens, and, reversing the first step, produce a final image at O, the location of the original object. There are then three images formed; each is real, same size, and inverted. Three inversions nets an inverted image. The

final image at O is therefore inverted. 
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P40-13

(a) Place an object at o. The image will be at a point i0 given by

1

1

1

=

− , 

i0

f

o

or i0 = f o/(o − f ). 

(b) The lens must be shifted a distance i0 − i, or

f o

i0 − i =

− 1. 

o − f

(c) The range of motion is

(0.05 m)(1.2 m)

∆i =

− 1 = −5.2 cm. 

(1.2 m) − (0.05 m)

P40-14

(a) Because magnification is proportional to 1/f . 

(b) Using the results of Problem 40-11, 

1

1

1

=

+

, 

f

f2

f1

so P = P1 + P2. 

P40-15

We want the maximum linear motion of the train to move no more than 0.75 mm on the

film; this means we want to find the size of an object on the train that will form a 0.75 mm image. 

The object distance is much larger than the focal length, so the image distance is approximately

equal to the focal length. The magnification is then m = −i/o = (3.6 cm)/(44.5 m) = −0.00081. 

The size of an object on the train that would produce a 0.75 mm image on the film is then

0.75 mm/0.00081 = 0.93 m. 

How much time does it take the train to move that far? 

(0.93 m)

t =

= 25 ms. 

(135 km/hr)(1/3600 hr/s)

P40-16

(a) The derivation leading to Eq. 40-34 depends only on the fact that two converging

optical devices are used. 

Replacing the objective lens with an objective mirror doesn’t change

anything except the ray diagram. 

(b) The image will be located very close to the focal point, so |m| ≈ f /o, and

(16.8 m)

hi = (1.0 m)

= 8.4×10−3m

(2000 m)

(c) f e = (5 m)/(200) = 0.025 m. Note that we were given the radius of curvature, not the focal

length, of the mirror! 
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E41-1

In this problem we look for the location of the third-order bright fringe, so

mλ

(3)(554 × 10−9m)

θ = sin−1

= sin−1

= 12.5◦ = 0.22 rad. 

d

(7.7 × 10−6m)

E41-2

d1 sin θ = λ gives the first maximum; d2 sin θ = 2λ puts the second maximum at the location

of the first. Divide the second expression by the first and d2 = 2d1. This is a 100% increase in d. 

E41-3

∆y = λD/d = (512×10−9m)(5.4 m)/(1.2×10−3m) = 2.3×10−3m. 

E41-4

d = λ/ sin θ = (592×10−9m)/ sin(1.00◦) = 3.39×10−5m. 

E41-5

Since the angles are very small, we can assume sin θ ≈ θ for angles measured in radians. 

If the interference fringes are 0.23◦ apart, then the angular position of the first bright fringe

is 0.23◦ away from the central maximum. Eq. 41-1, written with the small angle approximation

in mind, is dθ = λ for this first (m = 1) bright fringe. The goal is to find the wavelength which

increases θ by 10%. To do this we must increase the right hand side of the equation by 10%, which

means increasing λ by 10%. The new wavelength will be λ0 = 1.1λ = 1.1(589 nm) = 650 nm

E41-6

Immersing the apparatus in water will shorten the wavelengths to λ/n. Start with d sin θ0 =

λ; and then find θ from d sin θ = λ/n. Combining the two expressions, 

θ = arcsin[sin θ0/n] = arcsin[sin(0.20◦)/(1.33)] = 0.15◦. 

E41-7

The third-order fringe for a wavelength λ will be located at y = 3λD/d, where y is measured

from the central maximum. Then ∆y is

y1 − y2 = 3(λ1 − λ2)D/d = 3(612×10−9m − 480×10−9m)(1.36 m)/(5.22×10−3m) = 1.03×10−4m. 

E41-8

θ = arctan(y/D); 

λ = d sin θ = (0.120 m) sin[arctan(0.180 m/2.0 m)] = 1.08×10−2m. 

Then f = v/λ = (0.25 m/s)/(1.08×10−2m) = 23 Hz. 

E41-9

A variation of Eq. 41-3 is in order:



1  λD

ym =

m + 2

d

We are given the distance (on the screen) between the first minima (m = 0) and the tenth minima

(m = 9). Then

λ(50 cm)

18 mm = y9 − y0 = 9

, 

(0.15 mm)

or λ = 6×10−4 mm = 600 nm. 

E41-10

The “maximum” maxima is given by the integer part of

m = d sin(90◦)/λ = (2.0 m)/(0.50 m) = 4. 

Since there is no integer part, the “maximum” maxima occurs at 90◦. These are point sources

radiating in both directions, so there are two central maxima, and four maxima each with m = 1, 

m = 2, and m = 3. But the m = 4 values overlap at 90◦, so there are only two. The total is 16. 
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E41-11

This figure should explain it well enough. 

E41-12

∆y = λD/d = (589×10−9m)(1.13 m)/(0.18×10−3m) = 3.70×10−3m. 

E41-13

Consider Fig. 41-5, and solve it exactly for the information given. For the tenth bright

fringe r1 = 10λ + r2. There are two important triangles:

r2 = D2 + (y

2

− d/2)2

and

r2 = D2 + (y + d/2)2

1

Solving to eliminate r2, 

p

p

D2 + (y + d/2)2 =

D2 + (y − d/2)2 + 10λ. 

This has solution

r 4D2 + d2 − 100λ2

y = 5λ

. 

d2 − 100λ2

The solution predicted by Eq. 41-1 is

10λ p

y0 =

D2 + y02, 

d

or

r

4D2

y0 = 5λ

. 

d2 − 100λ2

The fractional error is y0/y − 1, or

r

4D2

− 1, 

4D2 + d2 − 100λ2

or

s

4(40 mm)2

− 1 = −3.1×10−4. 

4(40 mm)2 + (2 mm)2 − 100(589×10−6mm)2

E41-14

(a) ∆x = c/∆t = (3.00×108m/s)/(1×10−8s) = 3 m. 

(b) No. 
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E41-15

Leading by 90◦ is the same as leading by a quarter wavelength, since there are 360◦ in a

circle. The distance from A to the detector is 100 m longer than the distance from B to the detector. 

Since the wavelength is 400 m, 100 m corresponds to a quarter wavelength. 

So a wave peak starts out from source A and travels to the detector. When it has traveled a

quarter wavelength a wave peak leaves source B. But when the wave peak from A has traveled

a quarter wavelength it is now located at the same distance from the detector as source B, which

means the two wave peaks arrive at the detector at the same time. 

They are in phase. 

E41-16

The first dark fringe involves waves π radians out of phase. Each dark fringe after that

involves an additional 2π radians of phase difference. So the mth dark fringe has a phase difference

of (2m + 1)π radians. 

E41-17

I = 4I0 cos2 2πd sin θ, so for this problem we want to plot

λ

 2π(0.60 mm)



I/I0 = cos2

sin θ

= cos2 (6280 sin θ) . 

(600×10−9m)

E41-18

The resultant quantity will be of the form A sin(ωt + β). Solve the problem by looking at

t = 0; then y1 = 0, but x1 = 10, and y2 = 8 sin 30◦ = 4 and x2 = 8 cos 30 = 6.93. Then the resultant

is of length

p

A =

(4)2 + (10 + 6.93)2 = 17.4, 

and has an angle β given by

β = arctan(4/16.93) = 13.3◦. 

E41-19

(a) We want to know the path length difference of the two sources to the detector. 

Assume the detector is at x and the second source is at y = d. 

The distance S1D is x; the

√

√

distance S2D is

x2 + d2. The difference is

x2 + d2 − x. If this difference is an integral number

of wavelengths then we have a maximum; if instead it is a half integral number of wavelengths we

have a minimum. For part (a) we are looking for the maxima, so we set the path length difference

equal to mλ and solve for xm. 

px2 + d2

m

− xm = mλ, 

x2 + d2

=

(mλ + x

m

m)2, 

x2 + d2

=

m2λ2 + 2mλx

, 

m

m + x2

m

d2 − m2λ2

xm

=

2mλ

The first question we need to ask is what happens when m = 0. The right hand side becomes

indeterminate, so we need to go back to the first line in the above derivation. If m = 0 then d2 = 0; since this is not true in this problem, there is no m = 0 solution. 

In fact, we may have even more troubles. xm needs to be a positive value, so the maximum

allowed value for m will be given by

m2λ2

< 

d2, 

m

< 

d/λ = (4.17 m)/(1.06 m) = 3.93; 

but since m is an integer, m = 3 is the maximum value. 
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The first three maxima occur at m = 3, m = 2, and m = 1. These maxima are located at

(4.17 m)2 − (3)2(1.06 m)2

x3

=

= 1.14 m, 

2(3)(1.06 m)

(4.17 m)2 − (2)2(1.06 m)2

x2

=

= 3.04 m, 

2(2)(1.06 m)

(4.17 m)2 − (1)2(1.06 m)2

x1

=

= 7.67 m. 

2(1)(1.06 m)

Interestingly enough, as m decreases the maxima get farther away! 

(b) The closest maxima to the origin occurs at x = ±6.94 cm. What then is x = 0? It is a local

minimum, but the intensity isn’t zero. It corresponds to a point where the path length difference is

3.93 wavelengths. It should be half an integer to be a complete minimum. 

E41-20

The resultant can be written in the form A sin(ωt + β). Consider t = 0. The three

components can be written as

y1

=

10 sin 0◦ = 0, 

y2

=

14 sin 26◦ = 6.14, 

y3

=

4.7 sin(−41◦) = −3.08, 

y

=

0 + 6.14 − 3.08 = 3.06. 

and

x1

=

10 cos 0◦ = 10, 

x2

=

14 cos 26◦ = 12.6, 

x3

=

4.7 cos(−41◦) = 3.55, 

x

=

10 + 12.6 + 3.55 = 26.2. 

Then A = p(3.06)2 + (26.2)2 = 26.4 and β = arctan(3.06/26.2) = 6.66◦. 

E41-21

The order of the indices of refraction is the same as in Sample Problem 41-4, so

d = λ/4n = (620 nm)/4(1.25) = 124 nm. 

E41-22

Follow the example in Sample Problem 41-3. 

2dn

2(410 nm)(1.50)

1230 nm

λ =

=

=

. 

m − 1/2

m − 1/2

m − 1/2

The result is only in the visible range when m = 3, so λ = 492 nm. 

E41-23

(a) Light from above the oil slick can be reflected back up from the top of the oil layer

or from the bottom of the oil layer. For both reflections the light is reflecting off a substance with a higher index of refraction so both reflected rays pick up a phase change of π. Since both waves

have this phase the equation for a maxima is

1

1

2d +

λn + λn = mλn. 

2

2

Remember that λn = λ/n, where n is the index of refraction of the thin film. Then 2nd = (m − 1)λ

is the condition for a maxima. We know n = 1.20 and d = 460 nm. We don’t know m or λ. It might
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seem as if there isn’t enough information to solve the problem, but we can. We need to find the

wavelength in the visible range (400 nm to 700 nm) which has an integer m. Trial and error might

work. If λ = 700 nm, then m is

2nd

2(1.20)(460 nm)

m =

+ 1 =

+ 1 = 2.58

λ

(700 nm)

But m needs to be an integer. If we increase m to 3, then

2(1.20)(460 nm)

λ =

= 552 nm

(3 − 1)

which is in the visible range. So the oil slick will appear green. 

(b) One of the most profound aspects of thin film interference is that wavelengths which are

maximally reflected are minimally transmitted, and vice versa. Finding the maximally transmitted

wavelengths is the same as finding the minimally reflected wavelengths, or looking for values of m

that are half integer. 

The most obvious choice is m = 3.5, and then

2(1.20)(460 nm)

λ =

= 442 nm. 

(3.5 − 1)

E41-24

The condition for constructive interference is 2nd = (m − 1/2)λ. Assuming a minimum

value of m = 1 one finds

d = λ/4n = (560 nm)/4(2.0) = 70 nm. 

E41-25

The top surface contributes a phase difference of π, so the phase difference because of the

thickness is 2π, or one complete wavelength. Then 2d = λ/n, or d = (572 nm)/2(1.33) = 215 nm. 

E41-26

The wave reflected from the first surface picks up a phase shift of π. The wave which is

reflected off of the second surface travels an additional path difference of 2d. The interference will be bright if 2d + λn/2 = mλn results in m being an integer. 

m = 2nd/λ + 1/2 = 2(1.33)(1.21×10−6m)/(585×10−9m) + 1/2 = 6.00, 

so the interference is bright. 

E41-27

As with the oil on the water in Ex. 41-23, both the light which reflects off of the acetone

and the light which reflects off of the glass undergoes a phase shift of π. Then the maxima for

reflection are given by 2nd = (m − 1)λ. We don’t know m, but at some integer value of m we have

λ = 700 nm. If m is increased by exactly 1 then we are at a minimum of λ = 600 nm. Consequently, 

2

2(1.25)d = (m − 1)(700 nm) and 2(1.25)d = (m − 1/2)(600 nm), 

we can set these two expressions equal to each other to find m, 

(m − 1)(700 nm) = (m − 1/2)(600 nm), 

so m = 4. Then we can find the thickness, 

d = (4 − 1)(700 nm)/2(1.25) = 840 nm. 
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E41-28

The wave reflected from the first surface picks up a phase shift of π. The wave which is

reflected off of the second surface travels an additional path difference of 2d. The interference will be bright if 2d + λn/2 = mλn results in m being an integer. Then 2nd = (m − 1/2)λ1 is bright, and

2nd = mλ2 is dark. Divide one by the other and (m − 1/2)λ1 = mλ2, so

m = λ1/2(λ1 − λ2) = (600 nm)/2(600 nm − 450 nm) = 2, 

then d = mλ2/2n = (2)(450 nm)/2(1.33) = 338 nm. 

E41-29

Constructive interference happens when 2d = (m − 1/2)λ. The minimum value for m is

m = 1; the maximum value is the integer portion of 2d/λ+1/2 = 2(4.8×10−5m)/(680×10−9m)+1/2 =

141.67, so mmax = 141. There are then 141 bright bands. 

E41-30

(a) A half wavelength phase shift occurs for both the air/water interface and the water/oil

interface, so if d = 0 the two reflected waves are in phase. It will be bright! 

(b) 2nd = 3λ, or d = 3(475 nm)/2(1.20) = 594 nm. 

E41-31

There is a phase shift on one surface only, so the bright bands are given by 2nd = (m −

1/2)λ. Let the first band be given by 2nd1 = (m1 − 1/2)λ. The last bright band is then given by

2nd2 = (m1 + 9 − 1/2)λ. Subtract the two equations to get the change in thickness:

∆d = 9λ/2n = 9(630 nm)/2(1.50) = 1.89 µm. 

E41-32

Apply Eq. 41-21: 2nd = mλ. In one case we have

2nair = (4001)λ, 

in the other, 

2nvac = (4000)λ. 

Equating, nair = (4001)/(4000) = 1.00025. 

E41-33

(a) We can start with the last equation from Sample Problem 41-5, 

r

1

r =

(m − )λR, 

2

and solve for m, 

r2

1

m =

+

λR

2

In this exercise R = 5.0 m, r = 0.01 m, and λ = 589 nm. Then

(0.01 m)2

m =

= 34

(589 nm)(5.0 m)

is the number of rings observed. 

(b) Putting the apparatus in water effectively changes the wavelength to

(589 nm)/(1.33) = 443 nm, 

so the number of rings will now be

(0.01 m)2

m =

= 45. 

(443 nm)(5.0 m)
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q

q

E41-34

(1.42 cm) =

(10 − 1 )Rλ, while (1.27 cm) =

(10 − 1 )Rλ/n. Divide one expression by

2

2

√

the other, and (1.42 cm)/(1.27 cm) =

n, or n = 1.25. 

q

q

E41-35

(0.162 cm) =

(n − 1 )Rλ, while (0.368 cm) =

(n + 20 − 1 )Rλ. Square both expres-

2

2

sions, the divide one by the other, and find

(n + 19.5)/(n − 0.5) = (0.368 cm/0.162 cm)2 = 5.16

which can be rearranged to yield

19.5 + 5.16 × 0.5

n =

= 5.308. 

5.16 − 1

Oops! That should be an integer, shouldn’t it? The above work is correct, which means that there

really aren’t bright bands at the specified locations. I’m just going to gloss over that fact and solve for R using the value of m = 5.308. Then

R = r2/(m − 1/2)λ = (0.162 cm)2/(5.308 − 0.5)(546 nm) = 1.00 m. 

Well, at least we got the answer which is in the back of the book... 

E41-36

Pretend the ship is a two point source emitter, one h above the water, and one h below

the water. The one below the water is out of phase by half a wavelength. Then d sin θ = λ, where

d = 2h, gives the angle for theta for the first minimum. 

λ/2h = (3.43 m)/2(23 m) = 7.46×10−2 = sin θ ≈ H/D, 

so D = (160 m)/(7.46×10−2) = 2.14 km. 

E41-37

The phase difference is 2π/λn times the path difference which is 2d, so

φ = 4πd/λn = 4πnd/λ. 

We are given that d = 100×10−9m and n = 1.38. 

(a) φ = 4π(1.38)(100×10−9m)/(450×10−9m) = 3.85. Then

I

(3.85)

= cos2

= 0.12. 

I0

2

The reflected ray is diminished by 1 − 0.12 = 88%. 

(b) φ = 4π(1.38)(100×10−9m)/(650×10−9m) = 2.67. Then

I

(2.67)

= cos2

= 0.055. 

I0

2

The reflected ray is diminished by 1 − 0.055 = 95%. 

E41-38

The change in the optical path length is 2(d − d/n), so 7λ/n = 2d(1 − 1/n), or

7(589×10−9m)

d =

= 4.9×10−6m. 

2(1.42) − 2

209

E41-39

When M2 moves through a distance of λ/2 a fringe has will be produced, destroyed, and

then produced again. This is because the light travels twice through any change in distance. The

wavelength of light is then

2(0.233 mm)

λ =

= 588 nm. 
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E41-40

The change in the optical path length is 2(d − d/n), so 60λ = 2d(1 − 1/n), or

1

1

n =

=

= 1.00030. 

1 − 60λ/2d

1 − 60(500×10−9m)/2(5×10−2m)

P41-1

(a) This is a small angle problem, so we use Eq. 41-4. The distance to the screen is

2 × 20 m, because the light travels to the mirror and back again. Then

λD

(632.8 nm)(40.0 m)

d =

=

= 0.253 mm. 

∆y

(0.1 m)

(b) Placing the cellophane over one slit will cause the interference pattern to shift to the left or

right, but not disappear or change size. How does it shift? Since we are picking up 2.5 waves then

we are, in effect, swapping bright fringes for dark fringes. 

P41-2

The change in the optical path length is d − d/n, so 7λ/n = d(1 − 1/n), or

7(550×10−9m)

d =

= 6.64×10−6m. 

(1.58) − 1

P41-3

The distance from S1 to P is r1 = p(x + d/2)2 + y2. The distance from S2 to P is

r2 = p(x − d/2)2 + y2. The difference in distances is fixed at some value, say c, so that

r1 − r2

=

c, 

r2

=

c2, 

1 − 2r1r2 + r2

2

(r2 + r2

r2, 

1

2 − c2)2

=

4r21 2

(r2

)2

+ r2) + c4

=

0, 

1 − r2

2

− 2c2(r21

2

(2xd)2 − 2c2(2x2 + d2/2 + 2y2) + c4

=

0, 

4x2d2 − 4c2x2 − c2d2 − 4c2y2 + c4

=

0, 

4(d2 − c2)x2 − 4c2y2

=

c2(d2 − c2). 

Yes, that is the equation of a hyperbola. 

P41-4

The change in the optical path length for each slit is nt − t, where n is the corresponding

index of refraction. The net change in the path difference is then n2t − n1t. Consequently, mλ =

t(n2 − n1), so

(5)(480×10−9m)

t =

= 8.0×10−6m. 

(1.7) − (1.4)

P41-5

The intensity is given by Eq. 41-17, which, in the small angle approximation, can be

written as

 πdθ 

Iθ = 4I0 cos2

. 

λ
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The intensity will be half of the maximum when

1

 πd∆θ/2 

= cos2

2

λ

or

π

πd∆θ

=

, 

4

2λ

which will happen if ∆θ = λ/2d. 

P41-6

Follow the construction in Fig. 41-10, except that one of the electric field amplitudes is

twice the other. The resultant field will have a length given by

p

E0

=

(2E0 + E0 cos φ)2 + (E0 sin φ)2, 

p

=

E0

5 + 4 cos φ, 

so squaring this yields



2πd sin θ 

I

=

I0 5 + 4 cos

, 

λ



πd sin θ 

=

I0 1 + 8 cos2

, 

λ

I





m

πd sin θ

=

1 + 8 cos2

. 

9

λ

P41-7

We actually did this problem in Exercise 41-27, although slightly differently. One maxi-

mum is

2(1.32)d = (m − 1/2)(679 nm), 

the other is

2(1.32)d = (m + 1/2)(485 nm). 

Set these equations equal to each other, 

(m − 1/2)(679 nm) = (m + 1/2)(485 nm), 

and find m = 3. Then the thickness is

d = (3 − 1/2)(679 nm)/2(1.32) = 643 nm. 

P41-8

(a) Since we are concerned with transmission there is a phase shift for two rays, so

2d = mλn

The minimum thickness occurs when m = 1; solving for d yields

λ

(525×10−9m)

d =

=

= 169×10−9m. 

2n

2(1.55)

(b) The wavelengths are different, so the other parts have differing phase differences. 

(c) The nearest destructive interference wavelength occurs when m = 1.5, or

λ = 2nd = 2(1.55)1.5(169×10−9m) = 393×10−9m. 

This is blue-violet. 
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P41-9

It doesn’t matter if we are looking at bright are dark bands. It doesn’t even matter if we

concern ourselves with phase shifts. All that cancels out. Consider 2δd = δmλ; then

δd = (10)(480 nm)/2 = 2.4 µm. 

P41-10

(a) Apply 2d = mλ. Then

d = (7)(600×10−9m)/2 = 2100×10−9m. 

(b) When water seeps in it introduces an extra phase shift. Point A becomes then a bright fringe, 

and the equation for the number of bright fringes is 2nd = mλ. Solving for m, 

m = 2(1.33)(2100×10−9m)/(600×10−9m) = 9.3; 

this means that point B is almost, but not quite, a dark fringe, and there are nine of them. 

P41-11

(a) Look back at the work for Sample Problem 41-5 where it was found

r

1

rm =

(m − )λR, 

2

We can write this as

s

1 

rm =

1 −

mλR

2m

and expand the part in parentheses in a binomial expansion, 



1 1  √

rm ≈ 1 −

mλR. 

2 2m

We will do the same with

r

1

rm+1 =

(m + 1 − )λR, 

2

expanding

s

1 

rm+1 =

1 +

mλR

2m

to get



1 1  √

rm+1 ≈ 1 +

mλR. 

2 2m

Then

1 √

∆r ≈

mλR, 

2m

or

1 p

∆r ≈

λR/m. 

2

(b) The area between adjacent rings is found from the difference, 

A = π r2

 , 

m+1 − r2

m

and into this expression we will substitute the exact values for rm and rm+1, 



1

1



A

=

π

(m + 1 − )λR − (m − )λR , 

2

2

=

πλR. 

Unlike part (a), we did not need to assume m  1 in order to arrive at this expression; it is exact

for all m. 
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P41-12

The path length shift that occurs when moving the mirror as distance x is 2x. This means

φ = 2π2x/λ = 4πx/λ. The intensity is then

2πx

I = 4I0 cos2 λ
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E42-1

λ = a sin θ = (0.022 mm) sin(1.8◦) = 6.91×10−7m. 

E42-2

a = λ/ sin θ = (0.10×10−9m)/ sin(0.12×10−3 rad/2) = 1.7 µm. 

E42-3

(a) This is a valid small angle approximation problem: the distance between the points

on the screen is much less than the distance to the screen. Then

(0.0162 m)

θ ≈

= 7.5 × 10−3 rad. 

(2.16 m)

(b) The diffraction minima are described by Eq. 42-3, 

a sin θ

=

mλ, 

a sin(7.5 × 10−3 rad) = (2)(441 × 10−9 m), 

a

=

1.18 × 10−4 m. 

E42-4

a = λ/ sin θ = (633×10−9m)/ sin(1.97◦/2) = 36.8 µm. 

E42-5

(a) We again use Eq. 

42-3, but we will need to throw in a few extra subscripts to

distinguish between which wavelength we are dealing with. If the angles match, then so will the sine

of the angles. We then have sin θa,1 = sin θb,2 or, using Eq. 42-3, 

(1)λa

(2)λb

=

, 

a

a

from which we can deduce λa = 2λb. 

(b) Will any other minima coincide? We want to solve for the values of ma and mb that will be

integers and have the same angle. Using Eq. 42-3 one more time, 

maλa

mbλb

=

, 

a

a

and then substituting into this the relationship between the wavelengths, ma = mb/2. whenever mb

is an even integer ma is an integer. Then all of the diffraction minima from λa are overlapped by a

minima from λb. 

E42-6

The angle is given by sin θ = 2λ/a. This is a small angle, so we can use the small angle

approximation of sin θ = y/D. Then

y = 2Dλ/a = 2(0.714 m)(593×10−9m)/(420×10−6m) = 2.02 mm. 

E42-7

Small angles, so y/D = sin θ = λ/a. Then

a = Dλ/y = (0.823 m)(546×10−9m)/(5.20×10−3m/2) = 1.73×10−4m. 

E42-8

(b) Small angles, so ∆y/D = ∆mλ/a. Then

a = ∆mDλ/∆y = (5 − 1)(0.413 m)(546×10−9m)/(0.350×10−3m) = 2.58 mm. 

(a) θ = arcsin(λ/a) = arcsin[(546×10−9m)/(2.58 mm)] = 1.21×10−2◦. 

E42-9

Small angles, so ∆y/D = ∆mλ/a. Then

∆y = ∆mDλ/a = (2 − 1)(2.94 m)(589×10−9m)/(1.16×10−3m) = 1.49×10−3m. 
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E42-10

Doubling the width of the slit results in a narrowing of the diffraction pattern. Since the

width of the central maximum is effectively cut in half, then there is twice the energy in half the

space, producing four times the intensity. 

E42-11

(a) This is a small angle approximation problem, so

θ = (1.13 cm)/(3.48 m) = 3.25 × 10−3 rad. 

(b) A convenient measure of the phase difference, α is related to θ through Eq. 42-7, 

πa

π(25.2 × 10−6m)

α =

sin θ =

sin(3.25 × 10−3 rad) = 0.478 rad

λ

(538 × 10−9m)

(c) The intensity at a point is related to the intensity at the central maximum by Eq. 42-8, 

I



2



2

θ

sin α

sin(0.478 rad)

=

=

= 0.926

Im

α

(0.478 rad)

E42-12

Consider Fig. 42-11; the angle with the vertical is given by (π − φ)/2. For Fig. 42-10(d)

the circle has wrapped once around onto itself so the angle with the vertical is (3π −φ)/2. Substitute α into this expression and the angel against the vertical is 3π/2 − α. 

Use the result from Problem 42-3 that tan α = α for the maxima. The lowest non-zero solution

is α = 4.49341 rad. The angle against the vertical is then 0.21898 rad, or 12.5◦. 

E42-13

Drawing heavily from Sample Problem 42-4, 

 α







xλ

1.39

θx = arcsin

= arcsin

= 2.54◦. 

πa

10π

Finally, ∆θ = 2θx = 5.1◦. 

E42-14

(a) Rayleigh’s criterion for resolving images (Eq. 42-11) requires that two objects have an

angular separation of at least

 1.22λ 

 1.22(540 × 10−9) 

θR = sin−1

= sin−1

= 1.34 × 10−4 rad

d

(4.90 × 10−3m)

(b) The linear separation is y = θD = (1.34 × 10−4 rad)(163×103m) = 21.9 m. 

E42-15

(a) Rayleigh’s criterion for resolving images (Eq. 42-11) requires that two objects have

an angular separation of at least

 1.22λ 

 1.22(562 × 10−9) 

θR = sin−1

= sin−1

= 1.37 × 10−4 rad. 

d

(5.00 × 10−3m)

(b) Once again, this is a small angle, so we can use the small angle approximation to find the

distance to the car. In that case θR = y/D, where y is the headlight separation and D the distance

to the car. Solving, 

D = y/θR = (1.42 m)/(1.37 × 10−4 rad) = 1.04 × 104m, 

or about six or seven miles. 
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E42-16

y/D = 1.22λ/a; or

D = (5.20×10−3m)(4.60×10−3/m)/1.22(542×10−9m) = 36.2 m. 

E42-17

The smallest resolvable angular separation will be given by Eq. 42-11, 

 1.22λ 

 1.22(565 × 10−9m) 

θR = sin−1

= sin−1

= 1.36 × 10−7 rad, 

d

(5.08 m)

The smallest objects resolvable on the Moon’s surface by this telescope have a size y where

y = DθR = (3.84 × 108 m)(1.36 × 10−7 rad) = 52.2 m

E42-18

y/D = 1.22λ/a; or

y = 1.22(1.57×10−2m)(6.25×103m)/(2.33 m) = 51.4 m

E42-19

y/D = 1.22λ/a; or

D = (4.8×10−2m)(4.3×10−3/m)/1.22(0.12×10−9m) = 1.4×106 m. 

E42-20

y/D = 1.22λ/a; or

d = 1.22(550×10−9m)(160×103m)/(0.30 m) = 0.36 m. 

E42-21

Using Eq. 42-11, we find the minimum resolvable angular separation is given by

 1.22λ 

 1.22(475 × 10−9m) 

θR = sin−1

= sin−1

= 1.32 × 10−4 rad

d

(4.4 × 10−3m)

The dots are 2 mm apart, so we want to stand a distance D away such that

D > y/θR = (2 × 10−3m)/(1.32 × 10−4 rad) = 15 m. 

E42-22

y/D = 1.22λ/a; or

y = 1.22(500×10−9m)(354×103m)/(9.14 m/2) = 4.73×10−2 m. 

E42-23

(a) λ = v/f . Now use Eq. 42-11:



(1450 m/s)



θ = arcsin

1.22

= 6.77◦. 

(25×103Hz)(0.60 m)

(b) Following the same approach, 



(1450 m/s)



θ = arcsin

1.22 (1×103Hz)(0.60m)

has no real solution, so there is no minimum. 
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E42-24

(a) λ = v/f . Now use Eq. 42-11:



(3×108 m/s)



θ = arcsin

1.22

= 0.173◦. 

(220×109Hz)(0.55 m)

This is the angle from the central maximum; the angular width is twice this, or 0.35◦. 

(b) use Eq. 42-11:



(0.0157 m) 

θ = arcsin

1.22

= 0.471◦. 

(2.33 m)

This is the angle from the central maximum; the angular width is twice this, or 0.94◦. 

E42-25

The linear separation of the fringes is given by

∆y

λ

λD

= ∆θ =

or ∆y =

D

d

d

for sufficiently small d compared to λ. 

E42-26

(a) d sin θ = 4λ gives the location of the fourth interference maximum, while a sin θ =

λ gives the location of the first diffraction minimum. Hence, if d = 4a there will be no fourth

interference maximum! 

(b) Since d sin θm = m

= m

i

iλ gives the interference maxima and a sin θmd

dλ gives the diffraction

minima, and d = 4a, then whenever mi = 4md there will be a missing maximum. 

E42-27

(a) The central diffraction envelope is contained in the range

λ

θ = arcsin a

This angle corresponds to the mth maxima of the interference pattern, where

sin θ = mλ/d = mλ/2a. 

Equating, m = 2, so there are three interference bands, since the m = 2 band is “washed out” by

the diffraction minimum. 

(b) If d = a then β = α and the expression reduces to

sin2 α

Iθ

=

Imcos2α

, 

α2

sin2(2α)

=

Im

, 

2α2

 sin α0 2

=

2Im

, 

α0

where α = 2α0, which is the same as replacing a by 2a. 

E42-28

Remember that the central peak has an envelope width twice that of any other peak. 

Ignoring the central maximum there are (11 − 1)/2 = 5 fringes in any other peak envelope. 
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E42-29

(a) The first diffraction minimum is given at an angle θ such that a sin θ = λ; the order

of the interference maximum at that point is given by d sin θ = mλ. Dividing one expression by the

other we get d/a = m, with solution m = (0.150)/(0.030) = 5. The fact that the answer is exactly 5

implies that the fifth interference maximum is squelched by the diffraction minimum. Then there are

only four complete fringes on either side of the central maximum. Add this to the central maximum

and we get nine as the answer. 

(b) For the third fringe m = 3, so d sin θ = 3λ. Then β is Eq. 42-14 is 3π, while α in Eq. 42-16

is

πa 3λ

a

α =

= 3π , 

λ d

d

so the relative intensity of the third fringe is, from Eq. 42-17, 

 sin(3πa/d) 2

(cos 3π)2

= 0.255. 

(3πa/d)

P42-1

y = mλD/a. Then

y = (10)(632.8×10−9m)(2.65 m)/(1.37×10−3m) = 1.224×10−2m. 

The separation is twice this, or 2.45 cm. 

P42-2

If a  λ then the diffraction pattern is extremely tight, and there is effectively no light at

P . In the event that either shape produces an interference pattern at P then the other shape must

produce an equal but opposite electric field vector at that point so that when both patterns from

both shapes are superimposed the field cancel. 

But the intensity is the field vector squared; hence the two patterns look identical. 

P42-3

(a) We want to take the derivative of Eq. 42-8 with respect to α, so

dI



2

θ

d

sin α

=

Im

, 

dα

dα

α

 sin α   cos α

sin α 

=

Im2

−

, 

α

α

α2

sin α

=

Im2

(α cos α − sin α) . 

α3

This equals zero whenever sin α = 0 or α cos α = sin α; the former is the case for a minima while the latter is the case for the maxima. The maxima case can also be written as

tan α = α. 

(b) Note that as the order of the maxima increases the solutions get closer and closer to odd

integers times π/2. The solutions are

α = 0, 1.43π, 2.46π, etc. 

(c) The m values are m = α/π − 1/2, and correspond to

m = 0.5, 0.93, 1.96, etc. 

These values will get closer and closer to integers as the values are increased. 
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P42-4

The outgoing beam strikes the moon with a circular spot of radius

r = 1.22λD/a = 1.22(0.69×10−6m)(3.82×108m)/(2 × 1.3 m) = 123 m. 

The light is not evenly distributed over this circle. 

If P0 is the power in the light, then

Z

Z

R

P0 =

Iθr dr dφ = 2π

Iθr dr, 

0

where R is the radius of the central peak and Iθ is the angular intensity. For a  λ we can write

α ≈ πar/λD, then

 λD 2 Z π/2 sin2 α

 λD 2

P0 = 2πIm

dα ≈ 2πIm

(0.82). 

πa

0

α

πa

Then the intensity at the center falls off with distance D as

Im = 1.9 (a/λD)2 P0

The fraction of light collected by the mirror on the moon is then



(2 × 1.3 m)

2

P1/P0 = 1.9

π(0.10 m)2 = 5.6×10−6. 

(0.69×10−6m)(3.82×108m)

The fraction of light collected by the mirror on the Earth is then



(2 × 0.10 m)

2

P2/P1 = 1.9

π(1.3 m)2 = 5.6×10−6. 

(0.69×10−6m)(3.82×108m)

Finally, P2/P0 = 3×10−11. 

P42-5

(a) The ring is reddish because it occurs at the blue minimum. 

(b) Apply Eq. 42-11 for blue light:

d = 1.22λ/ sin θ = 1.22(400 nm)/ sin(0.375◦) = 70 µm. 

(c) Apply Eq. 42-11 for red light:

θ = arcsin (1.22(700 nm)/(70 µm)) ≈ 0.7◦, 

which occurs 3 lunar radii from the moon. 

P42-6

The diffraction pattern is a property of the speaker, not the interference between the speak-

ers. The diffraction pattern should be unaffected by the phase shift. The interference pattern, 

however, should shift up or down as the phase of the second speaker is varied. 

P42-7

(a) The missing fringe at θ = 5◦ is a good hint as to what is going on. There should be

some sort of interference fringe, unless the diffraction pattern has a minimum at that point. This

would be the first minimum, so

a sin(5◦) = (440 × 10−9m)

would be a good measure of the width of each slit. Then a = 5.05 × 10−6m. 
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(b) If the diffraction pattern envelope were not present we could expect that the fourth interfer-

ence maxima beyond the central maximum would occur at this point, and then

d sin(5◦) = 4(440 × 10−9m)

yielding

d = 2.02 × 10−5m. 

(c) Apply Eq. 42-17, where β = mπ and

πa

πa mλ

πa

α =

sin θ =

= m

= mπ/4. 

λ

λ

d

d

Then for m = 1 we have

 sin(π/4) 2

I1 = (7)

= 5.7; 

(π/4)

while for m = 2 we have

 sin(2π/4) 2

I2 = (7)

= 2.8. 

(2π/4)

These are in good agreement with the figure. 
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E43-1

(a) d = (21.5×10−3m)/(6140) = 3.50×10−6m. 

(b) There are a number of angles allowed:

θ

=

arcsin[(1)(589×10−9m)/(3.50×10−6m)] = 9.7◦, 

θ

=

arcsin[(2)(589×10−9m)/(3.50×10−6m)] = 19.5◦, 

θ

=

arcsin[(3)(589×10−9m)/(3.50×10−6m)] = 30.3◦, 

θ

=

arcsin[(4)(589×10−9m)/(3.50×10−6m)] = 42.3◦, 

θ

=

arcsin[(5)(589×10−9m)/(3.50×10−6m)] = 57.3◦. 

E43-2

The distance between adjacent rulings is

(2)(612×10−9m)

d =

= 2.235×10−6m. 

sin(33.2◦)

The number of lines is then

N = D/d = (2.86×10−2m)/(2.235×10−6m) = 12, 800. 

E43-3

We want to find a relationship between the angle and the order number which is linear. 

We’ll plot the data in this representation, and then use a least squares fit to find the wavelength. 

The data to be plotted is

m

θ

sin θ

m

θ

sin θ

1

17.6◦

0.302

-1

-17.6◦

-0.302

2

37.3◦

0.606

-2

-37.1◦

-0.603

3

65.2◦

0.908

-3

-65.0◦

-0.906

On my calculator I get the best straight line fit as

0.302m + 8.33 × 10−4 = sin θm, 

which means that

λ = (0.302)(1.73 µm) = 522 nm. 

E43-4

Although an approach like the solution to Exercise 3 should be used, we’ll assume that each

measurement is perfect and error free. Then randomly choosing the third maximum, 

d sin θ

(5040×10−9m) sin(20.33◦)

λ =

=

= 586×10−9m. 

m

(3)

E43-5

(a) The principle maxima occur at points given by Eq. 43-1, 

λ

sin θm = m . 

d

The difference of the sine of the angle between any two adjacent orders is

λ

λ

λ

sin θm+1 − sin θm = (m + 1)

− m

=

. 

d

d

d

Using the information provided we can find d from

λ

(600 × 10−9)

d =

=

= 6 µm. 

sin θm+1 − sin θm

(0.30) − (0.20)
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It doesn’t take much imagination to recognize that the second and third order maxima were given. 

(b) If the fourth order maxima is missing it must be because the diffraction pattern envelope has

a minimum at that point. Any fourth order maxima should have occurred at sin θ4 = 0.4. If it is a

diffraction minima then

a sin θm = mλ where sin θm = 0.4

We can solve this expression and find

λ

(600 × 10−9m)

a = m

= m

= m1.5 µm. 

sin θm

(0.4)

The minimum width is when m = 1, or a = 1.5 µm. 

(c) The visible orders would be integer values of m except for when m is a multiple of four. 

E43-6

(a) Find the maximum integer value of m = d/λ = (930 nm)/(615 nm) = 1.5, hence

m = −1, 0, +1; there are three diffraction maxima. 

(b) The first order maximum occurs at

θ = arcsin(615 nm)/(930 nm) = 41.4◦. 

The width of the maximum is

(615 nm)

δθ =

= 7.87×10−4 rad, 

(1120)(930 nm) cos(41.4◦)

or 0.0451◦. 

E43-7

The fifth order maxima will be visible if d/λ ≥ 5; this means

d

(1×10−3m)

λ ≤

=

= 635×10−9m. 

5

(315 rulings)(5)

E43-8

(a) The maximum could be the first, and then

d sin θ

(1×10−3m) sin(28◦)

λ =

=

= 2367×10−9m. 

m

(200)(1)

That’s not visible. The first visible wavelength is at m = 4, then

d sin θ

(1×10−3m) sin(28◦)

λ =

=

= 589×10−9m. 

m

(200)(4)

The next is at m = 5, then

d sin θ

(1×10−3m) sin(28◦)

λ =

=

= 469×10−9m. 

m

(200)(5)

Trying m = 6 results in an ultraviolet wavelength. 

(b) Yellow-orange and blue. 
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E43-9

A grating with 400 rulings/mm has a slit separation of

1

d =

= 2.5 × 10−3 mm. 

400 mm−1

To find the number of orders of the entire visible spectrum that will be present we need only consider the wavelength which will be on the outside of the maxima. That will be the longer wavelengths, so

we only need to look at the 700 nm behavior. Using Eq. 43-1, 

d sin θ = mλ, 

and using the maximum angle 90◦, we find

d

(2.5 × 10−6m)

m < 

=

= 3.57, 

λ

(700 × 10−9m)

so there can be at most three orders of the entire spectrum. 

E43-10

In this case d = 2a. Since interference maxima are given by sin θ = mλ/d while diffraction

minima are given at sin θ = m0λ/a = 2m0λ/d then diffraction minima overlap with interference

maxima whenever m = 2m0. Consequently, all even m are at diffraction minima and therefore

vanish. 

E43-11

If the second-order spectra overlaps the third-order, it is because the 700 nm second-order

line is at a larger angle than the 400 nm third-order line. 

Start with the wavelengths multiplied by the appropriate order parameter, then divide both side

by d, and finally apply Eq. 43-1. 

2(700 nm)

> 

3(400 nm), 

2(700 nm)

3(400 nm)

> 

, 

d

d

sin θ2,λ=700

> 

sin θ3,λ=400, 

regardless of the value of d. 

E43-12

Fig. 32-2 shows the path length difference for the right hand side of the grating as d sin θ. 

If the beam strikes the grating at ang angle ψ then there will be an additional path length difference of d sin ψ on the right hand side of the figure. The diffraction pattern then has two contributions to the path length difference, these add to give

d(sin θ + sin psi) = mλ. 

E43-13

E43-14

Let d sin θi = λi and θ1 + 20◦ = θ2. Then

sin θ2 = sin θ1 cos(20◦) + cos θ1 sin(20◦). 

Rearranging, 

q

sin θ2 = sin θ1 cos(20◦) +

1 − sin2 θ1 sin(20◦). 

Substituting the equations together yields a rather nasty expression, 

λ2

λ1

p

=

cos(20◦) +

1 − (λ1/d)2 sin(20◦). 

d

d
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Rearranging, 

(λ



2 − λ1 cos(20◦))2 =

d2 − λ2 sin2(20◦). 

1

Use λ1 = 430 nm and λ2 = 680 nm, then solve for d to find d = 914 nm. This corresponds to 1090

rulings/mm. 

E43-15

The shortest wavelength passes through at an angle of

θ1 = arctan(50 mm)/(300 mm) = 9.46◦. 

This corresponds to a wavelength of

(1×10−3m) sin(9.46◦)

λ1 =

= 470×10−9m. 

(350)

The longest wavelength passes through at an angle of

θ2 = arctan(60 mm)/(300 mm) = 11.3◦. 

This corresponds to a wavelength of

(1×10−3m) sin(11.3◦)

λ2 =

= 560×10−9m. 

(350)

E43-16

(a) ∆λ = λ/R = λ/N m, so

∆λ = (481 nm)/(620 rulings/mm)(5.05 mm)(3) = 0.0512 nm. 

(b) mm is the largest integer smaller than d/λ, or

mm ≤ 1/(481×10−9m)(620 rulings/mm) = 3.35, 

so m = 3 is highest order seen. 

E43-17

The required resolving power of the grating is given by Eq. 43-10

λ

(589.0 nm)

R =

=

= 982. 

∆λ

(589.6 nm) − (589.0 nm)

Our resolving power is then R = 1000. 

Using Eq. 43-11 we can find the number of grating lines required. We are looking at the second-

order maxima, so

R

(1000)

N =

=

= 500. 

m

(2)

E43-18

(a) N = R/m = λ/m∆λ, so

(415.5 nm)

N =

= 23100. 

(2)(415.496 nm − 415.487 nm)

(b) d = w/N , where w is the width of the grating. Then

mλ

(23100)(2)(415.5×10−9m)

θ = arcsin

= arcsin

= 27.6◦. 

d

(4.15×10−2m)
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E43-19

N = R/m = λ/m∆λ, so

(656.3 nm)

N =

= 3650

(1)(0.180 nm)

E43-20

Start with Eq. 43-9:

m

d sin θ/λ

tan θ

D =

=

=

. 

d cos θ

d cos θ

λ

E43-21

(a) We find the ruling spacing by Eq. 43-1, 

mλ

(3)(589 nm)

d =

=

= 9.98 µm. 

sin θm

sin(10.2◦)

(b) The resolving power of the grating needs to be at least R = 1000 for the third-order line; see

the work for Ex. 43-17 above. The number of lines required is given by Eq. 43-11, 

R

(1000)

N =

=

= 333, 

m

(3)

so the width of the grating (or at least the part that is being used) is 333(9.98 µm) = 3.3 mm. 

E43-22

(a) Condition (1) is satisfied if

d ≥ 2(600 nm)/ sin(30◦) = 2400 nm. 

The dispersion is maximal for the smallest d, so d = 2400 nm. 

(b) To remove the third order requires d = 3a, or a = 800 nm. 

E43-23

(a) The angles of the first three orders are

(1)(589×10−9m)(40000)

θ1

=

arcsin

= 18.1◦, 

(76×10−3m)

(2)(589×10−9m)(40000)

θ2

=

arcsin

= 38.3◦, 

(76×10−3m)

(3)(589×10−9m)(40000)

θ3

=

arcsin

= 68.4◦. 

(76×10−3m)

The dispersion for each order is

(1)(40000)

360◦

D1

=

= 3.2×10−2◦/nm, 

(76×106nm) cos(18.1◦) 2π

(2)(40000)

360◦

D2

=

= 7.7×10−2◦/nm, 

(76×106nm) cos(38.3◦) 2π

(3)(40000)

360◦

D3

=

= 2.5×10−1◦/nm. 

(76×106nm) cos(68.4◦) 2π

(b) R = N m, so

R1

=

(40000)(1) = 40000, 

R2

=

(40000)(2) = 80000, 

R3

=

(40000)(3) = 120000. 
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E43-24

d = mλ/2 sin θ, so

(2)(0.122 nm)

d =

= 0.259 nm. 

2 sin(28.1◦)

E43-25

Bragg reflection is given by Eq. 43-12

2d sin θ = mλ, 

where the angles are measured not against the normal, but against the plane. The value of d depends

on the family of planes under consideration, but it is at never larger than a0, the unit cell dimension. 

We are looking for the smallest angle; this will correspond to the largest d and the smallest m. 

That means m = 1 and d = 0.313 nm. Then the minimum angle is

(1)(29.3 × 10−12 m)

θ = sin−1

= 2.68◦. 

2(0.313 × 10−9 m)

E43-26

2d/λ = sin θ1 and 2d/2λ = sin θ2. Then

θ2 = arcsin[2 sin(3.40◦)] = 6.81◦. 

E43-27

We apply Eq. 43-12 to each of the peaks and find the product

mλ = 2d sin θ. 

The four values are 26 pm, 39 pm, 52 pm, and 78 pm. The last two values are twice the first two, 

so the wavelengths are 26 pm and 39 pm. 

E43-28

(a) 2d sin θ = mλ, so

(3)(96.7 pm)

d =

= 171 pm. 

2 sin(58.0◦)

(b) λ = 2(171 pm) sin(23.2◦)/(1) = 135 pm. 

E43-29

The angle against the face of the crystal is 90◦ − 51.3◦ = 38.7◦. The wavelength is

λ = 2(39.8 pm) sin(38.7◦)/(1) = 49.8 pm. 

E43-30

If λ > 2d then λ/2d > 1. But

λ/2d = sin θ/m. 

This means that sin θ > m, but the sine function can never be greater than one. 

E43-31

There are too many unknowns. It is only possible to determine the ratio d/λ. 

E43-32

A wavelength will be diffracted if mλ = 2d sin θ. The possible solutions are

λ3

=

2(275 pm) sin(47.8)/(3) = 136 pm, 

λ4

=

2(275 pm) sin(47.8)/(4) = 102 pm. 
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E43-33

We use Eq. 43-12 to first find d; 

mλ

(1)(0.261 × 10−9 m)

d =

=

= 1.45 × 10−10 m. 

2 sin θ

2 sin(63.8◦)

d is the spacing between the planes in Fig. 43-28; it correspond to half of the diagonal distance

between two cell centers. Then

(2d)2 = a2 + a2, 

0

0

or

√

√

a0 =

2d =

2(1.45 × 10−10 m) = 0.205 nm. 

E43-34

Diffraction occurs when 2d sin θ = mλ. The angles in this case are then given by

(0.125×10−9m)

sin θ = m

= (0.248)m. 

2(0.252×10−9m)

There are four solutions to this equation. They are 14.4◦, 29.7◦, 48.1◦, and 82.7◦. They involve

rotating the crystal from the original orientation (90◦ − 42.4◦ = 47.6◦) by amounts

47.6◦ − 14.4◦

=

33.2◦, 

47.6◦ − 29.7◦

=

17.9◦, 

47.6◦ − 48.1◦

=

−0.5◦, 

47.6◦ − 82.7◦

=

−35.1◦. 

P43-1

Since the slits are so narrow we only need to consider interference effects, not diffraction

effects. There are three waves which contribute at any point. The phase angle between adjacent

waves is

φ = 2πd sin θ/λ. 

We can add the electric field vectors as was done in the previous chapters, or we can do it in a

different order as is shown in the figure below. 

Then the vectors sum to

E(1 + 2 cos φ). 

We need to square this quantity, and then normalize it so that the central maximum is the maximum. 

Then

(1 + 4 cos φ + 4 cos2 φ)

I = Im

. 

9
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P43-2

(a) Solve φ for I = Im/2, this occurs when

3

√ = 1 + 2 cos φ, 

2

or φ = 0.976 rad. The corresponding angle θx is

λφ

λ(0.976)

λ

θx ≈

=

=

. 

2πd

2πd

6.44d

But ∆θ = 2θx, so

λ

∆θ ≈

. 

3.2d

(b) For the two slit pattern the half width was found to be ∆θ = λ/2d. The half width in the

three slit case is smaller. 

P43-3

(a) and (b) A plot of the intensity quickly reveals that there is an alternation of large

maximum, then a smaller maximum, etc. The large maxima are at φ = 2nπ, the smaller maxima

are half way between those values. 

(c) The intensity at these secondary maxima is then

(1 + 4 cos π + 4 cos2 π)

Im

I = Im

=

. 

9

9

Note that the minima are not located half-way between the maxima! 

P43-4

Covering up the middle slit will result in a two slit apparatus with a slit separation of 2d. 

The half width, as found in Problem 41-5, is then

∆θ = λ/2(2d), = λ/4d, 

which is narrower than before covering up the middle slit by a factor of 3.2/4 = 0.8. 

P43-5

(a) If N is large we can treat the phasors as summing to form a flexible “line” of length

N δE. We then assume (incorrectly) that the secondary maxima occur when the loop wraps around

on itself as shown in the figures below. Note that the resultant phasor always points straight up. 

This isn’t right, but it is close to reality. 
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The length of the resultant depends on how many loops there are. For k = 0 there are none. 

For k = 1 there are one and a half loops. The circumference of the resulting circle is 2N δE/3, the

diameter is N δE/3π. For k = 2 there are two and a half loops. The circumference of the resulting

circle is 2N δE/5, the diameter is N δE/5π. The pattern for higher k is similar: the circumference

is 2N δE/(2k + 1), the diameter is N δE/(k + 1/2)π. 

The intensity at this “approximate” maxima is proportional to the resultant squared, or

(N δE)2

Ik ∝

. 

(k + 1/2)2π2

but Im is proportional to (N δE)2, so

1

Ik = Im

. 

(k + 1/2)2π2

(b) Near the middle the vectors simply fold back on one another, leaving a resultant of δE. Then

(N δE)2

Ik ∝ (δE)2 =

, 

N 2

so

Im

Ik =

, 

N 2

(c) Let α have the values which result in sin α = 1, and then the two expressions are identical! 

P43-6

(a) v = f λ, so δv = f δλ + λδf . Assuming δv = 0, we have δf /f = −δλ/λ. Ignore the

negative sign (we don’t need it here). Then

λ

f

c

R =

=

=

, 

∆λ

∆f

λ∆f

and then

c

c

∆f =

=

. 

Rλ

N mλ

(b) The ray on the top gets there first, the ray on the bottom must travel an additional distance

of N d sin θ. It takes a time

∆t = N d sin θ/c

to do this. 

(c) Since mλ = d sin θ, the two resulting expression can be multiplied together to yield

c

N d sin θ

(∆f )(∆t) =

= 1. 

N mλ

c

This is almost, but not quite, one of Heisenberg’s uncertainty relations! 

P43-7

(b) We sketch parallel lines which connect centers to form almost any right triangle similar

to the one shown in the Fig. 43-18. The triangle will have two sides which have integer multiple

√

lengths of the lattice spacing a0. The hypotenuse of the triangle will then have length

h2 + k2a0, 

where h and k are the integers. In Fig. 43-18 h = 2 while k = 1. The number of planes which cut

the diagonal is equal to h2 + k2 if, and only if, h and k are relatively prime. The inter-planar spacing is then

√h2 + k2a0

a0

d =

= √

. 

h2 + k2

h2 + k2
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(a) The next five spacings are then

√

h = 1, 

k = 1, 

d

=

a0/ 2, 

√

h = 1, 

k = 2, 

d

=

a0/ 5, 

√

h = 1, 

k = 3, 

d

=

a0/ 10, 

√

h = 2, 

k = 3, 

d

=

a0/ 13, 

√

h = 1, 

k = 4, 

d

=

a0/ 17. 

P43-8

The middle layer cells will also diffract a beam, but this beam will be exactly π out of phase

with the top layer. The two beams will then cancel out exactly because of destructive interference. 
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E44-1

(a) The direction of propagation is determined by considering the argument of the sine

function. As t increases y must decrease to keep the sine function “looking” the same, so the wave

is propagating in the negative y direction. 

(b) The electric field is orthogonal (perpendicular) to the magnetic field (so Ex = 0) and the

direction of motion (so Ey = 0); Consequently, the only non-zero term is Ez. The magnitude of E

will be equal to the magnitude of B times c. Since ~

S = ~

E × ~

B/µ0, when ~

B points in the positive

x direction then ~

E must point in the negative z direction in order that ~

S point in the negative y

direction. Then

Ez = −cB sin(ky + ωt). 

(c) The polarization is given by the direction of the electric field, so the wave is linearly polarized in the z direction. 

E44-2

Let one wave be polarized in the x direction and the other in the y direction. Then the net

electric field is given by E2 = E2 + E2, or

x

y

E2 = E2 sin2(kz

0

− ωt) + sin2(kz − ωt + β) , 

where β is the phase difference. We can consider any point in space, including z = 0, and then

average the result over a full cycle. Since β merely shifts the integration limits, then the result is independent of β. Consequently, there are no interference effects. 

E44-3

(a) The transmitted intensity is I0/2 = 6.1×10−3W/m2. The maximum value of the electric

field is

p

p

Em =

2µ0cI =

2(1.26×10−6H/m)(3.00×108m/s)(6.1×10−3W/m2) = 2.15 V/m. 

(b) The radiation pressure is caused by the absorbed half of the incident light, so

p = I/c = (6.1×10−3W/m2)/(3.00×108m/s) = 2.03×10−11Pa. 

E44-4

The first sheet transmits half the original intensity, the second transmits an amount pro-

portional to cos2 θ. Then I = (I0/2) cos2 θ, or

p

p

θ = arccos

2I/I0 = arccos

2(I0/3)/I035.3◦. 

E44-5

The first sheet polarizes the un-polarized light, half of the intensity is transmitted, so

I1 = 1 I

2 0. 

The second sheet transmits according to Eq. 44-1, 

1

1

I2 = I1 cos2 θ =

I0 cos2(45◦) =

I0, 

2

4

and the transmitted light is polarized in the direction of the second sheet. 

The third sheet is 45◦ to the second sheet, so the intensity of the light which is transmitted

through the third sheet is

1

1

I3 = I2 cos2 θ =

I0 cos2(45◦) =

I0. 

4

8
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E44-6

The transmitted intensity through the first sheet is proportional to cos2 θ, the transmitted

intensity through the second sheet is proportional to cos2(90◦ − θ) = sin2 θ. Then

I = I0 cos2 θ sin2 θ = (I0/4) sin2 2θ, 

or

1

p

1

p

θ =

arcsin

4I/I0 =

arcsin

4(0.100I0)/I0 = 19.6◦. 

2

2

Note that 70.4◦ is also a valid solution! 

E44-7

The first sheet transmits half of the original intensity; each of the remaining sheets transmits

an amount proportional to cos2 θ, where θ = 30◦. Then

I

1

1

=

cos2 θ3 =

(cos(30◦))6 = 0.211

I0

2

2

E44-8

The first sheet transmits an amount proportional to cos2 θ, where θ = 58.8◦. The second

sheet transmits an amount proportional to cos2(90◦ − θ) = sin2 θ. Then

I = I0 cos2 θ sin2 θ = (43.3 W/m2) cos2(58.8◦) sin2(58.8◦) = 8.50 W/m2. 

E44-9

Since the incident beam is unpolarized the first sheet transmits 1/2 of the original intensity. 

The transmitted beam then has a polarization set by the first sheet: 58.8◦ to the vertical. The second sheet is horizontal, which puts it 31.2◦ to the first sheet. Then the second sheet transmits cos2(31.2◦) of the intensity incident on the second sheet. The final intensity transmitted by the second sheet

can be found from the product of these terms, 

 1 

I = (43.3 W/m2)

cos2(31.2◦) = 15.8 W/m2. 

2

E44-10

θp = arctan(1.53/1.33) = 49.0◦. 

E44-11

(a) The angle for complete polarization of the reflected ray is Brewster’s angle, and is

given by Eq. 44-3 (since the first medium is air)

θp = tan−1 n = tan−1(1.33) = 53.1◦. 

(b) Since the index of refraction depends (slightly) on frequency, then so does Brewster’s angle. 

E44-12

(b) Since θr + θp = 90◦, θp = 90◦ − (31.8◦) = 58.2◦. 

(a) n = tan θp = tan(58.2◦) = 1.61. 

E44-13

The angles are between

θp = tan−1 n = tan−1(1.472) = 55.81◦. 

and

θp = tan−1 n = tan−1(1.456) = 55.52◦. 

E44-14

The smallest possible thickness t will allow for one half a wavelength phase difference for

the o and e waves. Then ∆nt = λ/2, or

t = (525×10−9m)/2(0.022) = 1.2×10−5m. 
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E44-15

(a) The incident wave is at 45◦ to the optical axis. This means that there are two

components; assume they originally point in the +y and +z direction. When they travel through

the half wave plate they are now out of phase by 180◦; this means that when one component is in

the +y direction the other is in the −z direction. In effect the polarization has been rotated by 90◦. 

(b) Since the half wave plate will delay one component so that it emerges 180◦ “later” than it

should, it will in effect reverse the handedness of the circular polarization. 

(c) Pretend that an unpolarized beam can be broken into two orthogonal linearly polarized

components. Both are then rotated through 90◦; but when recombined it looks like the original

beam. As such, there is no apparent change. 

E44-16

The quarter wave plate has a thickness of x = λ/4∆n, so the number of plates that can

be cut is given by

N = (0.250×10−3m)4(0.181)/(488×10−9m) = 371. 

P44-1

Intensity is proportional to the electric field squared, so the original intensity reaching the

eye is I0, with components Ih = (2.3)2Iv, and then

I0 = Ih + Iv = 6.3Iv or Iv = 0.16I0. 

Similarly, Ih = (2.3)2Iv = 0.84I0. 

(a) When the sun-bather is standing only the vertical component passes, while

(b) when the sun-bather is lying down only the horizontal component passes. 

P44-2

The intensity of the transmitted light which was originally unpolarized is reduced to Iu/2, 

regardless of the orientation of the polarizing sheet. The intensity of the transmitted light which

was originally polarized is between 0 and Ip, depending on the orientation of the polarizing sheet. 

Then the maximum transmitted intensity is Iu/2 + Ip, while the minimum transmitted intensity is

Iu/2. The ratio is 5, so

Iu/2 + Ip

Ip

5 =

= 1 + 2

, 

Iu/2

Iu

or Ip/Iu = 2. Then the beam is 1/3 unpolarized and 2/3 polarized. 

P44-3

Each sheet transmits a fraction

 θ 

cos2 α = cos2

. 

N

There are N sheets, so the fraction transmitted through the stack is



 θ N

cos2

. 

N

We want to evaluate this in the limit as N → ∞. 

As N gets larger we can use a small angle approximation to the cosine function, 

1

cos x ≈ 1 − x2 for x  1

2

The the transmitted intensity is



1 θ2 2N

1 −

. 

2 N 2
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This expression can also be expanded in a binomial expansion to get

1 θ2

1 − 2N

, 

2 N 2

which in the limit as N → ∞ approaches 1. 

The stack then transmits all of the light which makes it past the first filter. Assuming the light

is originally unpolarized, then the stack transmits half the original intensity. 

P44-4

(a) Stack several polarizing sheets so that the angle between any two sheets is sufficiently

small, but the total angle is 90◦. 

(b) The transmitted intensity fraction needs to be 0.95. Each sheet will transmit a fraction

cos2 θ, where θ = 90◦/N , with N the number of sheets. Then we want to solve

0.95 = cos2(90◦/N )N

for N . For large enough N , θ will be small, so we can expand the cosine function as

cos2 θ = 1 − sin2 θ ≈ 1 − θ2, 

so

0.95 ≈ 1 − (π/2N )2N ≈ 1 − N (π/2N )2, 

which has solution N = π2/4(0.05) = 49. 

P44-5

Since passing through a quarter wave plate twice can rotate the polarization of a linearly

polarized wave by 90◦, then if the light passes through a polarizer, through the plate, reflects off the coin, then through the plate, and through the polarizer, it would be possible that when it passes

through the polarizer the second time it is 90◦ to the polarizer and no light will pass. You won’t see the coin. 

On the other hand if the light passes first through the plate, then through the polarizer, then is

reflected, the passes again through the polarizer, all the reflected light will pass through he polarizer and eventually work its way out through the plate. So the coin will be visible. 

Hence, side A must be the polarizing sheet, and that sheet must be at 45◦ to the optical axis. 

P44-6

(a) The displacement of a ray is given by

tan θk = yk/t, 

so the shift is

∆y = t(tan θe − tan θo). 

Solving for each angle, 



1



θe

=

arcsin

sin(38.8◦)

= 24.94◦, 

(1.486)



1



θo

=

arcsin

sin(38.8◦)

= 22.21◦. 

(1.658)

The shift is then

∆y = (1.12×10−2m) (tan(24.94) − tan(22.21)) = 6.35×10−4m. 

(b) The e-ray bends less than the o-ray. 

(c) The rays have polarizations which are perpendicular to each other; the o-wave being polarized

along the direction of the optic axis. 

(d) One ray, then the other, would disappear. 
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P44-7

The method is outline in Sample Problem 44-24; use a polarizing sheet to pick out the o-ray

or the e-ray. 
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E45-1

(a) The energy of a photon is given by Eq. 45-1, E = hf , so

hc

E = hf =

. 

λ

Putting in “best” numbers

(6.62606876×10−34J · s)

hc =

(2.99792458×108m/s) = 1.23984×10−6 eV · m. 

(1.602176462×10−19 C)

This means that hc = 1240 eV · nm is accurate to almost one part in 8000! 

(b) E = (1240 eV · nm)/(589 nm) = 2.11 eV. 

E45-2

Using the results of Exercise 45-1, 

(1240 eV · nm)

λ =

= 2100 nm, 

(0.60 eV)

which is in the infrared. 

E45-3

Using the results of Exercise 45-1, 

(1240 eV · nm)

E1 =

= 3.31 eV, 

(375 nm)

and

(1240 eV · nm)

E2 =

= 2.14 eV, 

(580 nm)

The difference is ∆E = (3.307 eV) − (2.138 eV) = 1.17 eV. 

E45-4

P = E/t, so, using the result of Exercise 45-1, 

(1240 eV · nm)

P = (100/s)

= 230 eV/s. 

(540 nm)

That’s a small 3.68×10−17W. 

E45-5

When talking about the regions in the sun’s spectrum it is more common to refer to

wavelengths than frequencies. So we will use the results of Exercise 45-1(a), and solve

λ = hc/E = (1240 eV · nm)/E. 

The energies are between E = (1.0×1018J)/(1.6×10−19C) = 6.25 eV and E = (1.0×1016J)/(1.6×

10−19C) = 625 eV. These energies correspond to wavelengths between 198 nm and 1.98 nm; this is

the ultraviolet range. 

E45-6

The energy per photon is E = hf = hc/λ. The intensity is power per area, which is energy

per time per area, so

P

E

nhc

hc n

I =

=

=

=

. 

A

At

λAt

λA t

But R = n/t is the rate of photons per unit time. Since h and c are constants and I and A are equal

for the two beams, we have R1/λ1 = R2/λ2, or

R1/R2 = λ1/λ2. 
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E45-7

(a) Since the power is the same, the bulb with the larger energy per photon will emits

fewer photons per second. Since longer wavelengths have lower energies, the bulb emitting 700 nm

must be giving off more photons per second. 

(b) How many more photons per second? If E1 is the energy per photon for one of the bulbs, 

then N1 = P/E1 is the number of photons per second emitted. The difference is then

P

P

P

N1 − N2 =

−

=

(λ1 − λ2), 

E1

E2

hc

or

(130 W)

N1 −N2 =

((700×10−9m) − (400×10−9m)) = 1.96×1020. 

(6.63×10−34J·s)(3.00×108m/s)

E45-8

Using the results of Exercise 45-1, the energy of one photon is

(1240 eV · nm)

E =

= 1.968 eV, 

(630 nm)

The total light energy given off by the bulb is

Et = P t = (0.932)(70 W)(730 hr)(3600 s/hr) = 1.71×108J. 

The number of photons is

Et

(1.71×108J)

n =

=

= 5.43×1026. 

E0

(1.968 eV)(1.6×10−19J/eV)

E45-9

Apply Wien’s law, Eq. 45-4, λmaxT = 2898 µm · K; so

(2898 µm · K)

T =

= 91×106K. 

(32×10−12m)

Actually, the wavelength was supposed to be 32 µm. Then the temperature would be 91 K. 

E45-10

Apply Wien’s law, Eq. 45-4, λmaxT = 2898 µm · K; so

(2898 µm · K)

λ =

= 1.45 m. 

(0.0020 K)

This is in the radio region, near 207 on the FM dial. 

E45-11

The wavelength of the maximum spectral radiancy is given by Wien’s law, Eq. 45-4, 

λmaxT = 2898 µm · K. 

Applying to each temperature in turn, 

(a) λ = 1.06×10−3m, which is in the microwave; 

(b) λ = 9.4×10−6m, which is in the infrared; 

(c) λ = 1.6×10−6m, which is in the infrared; 

(d) λ = 5.0×10−7m, which is in the visible; 

(e) λ = 2.9×10−10m, which is in the x-ray; 

(f) λ = 2.9×10−41m, which is in a hard gamma ray. 
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E45-12

(a) Apply Wien’s law, Eq. 45-4, λmaxT = 2898 µm · K.; so

(2898 µm · K)

λ =

= 5.00×10−7m. 

(5800 K)

That’s blue-green. 

(b) Apply Wien’s law, Eq. 45-4, λmaxT = 2898 µm · K.; so

(2898 µm · K)

T =

= 5270 K. 

(550×10−9m)

E45-13

I = σT 4 and P = IA. Then

P = (5.67×10−8W/m2 · K4)(1900 K)4π(0.5×10−3m)2 = 0.58 W. 

E45-14

Since I ∝ T 4, doubling T results in a 24 = 16 times increase in I. Then the new power

level is

(16)(12.0 mW) = 192 mW. 

E45-15

(a) We want to apply Eq. 45-6, 

2πc2h

1

R(λ, T ) =

. 

λ5

ehc/λkT − 1

We know the ratio of the spectral radiancies at two different wavelengths. Dividing the above

equation at the first wavelength by the same equation at the second wavelength, 

λ5 ehc/λ1kT − 1

3.5 =

1

, 

λ5 ehc/λ2kT

2

− 1

where λ1 = 200 nm and λ2 = 400 nm. We can considerably simplify this expression if we let

x = ehc/λ2kT , 

because since λ2 = 2λ1 we would have

ehc/λ1kT = e2hc/λ2kT = x2. 

Then we get

 1 5 x2 − 1

1

3.5 =

=

(x + 1). 

2

x − 1

32

We will use the results of Exercise 45-1 for the exponents and then rearrange to get

hc

(3.10 eV)

T =

=

= 7640 K. 

λ1k ln(111)

(8.62×10−5 eV/K) ln(111)

(b) The method is the same, except that instead of 3.5 we have 1/3.5; this means the equation

for x is

1

1

=

(x + 1), 

3.5

32

with solution x = 8.14, so then

hc

(3.10 eV)

T =

=

= 17200 K. 

λ1k ln(8.14)

(8.62×10−5 eV/K) ln(8.14)
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E45-16

hf = φ, so

φ

(5.32 eV)

f =

=

= 1.28×1015Hz. 

h

(4.14×10−15eV · s)

E45-17

We’ll use the results of Exercise 45-1. Visible red light has an energy of

(1240 eV · nm)

E =

= 1.9 eV. 

(650 nm)

The substance must have a work function less than this to work with red light. This means that

only cesium will work with red light. Visible blue light has an energy of

(1240 eV · nm)

E =

= 2.75 eV. 

(450 nm)

This means that barium, lithium, and cesium will work with blue light. 

E45-18

Since Km = hf − φ, 

Km = (4.14×10−15eV · s)(3.19×1015Hz) − (2.33 eV) = 10.9 eV. 

E45-19

(a) Use the results of Exercise 45-1 to find the energy of the corresponding photon, 

hc

(1240 eV · nm)

E =

=

= 1.83 eV. 

λ

(678 nm)

Since this energy is less than than the minimum energy required to remove an electron then the

photo-electric effect will not occur. 

(b) The cut-off wavelength is the longest possible wavelength of a photon that will still result in

the photo-electric effect occurring. That wavelength is

(1240 eV · nm)

(1240 eV · nm)

λ =

=

= 544 nm. 

E

(2.28 eV)

This would be visible as green. 

E45-20

(a) Since Km = hc/λ − φ, 

(1240 eV · nm)

Km =

(4.2 eV) = 2.0 eV. 

(200 nm)

(b) The minimum kinetic energy is zero; the electron just barely makes it off the surface. 

(c) V s = Km/q = 2.0 V. 

(d) The cut-off wavelength is the longest possible wavelength of a photon that will still result in

the photo-electric effect occurring. That wavelength is

(1240 eV · nm)

(1240 eV · nm)

λ =

=

= 295 nm. 

E

(4.2 eV)

E45-21

Km = qV s = 4.92 eV. But Km = hc/λ − φ, so

(1240 eV · nm)

λ =

= 172 nm. 

(4.92 eV + 2.28 eV)
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E45-22

(a) Km = qV s and Km = hc/λ − φ. We have two different values for qV s and λ, so

subtracting this equation from itself yields

q(V s,1 − V s,2) = hc/λ1 − hc/λ2. 

Solving for λ2, 

hc

λ2

=

, 

hc/λ1 − q(V s,1 − V s,2)

(1240 eV · nm)

=

, 

(1240 eV · nm)/(491 nm) − (0.710 eV) + (1.43 eV)

=

382 nm. 

(b) Km = qV s and Km = hc/λ − φ, so

φ = (1240 eV · nm)/(491 nm) − (0.710 eV) = 1.82 eV. 

E45-23

(a) The stopping potential is given by Eq. 45-11, 

h

φ

V0 =

f −

, 

e

e

so

(1240 eV · nm)

(1.85 eV

V0 =

−

= 1.17 V. 

e(410 nm

e

(b) These are not relativistic electrons, so

p

p

p

v =

2K/m = c

2K/mc2 = c

2(1.17 eV)/(0.511×106 eV) = 2.14×10−3c, 

or v = 64200 m/s. 

E45-24

It will have become the stopping potential, or

h

φ

V0 =

f −

, 

e

e

so

(4.14×10−15eV · m)

(2.49 eV)

V0 =

(6.33×1014/s) −

= 0.131 V. 

(1.0e)

(1.0e)

E45-25

E45-26

(a) Using the results of Exercise 45-1, 

(1240 eV · nm)

λ =

= 62 pm. 

(20×103 eV)

(b) This is in the x-ray region. 

E45-27

(a) Using the results of Exercise 45-1, 

(1240 eV · nm)

E =

= 29, 800 eV. 

(41.6×10−3 nm)

(b) f = c/λ = (3×108m/s)/(41.6 pm) = 7.21×1018/s. 

(c) p = E/c = 29, 800 eV/c = 2.98×104 eV/c. 
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E45-28

(a) E = hf , so

(0.511×106eV)

f =

= 1.23×1020/s. 

(4.14×10−15eV · s)

(b) λ = c/f = (3×108m/s)/(1.23×1020/s) = 2.43 pm. 

(c) p = E/c = (0.511×106eV)/c. 

E45-29

The initial momentum of the system is the momentum of the photon, p = h/λ. This

momentum is imparted to the sodium atom, so the final speed of the sodium is v = p/m, where m

is the mass of the sodium. Then

h

(6.63×10−34J · s)

v =

=

= 2.9 cm/s. 

λm

(589×10−9m)(23)(1.7×10−27kg)

E45-30

(a) λC = h/mc = hc/mc2, so

(1240 eV · nm)

λC =

= 2.43 pm. 

(0.511×106eV)

(c) Since Eλ = hf = hc/λ, and λ = h/mc = hc/mc2, then

Eλ = hc/λ = mc2. 

(b) See part (c). 

E45-31

The change in the wavelength of a photon during Compton scattering is given by Eq. 

45-17, 

h

λ0 = λ +

(1 − cos φ). 

mc

We’ll use the results of Exercise 45-30 to save some time, and let h/mc = λC, which is 2.43 pm. 

(a) For φ = 35◦, 

λ0 = (2.17 pm) + (2.43 pm)(1 − cos 35◦) = 2.61 pm. 

(b) For φ = 115◦, 

λ0 = (2.17 pm) + (2.43 pm)(1 − cos 115◦) = 5.63 pm. 

E45-32

(a) We’ll use the results of Exercise 45-1:

(1240 eV · nm)

λ =

= 2.43 pm. 

(0.511×106eV)

(b) The change in the wavelength of a photon during Compton scattering is given by Eq. 45-17, 

h

λ0 = λ +

(1 − cos φ). 

mc

We’ll use the results of Exercise 45-30 to save some time, and let h/mc = λC, which is 2.43 pm. 

λ0 = (2.43 pm) + (2.43 pm)(1 − cos 72◦) = 4.11 pm. 

(c) We’ll use the results of Exercise 45-1:

(1240 eV · nm)

E =

= 302 keV. 

(4.11 pm)

241

E45-33

The change in the wavelength of a photon during Compton scattering is given by Eq. 

45-17, 

h

λ0 − λ =

(1 − cos φ). 

mc

We are not using the expression with the form ∆λ because ∆λ and ∆E are not simply related. 

The wavelength is related to frequency by c = f λ, while the frequency is related to the energy

by Eq. 45-1, E = hf . Then

∆E

=

E − E0 = hf − hf 0, 

 1

1 

=

hc

−

, 

λ

λ0

λ0 − λ

=

hc

. 

λ λ0

Into this last expression we substitute the Compton formula. Then

h2 (1 − cos φ)

∆E =

. 

m

λ λ0

Now E = hf = hc/λ, and we can divide this on both sides of the above equation. Also, λ0 = c/f 0, 

and we can substitute this into the right hand side of the above equation. Both of these steps result in

∆E

hf 0

=

(1 − cos φ). 

E

mc2

Note that mc2 is the rest energy of the scattering particle (usually an electron), while hf 0 is the

energy of the scattered photon. 

E45-34

The wavelength is related to frequency by c = f λ, while the frequency is related to the

energy by Eq. 45-1, E = hf . Then

∆E

=

E − E0 = hf − hf 0, 

 1

1 

=

hc

−

, 

λ

λ0

λ0 − λ

=

hc

, 

λ λ0

∆E

∆λ

=

, 

E

λ + ∆λ

But ∆E/E = 3/4, so

3λ + 3∆λ = 4∆λ, 

or ∆λ = 3λ. 

E45-35

The maximum shift occurs when φ = 180◦, so

h

(1240 eV · nm)

∆λm = 2

= 2

= 2.64×10−15m. 

mc

938 MeV)

E45-36

Since E = hf frequency shifts are identical to energy shifts. Then we can use the results

of Exercise 45-33 to get

(0.9999)(6.2 keV)

(0.0001) =

(1 − cos φ), 

(511 keV)

which has solution φ = 7.4◦. 

(b) (0.0001)(6.2 keV) = 0.62 eV. 
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E45-37

(a) The change in wavelength is independent of the wavelength and is given by Eq. 

45-17, 

hc

(1240 eV · nm)

∆λ =

(1 − cos φ) = 2

= 4.85×10−3 nm. 

mc2

(0.511×106 eV)

(b) The change in energy is given by

hc

hc

∆E

=

−

, 

λf

λi




1

1 

=

hc

−

, 

λi + ∆λ

λi



1

1



=

(1240 eV · nm)

−

= −42.1 keV

(9.77 pm) + (4.85 pm)

(9.77 pm)

(c) This energy went to the electron, so the final kinetic energy of the electron is 42.1 keV. 

E45-38

For φ = 90◦ ∆λ = h/mc. Then

∆E

hf 0

λ

=

1 −

= 1 −

, 

E

hf

λ + ∆λ

h/mc

=

. 

λ + h/mc

But h/mc = 2.43 pm for the electron (see Exercise 45-30). 

(a) ∆E/E = (2.43 pm)/(3.00 cm + 2.43 pm) = 8.1×10−11. 

(b) ∆E/E = (2.43 pm)/(500 nm + 2.43 pm) = 4.86×10−6. 

(c) ∆E/E = (2.43 pm)/(0.100 nm + 2.43 pm) = 0.0237. 

(d) ∆E/E = (2.43 pm)/(1.30 pm + 2.43 pm) = 0.651. 

E45-39

We can use the results of Exercise 45-33 to get

(0.90)(215 keV)

(0.10) =

(1 − cos φ), 

(511 keV)

which has solution φ = 42/6◦. 

E45-40

(a) A crude estimate is that the photons can’t arrive more frequently than once every

10 − 8s. That would provide an emission rate of 108/s. 

(b) The power output would be

(1240 eV · nm)

P = (108)

= 2.3×108eV/s, 

(550 nm)

which is 3.6×10−11 W! 

E45-41

We can follow the example of Sample Problem 45-6, and apply

λ = λ0(1 − v/c). 

(a) Solving for λ0, 

(588.995 nm)

λ0 =

= 588.9944 nm. 

(1 − (−300 m/s)(3×108m/s)
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(b) Applying Eq. 45-18, 

h

(6.6×10−34J · s)

∆v = −

= −

= 3×10−2m/s. 

mλ

(22)(1.7×10−27kg)(590×10−9m)

(c) Emitting another photon will slow the sodium by about the same amount. 

E45-42

(a) (430 m/s)/(0.15 m/s) ≈ 2900 interactions. 

(b) If the argon averages a speed of 220 m/s, then it requires interactions at the rate of

(2900)(220 m/s)/(1.0 m) = 6.4×105/s

if it is going to slow down in time. 

P45-1

The radiant intensity is given by Eq. 45-3, I = σT 4. The power that is radiated through

the opening is P = IA, where A is the area of the opening. But energy goes both ways through the

opening; it is the difference that will give the net power transfer. Then

P



net = (I0 − I1)A = σA T 4

. 

0 − T 4

1

Put in the numbers, and

P net = (5.67×10−8W/m2 ·K4)(5.20 × 10−4m2) (488 K)4 − (299 K)4 = 1.44 W. 

P45-2

(a) I = σT 4 and P = IA. Then T 4 = P/σA, or

s

(100 W)

T = 4

= 3248 K. 

(5.67×10−8W/m2 · K4)π(0.28×10−3m)(1.8×10−2m)

That’s 2980◦C. 

(b) The rate that energy is radiated off is given by dQ/dt = mC dT /dt. The mass is found from

m = ρV , where V is the volume. This can be combined with the power expression to yield

σAT 4 = −ρV CdT /dt, 

which can be integrated to yield

ρV C

∆t =

(1/T 3

). 

3σA

2 − 1/T 3

1

Putting in numbers, 

(19300kg/m3)(0.28×10−3m)(132J/kgC)

∆t

=

[1/(2748 K)3 − 1/(3248 K)3], 

3(5.67×10−8W/m2 · K4)(4)

=

20 ms. 

P45-3

Light from the sun will “heat-up” the thin black screen. As the temperature of the screen

increases it will begin to radiate energy. When the rate of energy radiation from the screen is equal to the rate at which the energy from the sun strikes the screen we will have equilibrium. We need

first to find an expression for the rate at which energy from the sun strikes the screen. 

The temperature of the sun is T

4

S. The radiant intensity is given by Eq. 45-3, I S = σT S . The

total power radiated by the sun is the product of this radiant intensity and the surface area of the

sun, so

P

2

4

S = 4πrS σT S , 
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where rS is the radius of the sun. 

Assuming that the lens is on the surface of the Earth (a reasonable assumption), then we can

find the power incident on the lens if we know the intensity of sunlight at the distance of the Earth from the sun. That intensity is

P S

P S

IE =

=

, 

A

4πR 2

E

where RE is the radius of the Earth’s orbit. Combining, 

 r 2

S

I

4

E = σT S

RE

The total power incident on the lens is then

 r 2

S

P

4

2

lens = I EAlens = σT S

πrl , 

RE

where rl is the radius of the lens. All of the energy that strikes the lens is focused on the image, so the power incident on the lens is also incident on the image. 

The screen radiates as the temperature increases. The radiant intensity is I = σT 4, where T is

the temperature of the screen. The power radiated is this intensity times the surface area, so

P = IA = 2πr 2

i σT 4. 

The factor of “2” is because the screen has two sides, while ri is the radius of the image. Set this

equal to P lens, 

 r 2

S

2πr 2

4

2

i σT 4 = σT S

πrl , 

RE

or

1

 r

2

S rl

T 4 =

T 4

S

. 

2

RE ri

The radius of the image of the sun divided by the radius of the sun is the magnification of the

lens. But magnification is also related to image distance divided by object distance, so

ri

i

= |m| = , 

rS

o

Distances should be measured from the lens, but since the sun is so far from the Earth, we won’t be

far off in stating o ≈ RE. Since the object is so far from the lens, the image will be very, very close to the focal point, so we can also state i ≈ f . Then

ri

f

=

, 

rS

RE

so the expression for the temperature of the thin black screen is considerably simplified to

1

 r 2

l

T 4 =

T 4

S

. 

2

f

Now we can put in some of the numbers. 

s

1

(1.9 cm)

T =

(5800 K)

= 1300 K. 

21/4

(26 cm)
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P45-4

The derivative of R with respect to λ is

π c2 h

2 π c3 h2 e( h c )

λ k T

−10

+

. 

λ6 (e( h c )

)

λ k T

− 1)

λ7 (e( h c

λ k T

− 1)2 k T

Ohh, that’s ugly. Setting it equal to zero allows considerable simplification, and we are left with

(5 − x)ex = 5, 

where x = hc/λkT . The solution is found numerically to be x = 4.965114232. Then

(1240 eV · nm)

2.898×10−3m · K

λ =

=

. 

(4.965)(8.62×10−5eV/K)T

T

P45-5

(a) If the planet has a temperature T , then the radiant intensity of the planet will be

IσT 4, and the rate of energy radiation from the planet will be

P = 4πR2σT 4, 

where R is the radius of the planet. 

A steady state planet temperature requires that the energy from the sun arrive at the same rate

as the energy is radiated from the planet. The intensity of the energy from the sun a distance r

from the sun is

P sun/4πr2, 

and the total power incident on the planet is then

P sun

P = πR2

. 

4πr2

Equating, 

P sun

4πR2σT 4

=

πR2

, 

4πr2

P sun

T 4

=

. 

16πσr2

(b) Using the last equation and the numbers from Problem 3, 

s

1

(6.96×108m)

T = √ (5800 K)

= 279 K. 

2

(1.5×1011m)

That’s about 43◦ F. 

P45-6

(a) Change variables as suggested, then λ = hc/xkT and dλ = −(hc/x2kT )dx. Integrate

(note the swapping of the variables of integration picks up a minus sign):

Z

2πc2h

(hc/x2kT )dx

I

=

, 

(hc/xkT )5

ex − 1

2πk4T 4 Z

x3 dx

=

, 

h3c2

ex − 1

2π5k4

=

T 4. 

15h3c2
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P45-7

(a) P = E/t = nhf /t = (hc/λ)(n/t), where n/t is the rate of photon emission. Then

(100 W)(589×10−9m)

n/t =

= 2.96×1020/s. 

(6.63×10−34J · s)(3.00×108m/s)

(b) The flux at a distance r is the rate divided by the area of the sphere of radius r, so

s

(2.96×1020/s)

r =

= 4.8×107m. 

4π(1×104/m2 · s)

(c) The photon density is the flux divided by the speed of light; the distance is then

s

(2.96×1020/s)

r =

= 280 m. 

4π(1×106/m3)(3×108m/s)

(d) The flux is given by

(2.96×1020/s) = 5.89×1018/m2 · s. 

4π(2.0 m)2

The photon density is

(5.89×1018m2 · s)/(3.00×108m/s) = 1.96×1010/m3. 

P45-8

Momentum conservation requires

pλ = pe, 

while energy conservation requires

Eλ + mc2 = Ee. 

Square both sides of the energy expression and

E2 + 2E

= p2c2 + m2c4, 

λ

λmc2 + m2c4

=

E2

e

e

E2 + 2E

c2, 

λ

λmc2

=

p2e

p2 c2 + 2E

c2. 

λ

λmc2

=

p2e

But the momentum expression can be used here, and the result is

2Eλmc2 = 0. 

Not likely. 

P45-9

(a) Since qvB = mv2/r, v = (q/m)rB The kinetic energy of (non-relativistic) electrons will

be

1

1 q2(rB)2

K =

mv2 =

, 

2

2

m

or

1 (1.6×10−19C)

K =

(188×10−6T · m)2 = 3.1×103 eV. 

2 (9.1×10−31kg)

(b) Use the results of Exercise 45-1, 

(1240 eV · nm)

φ =

− 3.1×103eV = 1.44×104 eV. 

(71×10−3nm)
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P45-10

P45-11

(a) The maximum value of ∆λ is 2h/mc. The maximum energy lost by the photon is

then

hc

hc

∆E

=

−

, 

λf

λi



1

1 

=

hc

−

, 

λi + ∆λ

λi

−2h/mc

=

hc

, 

λ(λ + 2h/mc)

where in the last line we wrote λ for λi. The energy given to the electron is the negative of this, so 2h2

Kmax =

. 

mλ(λ + 2h/mc)

Multiplying through by 12 = (Eλ/hc)2 we get

2E2

Kmax =

. 

mc2(1 + 2hc/λmc2)

or

E2

Kmax =

. 

mc2/2 + E

(b) The answer is

(17.5 keV)2

Kmax =

= 1.12 keV. 

(511 eV)/2 + (17.5 keV)
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E46-1

(a) Apply Eq. 46-1, λ = h/p. The momentum of the bullet is

p = mv = (0.041 kg)(960 m/s) = 39kg · m/s, 

so the corresponding wavelength is

λ = h/p = (6.63×10−34J · s)/(39kg · m/s) = 1.7×10−35 m. 

(b) This length is much too small to be significant. How much too small? If the radius of the

galaxy were one meter, this distance would correspond to the diameter of a proton. 

E46-2

(a) λ = h/p and p2/2m = K, then

hc

(1240 eV · nm)

1.226 nm

λ = √

=

√

=

√

. 

p

2mc2K

2(511 keV) K

K

(b) K = eV , so

r

1.226 nm

1.5 V

λ =

√

=

nm. 

eV

V

√

E46-3

For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/ 2mc2K. 

(a) For the electron, 

(1240 eV · nm)

λ =

= 0.0388 nm. 

p2(511 keV)(1.0 keV)

(c) For the neutron, 

(1240 MeV · fm)

λ =

= 904 fm. 

p2(940 MeV)(0.001 MeV)

(b) For ultra-relativistic particles K ≈ E ≈ pc, so

hc

(1240 eV · nm)

λ =

=

= 1.24 nm. 

E

(1000 eV)

E46-4

For non-relativistic particles p = h/λ and p2/2m = K, so K = (hc)2/2mc2λ2. Then

(1240 eV · nm)2

K =

= 4.34×10−6 eV. 

2(5.11×106eV)(589 nm)2

E46-5

(a) Apply Eq. 46-1, p = h/λ. The proton speed would then be

h

hc

(1240 MeV · fm)

v =

= c

= c

= 0.0117c. 

mλ

mc2λ

(938 MeV)(113 fm)

This is good, because it means we were justified in using the non-relativistic equations. 

Then

v = 3.51×106m/s. 

(b) The kinetic energy of this electron would be

1

1

K =

mv2 =

(938 MeV)(0.0117)2 = 64.2 keV. 

2

2

The potential through which it would need to be accelerated is 64.2 kV. 
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√

E46-6

(a) K = qV and p =

2mK. Then

p

p =

2(22)(932 MeV/c2)(325 eV) = 3.65×106 eV/c. 

(b) λ = h/p, so

hc

(1240 eV · nm)

λ =

=

= 3.39×10−4nm. 

pc

(3.65×106 eV/c)c

√

E46-7

(a) For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/ 2mc2K. For the

alpha particle, 

(1240 MeV · fm)

λ =

= 5.2 fm. 

p2(4)(932 MeV)(7.5 MeV)

(b) Since the wavelength of the alpha is considerably smaller than the distance to the nucleus

we can ignore the wave nature of the alpha particle. 

E46-8

(a) For non-relativistic particles p = h/λ and p2/2m = K, so K = (hc)2/2mc2λ2. Then

(1240 keV · pm)2

K =

= 15 keV. 

2(511keV)(10 pm)2

(b) For ultra-relativistic particles K ≈ E ≈ pc, so

hc

(1240 keV · pm)

E =

=

= 124 keV. 

λ

(10 pm)

E46-9

The relativistic relationship between energy and momentum is

E2 = p2c2 + m2c4, 

and if the energy is very large (compared to mc2), then the contribution of the mass to the above

expression is small, and

E2 ≈ p2c2. 

Then from Eq. 46-1, 

h

hc

hc

(1240 MeV · f m)

λ =

=

=

=

= 2.5×10−2 fm. 

p

pc

E

(50×103 MeV)

√

E46-10

(a) K = 3kT /2, p =

2mK, and λ = h/p, so

h

hc

λ

=

√

= √

, 

3mkT

3mc2kT

(1240 MeV · f m)

=

= 74 pm. 

p3(4)(932MeV)(8.62×10−11MeV/K)(291 K)

(b) pV = N kT ; assuming that each particle occupies a cube of volume d3 = V0 then the inter-

particle spacing is d, so

s

(1.38×10−23J/K)(291 K)

d = 3

pV/N = 3

= 3.4 nm. 

(1.01×105Pa)
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E46-11

p = mv and p = h/λ, so m = h/λv. Taking the ratio, 

me

λv

=

= (1.813×10−4)(3) = 5.439×10−4. 

m

λeve

The mass of the unknown particle is then

(0.511 MeV/c2)

m =

= 939.5 MeV. 

(5.439×10−4)

That would make it a neutron. 

√

E46-12

(a) For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/ 2mc2K. 

For the electron, 

(1240 eV · nm)

λ =

= 1.0 nm. 

p2(5.11×105 eV)(1.5 eV)

For ultra-relativistic particles K ≈ E ≈ pc, so for the photon

hc

(1240 eV · nm)

λ =

=

= 830 nm. 

E

(1.5 eV)

(b) Electrons with energies that high are ultra-relativistic. Both the photon and the electron will

then have the same wavelength; 

hc

(1240 MeV · fm)

λ =

=

= 0.83 fm. 

E

(1.5 GeV)

E46-13

(a) The classical expression for kinetic energy is

√

p =

2mK, 

so

h

hc

(1240 keV · pm)

λ =

= √

=

= 7.76 pm. 

p

p

2mc2K

2(511 keV)(25.0 keV)

(a) The relativistic expression for momentum is

p

p

pc = sqrtE2 − m2c4 =

(mc2 + K)2 − m2c4 =

K2 + 2mc2K. 

Then

hc

(1240 keV · pm)

λ =

=

= 7.66 pm. 

pc

p(25.0 keV)2 + 2(511 keV)(25.0 keV)

E46-14

We want to match the wavelength of the gamma to that of the electron. For the gamma, 

λ = hc/Eγ. For the electron, K = p2/2m = h2/2mλ2. Combining, 

h2

E2

γ

K =

E2 =

. 

2mh2c2

γ

2mc2

With numbers, 

(136keV)2

K =

= 18.1 keV. 

2(511 keV)

That would require an accelerating potential of 18.1 kV. 
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E46-15

First find the wavelength of the neutrons. For non-relativistic particles λ = h/p and

√

p2/2m = K, so λ = hc/ 2mc2K. Then

(1240 keV · pm)

λ =

= 14 pm. 

p2(940×103 keV)(4.2×10−3 keV)

Bragg reflection occurs when 2d sin θ = λ, so

θ = arcsin(14 pm)/2(73.2 pm) = 5.5◦. 

E46-16

This is merely a Bragg reflection problem. Then 2d sin θ = mλ, or

θ

=

arcsin(1)(11 pm)/2(54.64 pm) = 5.78◦, 

θ

=

arcsin(2)(11 pm)/2(54.64 pm) = 11.6◦, 

θ

=

arcsin(3)(11 pm)/2(54.64 pm) = 17.6◦. 

E46-17

(a) Since sin 52◦ = 0.78, then 2(λ/d) = 1.57 > 1, so there is no diffraction order other

than the first. 

(b) For an accelerating potential of 54 volts we have λ/d = 0.78. Increasing the potential will

increase the kinetic energy, increase the momentum, and decrease the wavelength. d won’t change. 

The kinetic energy is increased by a factor of 60/54 = 1.11, the momentum increases by a factor of

√1.11 = 1.05, so the wavelength changes by a factor of 1/1.05 = 0.952. The new angle is then

θ = arcsin(0.952 × 0.78) = 48◦. 

E46-18

First find the wavelength of the electrons. For non-relativistic particles λ = h/p and

√

p2/2m = K, so λ = hc/ 2mc2K. Then

(1240 keV · pm)

λ =

= 62.9 pm. 

p2(511 keV)(0.380 keV)

This is now a Bragg reflection problem. Then 2d sin θ = mλ, or

θ

=

arcsin(1)(62.9 pm)/2(314 pm) = 5.74◦, 

θ

=

arcsin(2)(62.9 pm)/2(314 pm) = 11.6◦, 

θ

=

arcsin(3)(62.9 pm)/2(314 pm) = 17.5◦, 

θ

=

arcsin(4)(62.9 pm)/2(314 pm) = 23.6◦, 

θ

=

arcsin(5)(62.9 pm)/2(314 pm) = 30.1◦, 

θ

=

arcsin(6)(62.9 pm)/2(314 pm) = 36.9◦, 

θ

=

arcsin(7)(62.9 pm)/2(314 pm) = 44.5◦, 

θ

=

arcsin(8)(62.9 pm)/2(314 pm) = 53.3◦, 

θ

=

arcsin(9)(62.9 pm)/2(314 pm) = 64.3◦. 

But the odd orders vanish (see Chapter 43 for a discussion on this). 

E46-19

Since ∆f · ∆t ≈ 1/2π, we have

∆f = 1/2π(0.23 s) = 0.69/s. 
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E46-20

Since ∆f · ∆t ≈ 1/2π, we have

∆f = 1/2π(0.10×10−9s) = 1.6×1010/s. 

The bandwidth wouldn’t fit in the frequency allocation! 

E46-21

Apply Eq. 46-9, 

h

4.14×10−15 eV · s)

∆E ≥

=

= 7.6×10−5 eV. 

2π∆t

2π(8.7×10−12s)

This is much smaller than the photon energy. 

E46-22

Apply Heisenberg twice:

4.14×10−15 eV · s)

∆E1 =

= 5.49×10−8 eV. 

2π(12×10−9s)

and

4.14×10−15 eV · s)

∆E2 =

= 2.86×10−8 eV. 

2π(23×10−9s)

The sum is ∆Etransition = 8.4×10−8eV. 

E46-23

Apply Heisenberg:

6.63×10−34J · s)

∆p =

= 8.8×10−24kg · m/s. 

2π(12×10−12m)

E46-24

∆p = (0.5 kg)(1.2 s) = 0.6 kg · m/s. The position uncertainty would then be

(0.6 J/s)

∆x =

= 0.16 m. 

2π(0.6 kg · m/s)

E46-25

We want v ≈ ∆v, which means p ≈ ∆p. Apply Eq. 46-8, and

h

h

∆x ≥

≈

. 

2π∆p

2πp

According to Eq. 46-1, the de Broglie wavelength is related to the momentum by

λ = h/p, 

so

λ

∆x ≥

. 

2π

E46-26

(a) A particle confined in a (one dimensional) box of size L will have a position uncertainty

of no more than ∆x ≈ L. The momentum uncertainty will then be no less than

h

h

∆p ≥

≈

. 

2π∆x

2πL

so

(6.63×10−34J · s)

∆p ≈

= 1×10−24kg · m/s. 

2π(×10−10 m)
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(b) Assuming that p ≈ ∆p, we have

h

p ≥

, 

2πL

and then the electron will have a (minimum) kinetic energy of

p2

h2

E ≈

≈

. 

2m

8π2mL2

or

(hc)2

(1240 keV · pm)2

E ≈

=

= 0.004 keV. 

8π2mc2L2

8π2(511 keV)(100 pm)2

E46-27

(a) A particle confined in a (one dimensional) box of size L will have a position uncer-

tainty of no more than ∆x ≈ L. The momentum uncertainty will then be no less than

h

h

∆p ≥

≈

. 

2π∆x

2πL

so

(6.63×10−34J · s)

∆p ≈

= 1×10−20kg · m/s. 

2π(×10−14 m)

(b) Assuming that p ≈ ∆p, we have

h

p ≥

, 

2πL

and then the electron will have a (minimum) kinetic energy of

p2

h2

E ≈

≈

. 

2m

8π2mL2

or

(hc)2

(1240 MeV · fm)2

E ≈

=

= 381 MeV. 

8π2mc2L2

8π2(0.511 MeV)(10 fm)2

This is so large compared to the mass energy of the electron that we must consider relativistic effects. 

It will be very relativistic (381  0.5!), so we can use E = pc as was derived in Exercise 9. Then

hc

(1240 MeV · fm)

E =

=

= 19.7 MeV. 

2πL

2π(10 fm)

This is the total energy; so we subtract 0.511 MeV to get K = 19 MeV. 

E46-28

We want to find L when T = 0.01. This means solving

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(5.0 eV) 

(5.0 eV) 

(0.01)

=

16

1 −

e−2k0L, 

(6.0 eV)

(6.0 eV)

=

2.22e−2k0L, 

ln(4.5×10−3) = 2(5.12×109/m)L, 

5.3×10−10m = L. 
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E46-29

The wave number, k, is given by

2π p

k =

2mc2(U0 − E). 

hc

(a) For the proton mc2 = 938 MeV, so

2π

p

k =

2(938 MeV)(10 MeV − 3.0 MeV) = 0.581 fm−1. 

(1240 MeV · fm)

The transmission coefficient is then

(3.0 MeV) 

(3.0 MeV) 

T = 16

1 −

e−2(0.581 fm−1)(10 fm) = 3.0×10−5. 

(10 MeV)

(10 MeV)

(b) For the deuteron mc2 = 2 × 938 MeV, so

2π

p

k =

2(2)(938 MeV)(10 MeV − 3.0 MeV) = 0.821 fm−1. 

(1240 MeV · fm)

The transmission coefficient is then

(3.0 MeV) 

(3.0 MeV) 

T = 16

1 −

e−2(0.821 fm−1)(10 fm) = 2.5×10−7. 

(10 MeV)

(10 MeV)

E46-30

The wave number, k, is given by

2π p

k =

2mc2(U0 − E). 

hc

(a) For the proton mc2 = 938 MeV, so

2π

p

k =

2(938 MeV)(6.0 eV − 5.0 eV) = 0.219 pm−1. 

(1240 keV · pm)

We want to find T . This means solving

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(5.0 eV) 

(5.0 eV) 

=

16

1 −

e−2(0.219×1012)(0.7×10−9), 

(6.0 eV)

(6.0 eV)

=

1.6×10−133. 

A current of 1 kA corresponds to

N = (1×103C/s)/(1.6×10−19C) = 6.3×1021/s

protons per seconds. The time required for one proton to pass is then

t = 1/(6.3×1021/s)(1.6×10−133) = 9.9×10110s. 

That’s 10104 years! 
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P46-1

We will interpret low energy to mean non-relativistic. Then

h

h

λ =

= √

. 

p

2mnK

The diffraction pattern is then given by

p

d sin θ = mλ = mh/

2mnK, 

where m is diffraction order while mn is the neutron mass. We want to investigate the spread by

taking the derivative of θ with respect to K, 

mh

d cos θ dθ = − √

dK. 

2 2mnK3

Divide this by the original equation, and then

cos θ

dK

dθ = −

. 

sin θ

2K

Rearrange, change the differential to a difference, and then

∆K

∆θ = tan θ

. 

2K

We dropped the negative sign out of laziness; but the angles are in radians, so we need to multiply

by 180/π to convert to degrees. 

P46-2

P46-3

We want to solve

E 

E 

T = 16

1 −

e−2kL, 

U0

U0

for E. Unfortunately, E is contained in k since

2π p

k =

2mc2(U0 − E). 

hc

We can do this by iteration. The maximum possible value for

E 

E 

1 −

U0

U0

is 1/4; using this value we can get an estimate for k:

(0.001)

=

16(0.25)e−2kL, 

ln(2.5×10−4) = −2k(0.7 nm), 

5.92/ nm

=

k. 

Now solve for E:

E

=

U0 − (hc)2k28mc2π2, 

(1240 eV · nm)2(5.92/nm)2

=

(6.0 eV) −

, 

8π2(5.11×105eV)

=

4.67 eV. 
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Put this value for E back into the transmission equation to find a new k:

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(4.7 eV) 

(4.7 eV) 

(0.001)

=

16

1 −

e−2kL, 

(6.0 eV)

(6.0 eV)

ln(3.68×10−4) = −2k(0.7 nm), 

5.65/ nm

=

k. 

Now solve for E using this new, improved, value for k:

E

=

U0 − (hc)2k28mc2π2, 

(1240 eV · nm)2(5.65/nm)2

=

(6.0 eV) −

, 

8π2(5.11×105eV)

=

4.78 eV. 

Keep at it. You’ll eventually stop around E = 5.07 eV. 

P46-4

(a) A one percent increase in the barrier height means U0 = 6.06 eV. 

For the electron mc2 = 5.11×105 eV, so

2π

p

k =

2(5.11×105 eV)(6.06 eV − 5.0 eV) = 5.27 nm−1. 

(1240 eV · nm)

We want to find T . This means solving

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(5.0 eV) 

(5.0 eV) 

=

16

1 −

e−2(5.27)(0.7), 

(6.06 eV)

(6.06 eV)

=

1.44×10−3. 

That’s a 16% decrease. 

(b) A one percent increase in the barrier thickness means L = 0.707 nm. 

For the electron mc2 = 5.11×105 eV, so

2π

p

k =

2(5.11×105 eV)(6.0 eV − 5.0 eV) = 5.12 nm−1. 

(1240 eV · nm)

We want to find T . This means solving

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(5.0 eV) 

(5.0 eV) 

=

16

1 −

e−2(5.12)(0.707), 

(6.0 eV)

(6.0 eV)

=

1.59×10−3. 

That’s a 8.1% decrease. 

(c) A one percent increase in the incident energy means E = 5.05 eV. 

For the electron mc2 = 5.11×105 eV, so

2π

p

k =

2(5.11×105 eV)(6.0 eV − 5.05 eV) = 4.99 nm−1. 

(1240 eV · nm)
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We want to find T . This means solving

E 

E 

T

=

16

1 −

e−2kL, 

U0

U0

(5.05 eV) 

(5.05 eV) 

=

16

1 −

e−2(4.99)(0.7), 

(6.0 eV)

(6.0 eV)

=

1.97×10−3. 

That’s a 14% increase. 

P46-5

First, the rule for exponents

ei(a+b) = eia eib. 

Then apply Eq. 46-12, eiθ = cos θ + i sin θ, 

cos(a + b) + i sin(a + b) = (cos a + i sin a)(sin b + i sin b). 

Expand the right hand side, remembering that i2 = −1, 

cos(a + b) + i sin(a + b) = cos a cos b + i cos a sin b + i sin a cos b − sin a sin b. 

Since the real part of the left hand side must equal the real part of the right and the imaginary part of the left hand side must equal the imaginary part of the right, we actually have two equations. 

They are

cos(a + b) = cos a cos b − sin a sin b

and

sin(a + b) = cos a sin b + sin a cos b. 

P46-6
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E47-1

(a) The ground state energy level will be given by

h2

(6.63 × 10−34J · s)2

E1 =

=

= 3.1 × 10−10 J. 

8mL2

8(9.11 × 10−31kg)(1.4 × 10−14 m)2

The answer is correct, but the units make it almost useless. We can divide by the electron charge to

express this in electron volts, and then E = 1900 MeV. Note that this is an extremely relativistic

quantity, so the energy expression loses validity. 

(b) We can repeat what we did above, or we can apply a “trick” that is often used in solving

these problems. Multiplying the top and the bottom of the energy expression by c2 we get

(hc)2

E1 = 8(mc2)L2

Then

(1240 MeV · fm)2

E1 =

= 1.0 MeV. 

8(940 MeV)(14 fm)2

(c) Finding an neutron inside the nucleus seems reasonable; but finding the electron would not. 

The energy of such an electron is considerably larger than binding energies of the particles in the

nucleus. 

E47-2

Solve

n2(hc)2

En = 8(mc2)L2

for L, then

nhc

L

=

√

, 

8mc2En

(3)(1240 eV · nm)

=

, 

p8(5.11×105eV)(4.7 eV)

=

0.85 nm. 

E47-3

Solve for E4 − E1:

42(hc)2

12(hc)2

E4 − E1

=

−

, 

8(mc2)L2

8(mc2)L2

(16 − 1)(1240 eV · nm)2

=

, 

8(5.11×105)(0.253 nm)2

=

88.1 eV. 

E47-4

Since E ∝ 1/L2, doubling the width of the well will lower the ground state energy to

(1/2)2 = 1/4, or 0.65 eV. 

E47-5

(a) Solve for E2 − E1:

22h2

12h2

E2 − E1

=

−

, 

8mL2

8mL2

(3)(6.63×10−34J · s)2

=

, 

8(40)(1.67×10−27kg)(0.2 m)2

=

6.2×10−41J. 

(b) K = 3kT /2 = 3(1.38×10−23J/K)(300 K)/2 = 6.21×10−21. The ratio is 1×10−20. 

(c) T = 2(6.2×10−41J)/3(1.38×10−23J/K) = 3.0×10−18K. 
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E47-6

(a) The fractional difference is (En+1 − En)/En, or

∆E









n

h2

h2

h2

=

(n + 1)2

− n2

/ n2

, 

En

8mL2

8mL2

8mL2

(n + 1)2 − n2

=

, 

n2

2n + 1

=

. 

n2

(b) As n → ∞ the fractional difference goes to zero; the system behaves as if it is continuous. 

E47-7

(a) We will take advantage of the “trick” that was developed in part (b) of Exercise 47-1. 

Then

(hc)2

(1240 eV · nm)2

En = n2

= (15)2

= 8.72 keV. 

8mc2 L

8(0.511 × 106 eV)(0.0985 nm)2

(b) The magnitude of the momentum is exactly known because E = p2/2m. This momentum is

given by

√

p

pc =

2mc2E =

2(511 keV)(8.72 keV) = 94.4 keV. 

What we don’t know is in which direction the particle is moving. It is bouncing back and forth

between the walls of the box, so the momentum could be directed toward the right or toward the

left. The uncertainty in the momentum is then

∆p = p

which can be expressed in terms of the box size L by

√

r n2h2

nh

∆p = p =

2mE =

=

. 

4L2

2L

(c) The uncertainty in the position is 98.5 pm; the electron could be anywhere inside the well. 

E47-8

The probability distribution function is

2

2πx

P2 =

sin2

. 

L

L

We want to integrate over the central third, or

Z

L/6 2

2πx

P

=

sin2

dx, 

−L/6 L

L

1 Z π/3

=

sin2 θ dθ, 

π −π/3

=

0.196. 

E47-9

(a) Maximum probability occurs when the argument of the cosine (sine) function is kπ

([k + 1/2]π). This occurs when

x = N L/2n

for odd N . 

(b) Minimum probability occurs when the argument of the cosine (sine) function is [k + 1/2]π

(kπ). This occurs when

x = N L/2n

for even N . 
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E47-10

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

(a) The Lyman series is the series which ends on E1. The least energetic state starts on E2. The

transition energy is

E2 − E1 = (13.6 eV)(1/12 − 1/22) = 10.2 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 121.6 nm. 

∆E

(10.2 eV)

(b) The series limit is

0 − E1 = (13.6 eV)(1/12) = 13.6 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 91.2 nm. 

∆E

(13.6 eV)

E47-11

The ground state of hydrogen, as given by Eq. 47-21, is

me4

(9.109 × 10−31 kg)(1.602 × 10−19 C)4

E1 = −

= −

= 2.179 × 10−18 J. 

82h2

8(8.854

0

× 10−12 F/m)2(6.626 × 10−34 J · s)2

In terms of electron volts the ground state energy is

E1 = −(2.179 × 10−18 J)/(1.602 × 10−19 C) = −13.60 eV. 

E47-12

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

(c) The transition energy is

∆E = E3 − E1 = (13.6 eV)(1/12 − 1/32) = 12.1 eV. 

(a) The wavelength is

hc

(1240 eV · nm)

λ =

=

= 102.5 nm. 

∆E

(12.1 eV)

(b) The momentum is

p = E/c = 12.1 eV/c. 

E47-13

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

(a) The Balmer series is the series which ends on E2. The least energetic state starts on E3. The

transition energy is

E3 − E2 = (13.6 eV)(1/22 − 1/32) = 1.89 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 656 nm. 

∆E

(1.89 eV)
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(b) The next energetic state starts on E4. The transition energy is

E4 − E2 = (13.6 eV)(1/22 − 1/42) = 2.55 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 486 nm. 

∆E

(2.55 eV)

(c) The next energetic state starts on E5. The transition energy is

E5 − E2 = (13.6 eV)(1/22 − 1/52) = 2.86 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 434 nm. 

∆E

(2.86 eV)

(d) The next energetic state starts on E6. The transition energy is

E6 − E2 = (13.6 eV)(1/22 − 1/62) = 3.02 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 411 nm. 

∆E

(3.02 eV)

(e) The next energetic state starts on E7. The transition energy is

E7 − E2 = (13.6 eV)(1/22 − 1/72) = 3.12 eV. 

The wavelength is

hc

(1240 eV · nm)

λ =

=

= 397 nm. 

∆E

(3.12 eV)

E47-14

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

The transition energy is

hc

(1240 eV · nm)

∆E =

=

= 10.20 eV. 

λ

(121.6 nm)

This must be part of the Lyman series, so the higher state must be

En = (10.20 eV) − (13.6 eV) = −3.4 eV. 

That would correspond to n = 2. 

E47-15

The binding energy is the energy required to remove the electron. If the energy of the

electron is negative, then that negative energy is a measure of the energy required to set the electron free. 

The first excited state is when n = 2 in Eq. 47-21. It is not necessary to re-evaluate the constants

in this equation every time, instead, we start from

E1

En =

where E1 = −13.60 eV. 

n2

Then the first excited state has energy

(−13.6 eV)

E2 =

= −3.4 eV. 

(2)2

The binding energy is then 3.4 eV. 
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E47-16

rn = a0n2, so

p

n =

(847 pm)/(52.9 pm) = 4. 

E47-17

(a) The energy of this photon is

hc

(1240 eV · nm)

E =

=

= 0.96739 eV. 

λ

(1281.8 nm)

The final state of the hydrogen must have an energy of no more than −0.96739, so the largest

possible n of the final state is

p

n < 

13.60 eV/0.96739 eV = 3.75, 

so the final n is 1, 2, or 3. The initial state is only slightly higher than the final state. The jump from n = 2 to n = 1 is too large (see Exercise 15), any other initial state would have a larger energy difference, so n = 1 is not the final state. 

So what level might be above n = 2? We’ll try

p

n =

13.6 eV/(3.4 eV − 0.97 eV) = 2.36, 

which is so far from being an integer that we don’t need to look farther. The n = 3 state has energy

13.6 eV/9 = 1.51 eV. Then the initial state could be

p

n =

13.6 eV/(1.51 eV − 0.97 eV) = 5.01, 

which is close enough to 5 that we can assume the transition was n = 5 to n = 3. 

(b) This belongs to the Paschen series. 

E47-18

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

(a) The transition energy is

∆E = E4 − E1 = (13.6 eV)(1/12 − 1/42) = 12.8 eV. 

(b) All transitions n → m are allowed for n ≤ 4 and m < n. The transition energy will be of the

form

En − Em = (13.6 eV)(1/m2 − 1/n2). 

The six possible results are 12.8 eV, 12.1 eV, 10.2 eV, 2.55 eV, 1.89 eV, and 0.66 eV. 

E47-19

∆E = h/2π∆t, so

∆E = (4.14×10−15 eV · s)/2π(1×10−8s) = 6.6×10−8eV. 

E47-20

(a) According to electrostatics and uniform circular motion, 

mv2/r = e2/4π0r2, 

or

s

s

e2

e4

e2

v =

==

=

. 

4π0mr

42h2n2

2

0

0hn

263

Putting in the numbers, 

(1.6×10−19C)2

2.18×106m/s

v =

=

. 

2(8.85×10−12F/m)(6.63×10−34J · s)n

n

In this case n = 1. 

(b) λ = h/mv, 

λ = (6.63×10−34J · s)/(9.11×10−31kg)(2.18×106m/s) = 3.34×10−10m. 

(c) λ/a0 = (3.34×10−10m)/(5.29×10−11) = 6.31 ≈ 2π. Actually, it is exactly 2π. 

E47-21

In order to have an inelastic collision with the 6.0 eV neutron there must exist a transition

with an energy difference of less than 6.0 eV. For a hydrogen atom in the ground state E1 = −13.6 eV

the nearest state is

E2 = (−13.6 eV)/(2)2 = −3.4 eV. 

Since the difference is 10.2 eV, it will not be possible for the 6.0 eV neutron to have an inelastic

collision with a ground state hydrogen atom. 

E47-22

(a) The atom is originally in the state n given by

p

n =

(13.6 eV)/(0.85 eV) = 4. 

The state with an excitation energy of 10.2 eV, is

p

n =

(13.6 eV)/(13.6 eV − 10.2 eV) = 2. 

The transition energy is then

∆E = (13.6 eV)(1/22 − 1/42) = 2.55 eV. 

E47-23

According to electrostatics and uniform circular motion, 

mv2/r = e2/4π0r2, 

or

s

s

e2

e4

e2

v =

==

=

. 

4π0mr

42h2n2

2

0

0hn

The de Broglie wavelength is then

h

20hn

λ =

=

. 

mv

me2

The ratio of λ/r is

λ

20hn

=

= kn, 

r

me2a0n2

where k is a constant. As n → ∞ the ratio goes to zero. 
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E47-24

In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2. 

The transition energy is

∆E = E4 − E1 = (13.6 eV)(1/12 − 1/42) = 12.8 eV. 

The momentum of the emitted photon is

p = E/c = (12.8 eV)/c. 

This is the momentum of the recoiling hydrogen atom, which then has velocity

p

pc

(12.8 eV)

v =

=

c =

(3.00×108m/s) = 4.1 m/s. 

m

mc2

(932 MeV)

E47-25

The first Lyman line is the n = 1 to n = 2 transition. The second Lyman line is the

n = 1 to n = 3 transition. The first Balmer line is the n = 2 to n = 3 transition. Since the photon

frequency is proportional to the photon energy (E = hf ) and the photon energy is the energy

difference between the two levels, we have

Em − En

fn→m =

h

where the En is the hydrogen atom energy level. Then

E3 − E1

f1→3 =

, 

h

E3 − E2 + E2 − E1

E3 − E2

E2 − E1

=

=

+

, 

h

h

h

=

f2→3 + f1→2. 

E47-26

Use

En = −Z2(13.6 eV)/n2. 

(a) The ionization energy of the ground state of He+ is

En = −(2)2(13.6 eV)/(1)2 = 54.4 eV. 

(b) The ionization energy of the n = 3 state of Li2+ is

En = −(3)2(13.6 eV)/(3)2 = 13.6 eV. 

E47-27

(a) The energy levels in the He+ spectrum are given by

En = −Z2(13.6 eV)/n2, 

where Z = 2, as is discussed in Sample Problem 47-6. The photon wavelengths for the n = 4 series

are then

hc

hc/E4

λ =

=

, 

En − E4

1 − En/E4
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which can also be written as

16hc/(54.4 eV)

λ

=

, 

1 − 16/n2

16hcn2/(54.4 eV)

=

, 

n2 − 16

Cn2

=

, 

n2 − 16

where C = hc/(3.4 eV) = 365 nm. 

(b) The wavelength of the first line is the transition from n = 5, 

(365 nm)(5)2

λ =

= 1014 nm. 

(5)2 − (4)2

The series limit is the transition from n = ∞, so

λ = 365 nm. 

(c) The series starts in the infrared (1014 nm), and ends in the ultraviolet (365 nm). So it must

also include some visible lines. 

E47-28

We answer these questions out of order! 

(a) n = 1. 

(b) r = a0 = 5.29×10−11m. 

(f) According to electrostatics and uniform circular motion, 

mv2/r = e2/4π0r2, 

or

s

s

e2

e4

e2

v =

==

=

. 

4π0mr

42h2n2

2

0

0hn

Putting in the numbers, 

(1.6×10−19C)2

v =

= 2.18×106m/s. 

2(8.85×10−12F/m)(6.63×10−34J · s)(1)

(d) p = (9.11×10−31kg)(2.18×106m/s) = 1.99×10−24kg · m/s. 

(e) ω = v/r = (2.18×106m/s)/(5.29×10−11m) = 4.12×1016rad/s. 

(c) l = pr = (1.99×10−24kg · m/s)(5.29×10−11m) = 1.05×10−34J · s. 

(g) F = mv2/r, so

F = (9.11×10−31kg)(2.18×106m/s)2/(5.29×10−11m) = 8.18×10−8N. 

(h) a = (8.18×10−8N)/(9.11×10−31kg) = 8.98×1022m/s2. 

(i) K = mv2/r, or

(9.11×10−31kg)(2.18×106m/s)2

K =

= 2.16×10−18J = 13.6 eV. 

2

(k) E = −13.6 eV. 

(j) P = E − K = (−13.6 eV) − (13.6 eV) = −27.2 eV. 
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E47-29

For each r in the quantity we have a factor of n2. 

(a) n is proportional to n. 

(b) r is proportional to n2. 

(f) v is proportional to p1/r, or 1/n. 

(d) p is proportional to v, or 1/n. 

(e) ω is proportional to v/r, or 1/n3. 

(c) l is proportional to pr, or n. 

(g) f is proportional to v2/r, or 1/n4. 

(h) a is proportional to F , or 1/n4. 

(i) K is proportional to v2, or 1/n2. 

(j) E is proportional to 1/n2. 

(k) P is proportional to 1/n2. 

E47-30

(a) Using the results of Exercise 45-1, 

(1240 eV · nm)

E1 =

= 1.24×105 eV. 

(0.010 nm)

(b) Using the results of Problem 45-11, 

E2

(1.24×105 eV)2

Kmax =

=

= 40.5×104 eV. 

mc2/2 + E

(5.11×105 eV)/2 + (1.24×105 eV)

(c) This would likely knock the electron way out of the atom. 

E47-31

The energy of the photon in the series limit is given by

Elimit = (13.6 eV)/n2, 

where n = 1 for Lyman, n = 2 for Balmer, and n = 3 for Paschen. The wavelength of the photon is

(1240 eV · nm)

λlimit =

n2 = (91.17 nm)n2. 

(13.6 eV)

The energy of the longest wavelength comes from the transition from the nearest level, or

(−13.6 eV)

(−13.6 eV)

2n + 1

Elong =

−

= (13.6 eV)

. 

(n + 1)2

n2

[n(n + 1)]2

The wavelength of the photon is

(1240 eV · nm)[n(n + 1)]2

[n(n + 1)]2

λlong =

= (91.17 nm)

. 

(13.6 eV)n2

2n + 1

(a) The wavelength interval λlong − λlimit, or

n2(n + 1)2 − n2(2n + 1)

n4

∆λ = (91.17 nm)

= (91.17 nm)

. 

2n + 1

2n + 1

For n = 1, ∆λ = 30.4 nm. For n = 2, ∆λ = 292 nm. For n = 3, ∆λ = 1055 nm. 

(b) The frequency interval is found from

Elimit − Elong

(13.6 eV)

1

(3.29×1015/s)

∆f =

=

=

. 

h

(4.14×10−15eV · s) (n + 1)2

(n + 1)2

For n = 1, ∆f = 8.23×1014Hz. For n = 2, ∆f = 3.66×1014Hz. For n = 3, ∆f = 2.05×1014Hz. 
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E47-32

E47-33

(a) We’ll use Eqs. 47-25 and 47-26. At r = 0

1

1

ψ2(0) =

e−2(0)/a0 =

= 2150 nm−3, 

πa3

πa3

0

0

while

P (0) = 4π(0)2ψ2(0) = 0. 

(b) At r = a0 we have

e−2

ψ2(a0) = f rac1πa3e−2(a0)/a0 =

= 291 nm−3, 

0

πa30

and

P (a0) = 4π(a0)2ψ2(a0) = 10.2 nm−1. 

E47-34

Assume that ψ(a0) is a reasonable estimate for ψ(r) everywhere inside the small sphere. 

Then

e−2

0.1353

ψ2 =

=

. 

πa3

πa3

0

0

The probability of finding it in a sphere of radius 0.05a0 is

Z

0.05a0 (0.1353)4πr2 dr

4

=

(0.1353)(0.05)3 = 2.26×10−5. 

0

πa3

3

0

E47-35

Using Eq. 47-26 the ratio of the probabilities is

P (a0)

(a0)2e−2(a0)/a0

e−2

=

=

= 1.85. 

P (2a0)

(2a0)2e−2(2a0)/a0

4e−4

E47-36

The probability is

Z

1.016a0 4r2e−2r/a0

P

=

dr, 

a

a3

0

0

1 Z 2.032

=

u2e−udu, 

2 2

=

0.00866. 

E47-37

If l = 3 then ml can be 0, ±1, ±2, or ±3. 

(a) From Eq. 47-30, Lz = mlh/2π.. So Lz can equal 0, ±h/2π, ±h/π, or ±3h/2π. 

(b) From Eq. 47-31, θ = arccos(ml/pl(l + 1)), so θ can equal 90◦, 73.2◦, 54.7◦, or 30.0◦. 

(c) The magnitude of ~

L is given by Eq. 47-28, 

√

p

h

L =

l(l + 1)

=

3h/π. 

2π

E47-38

The maximum possible value of ml is 5. Apply Eq. 47-31:

(5)

θ = arccos

= 24.1◦. 

p(5)(5 + 1)
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E47-39

Use the hint. 

h

∆p · ∆x =

, 

2π

r

h

∆p ∆x

=

, 

r

2π

∆x

h

∆p · r

=

, 

r

2π

h

∆L · ∆θ =

. 

2π

E47-40

Note that there is a typo in the formula; P (r) must have dimensions of one over length. 

The probability is

Z

∞ r4e−r/a0

P

=

dr, 

0

24a50

1 Z ∞

=

u4e−udu, 

24 0

=

1.00

What does it mean? It means that if we look for the electron, we will find it somewhere. 

E47-41

(a) Find the maxima by taking the derivative and setting it equal to zero. 

dP

r(2a − r)(4a2 − 6ra + r2)

=

e−r = 0. 

dr

8a60

The solutions are r = 0, r = 2a, and 4a2 − 6ra + r2 = 0. The first two correspond to minima (see

Fig. 47-14). The other two are the solutions to the quadratic, or r = 0.764a0 and r = 5.236a0. 

(b) Substitute these two values into Eq. 47-36. The results are

P (0.764a0) = 0.981 nm−1. 

and

P (5.236a0) = 3.61 nm−1. 

E47-42

The probability is

Z

5.01a0 r2(2 − r/a0)2e−r/a0

P

=

dr, 

5.00a

8a3

0

0

=

0.01896. 

E47-43

n = 4 and l = 3, while ml can be any of

−3, −2, −1, 0, 1, 2, 3, 

while ms can be either −1/2 or 1/2. There are 14 possible states. 

E47-44

n must be greater than l, so n ≥ 4. |ml| must be less than or equal to l, so |ml| ≤ 3. ms

is −1/2 or 1/2. 

E47-45

If ml = 4 then l ≥ 4. But n ≥ l + 1, so n > 4. We only know that ms = ±1/2. 
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E47-46

There are 2n2 states in a shell n, so if n = 5 there are 50 states. 

E47-47

Each is in the n = 1 shell, the l = 0 angular momentum state, and the ml = 0 state. But

one is in the state ms = +1/2 while the other is in the state ms = −1/2. 

E47-48

Apply Eq. 47-31:

(+1/2)

θ = arccos

= 54.7◦

p(1/2)(1/2 + 1)

and

(−1/2)

θ = arccos

= 125.3◦. 

p(1/2)(1/2 + 1)

E47-49

All of the statements are true. 

E47-50

There are n possible values for l (start at 0!). For each value of l there are 2l + 1 possible

values for ml. If n = 1, the sum is 1. If n = 2, the sum is 1 + 3 = 4. If n = 3, the sum is 1 + 3 + 5 = 9. 

The pattern is clear, the sum is n2. But there are two spin states, so the number of states is 2n2. 

P47-1

We can simplify the energy expression as

h2

E = E



0

n2 + n2 + n2

where E

. 

x

y

z

0 = 8mL2

To find the lowest energy levels we need to focus on the values of nx, ny, and nz. 

It doesn’t take much imagination to realize that the set (1, 1, 1) will result in the smallest value

for n2 + n2 + n2. The next choice is to set one of the values equal to 2, and try the set (2, 1, 1). 

x

y

z

Then it starts to get harder, as the next lowest might be either (2, 2, 1) or (3, 1, 1). The only way to find out is to try. I’ll tabulate the results for you:

nx

ny

nz

n2 + n2 + n2

Mult. 

n

+ n2 + n2

Mult. 

x

y

z

x

ny

nz

n2x

y

z

1

1

1

3

1

3

2

1

14

6

2

1

1

6

3

3

2

2

17

3

2

2

1

9

3

4

1

1

18

3

3

1

1

11

3

3

3

1

19

3

2

2

2

12

1

4

2

1

21

6

We are now in a position to state the five lowest energy levels. The fundamental quantity is

(hc)2

(1240 eV · nm)2

E0 =

=

= 6.02×10−6 eV. 

8mc2L2

8(0.511×106 eV)(250 nm)2

The five lowest levels are found by multiplying this fundamental quantity by the numbers in the

table above. 

P47-2

(a) Write the states between 0 and L. Then all states, odd or even, can be written with

probability distribution function

2

nπx

P (x) =

sin2

, 

L

L
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we find the probability of finding the particle in the region 0 ≤ x ≤ L/3 is

Z

L/3 2

nπx

P

=

cos2

dx, 

0

L

L

1 

sin(2nπ/3) 

=

1 −

. 

3

2nπ/3

(b) If n = 1 use the formula and P = 0.196. 

(c) If n = 2 use the formula and P = 0.402. 

(d) If n = 3 use the formula and P = 0.333. 

(e) Classically the probability distribution function is uniform, so there is a 1/3 chance of finding it in the region 0 to L/3. 

P47-3

The region of interest is small compared to the variation in P (x); as such we can approxi-

mate the probability with the expression P = P (x)∆x. 

(b) Evaluating, 

2

4πx

P

=

sin2

∆x, 

L

L

2

4π(L/8)

=

sin2

(0.0003L), 

L

L

=

0.0006. 

(b) Evaluating, 

2

4πx

P

=

sin2

∆x, 

L

L

2

4π(3L/16)

=

sin2

(0.0003L), 

L

L

=

0.0003. 

P47-4

(a) P = Ψ∗Ψ, or

P = A2e−2πmωx2/h. 

0

(b) Integrating, 

Z

∞

1

=

A2

e−2πmωx2/hdx, 

0

−∞

r

h

Z

∞

=

A2

e−u2 du, 

0

2πmω −∞

r

h

p

=

A2

pi, 

0

2πmω

r 2mω

4

=

A0. 

h

(c) x = 0. 

P47-5

We will want an expression for

d2 ψ0. 

dx2
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Doing the math one derivative at a time, 

d2

d  d



ψ0

=

ψ0 , 

dx2

dx

dx

d 



=

A0(−2πmωx/h)e−πmωx2/h , 

dx

=

A0(−2πmωx/h)2e−πmωx2/h + A0(−2πmω/h)e−πmωx2/h, 

=

(2πmωx/h)2 − (2πmω/h) A0e−πmωx2/h, 

=

(2πmωx/h)2 − (2πmω/h) ψ0. 

In the last line we factored out ψ0. This will make our lives easier later on. 

Now we want to go to Schrödinger’s equation, and make some substitutions. 

h2

d2

−

ψ0 + U ψ0

=

Eψ0, 

8π2m dx2

h2

−

(2πmωx/h)2 − (2πmω/h) ψ0 + U ψ0

=

Eψ0, 

8π2m

h2

−

(2πmωx/h)2 − (2πmω/h) + U

=

E, 

8π2m

where in the last line we divided through by ψ0. Now for some algebra, 

h2

U

=

E +

(2πmωx/h)2 − (2πmω/h) , 

8π2m

mω2x2

hω

=

E +

−

. 

2

4π

But we are given that E = hω/4π, so this simplifies to

mω2x2

U =

2

which looks like a harmonic oscillator type potential. 

P47-6

Assume the electron is originally in the state n. The classical frequency of the electron is

f0, where

f0 = v/2πr. 

According to electrostatics and uniform circular motion, 

mv2/r = e2/4π0r2, 

or

s

s

e2

e4

e2

v =

==

=

. 

4π0mr

42h2n2

2

0

0hn

Then

e2

1 πme2

me4

−2E1

f0 =

=

=

20hn 2π 0h2n2

42h3n3

hn3

0

Here E1 = −13.6 eV. 

Photon frequency is related to energy according to f = ∆Enm/h, where ∆Enm is the energy of

transition from state n down to state m. Then

E 



1

1

1

f =

−

, 

h

n2

m2

272

where E1 = −13.6 eV. Combining the fractions and letting m = n − δ, where δ is an integer, 

E1 m2 − n2

f

=

, 

h

m2n2

−E1 (n − m)(m + n)

=

, 

h

m2n2

−E1 δ(2n + δ)

=

, 

h

(n + δ)2n2

−E δ(2n)

≈

1

, 

h

(n)2n2

−2E1

=

δ = f0δ. 

hn3

P47-7

We need to use the reduced mass of the muon since the muon and proton masses are so

close together. Then

(207)(1836)

m =

me = 186me. 

(207) + (1836)

(a) Apply Eq. 47-20 1/2:

aµ = a0/(186) = (52.9 pm)/(186) = 0.284 pm. 

(b) Apply Eq. 47-21:

Eµ = E1(186) = (13.6 eV)(186) = 2.53 keV. 

(c) λ = (1240 keV · pm)/(2.53 pm) = 490 pm. 

P47-8

(a) The reduced mass of the electron is

(1)(1)

m =

me = 0.5me. 

(1) + (1)

The spectrum is similar, except for this additional factor of 1/2; hence

λpos = 2λH. 

(b) apos = a0/(186) = (52.9 pm)/(1/2) = 105.8 pm. This is the distance between the particles, 

but they are both revolving about the center of mass. The radius is then half this quantity, or

52.9 pm. 

P47-9

This problem isn’t really that much of a problem. Start with the magnitude of a vector

in terms of the components, 

L2 + L2 + L2 = L2, 

x

y

z

and then rearrange, 

L2 + L2 = L2

. 

x

y

− L2z

According to Eq. 47-28 L2 = l(l + 1)h2/4π2, while according to Eq. 47-30 Lz = mlh/2π. Substitute

that into the equation, and

h2

L2 + L2 = l(l + 1)h2/4π2

h2/4π2 = l(l + 1)



. 

x

y

− m2l

− m2l 4π2

Take the square root of both sides of this expression, and we are done. 
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The maximum value for ml is l, while the minimum value is 0. Consequently, 

q

q

L2 + L2 =

l(l + 1)

h/2π

x

y

− m2

≤ pl(l + 1) h/2π, 

l

and

q

q

√

L2 + L2 =

l(l + 1)

h/2π

l h/2π. 

x

y

− m2

≥

l

P47-10

Assume that ψ(0) is a reasonable estimate for ψ(r) everywhere inside the small sphere. 

Then

e−0

1

ψ2 =

=

. 

πa3

πa3

0

0

The probability of finding it in a sphere of radius 1.1×10−15m is

Z

1.1×10−15m 4πr2 dr

4 (1.1×10−15m)3

=

= 1.2×10−14. 

0

πa3

3 (5.29

0

×10−11m)3

P47-11

Assume that ψ(0) is a reasonable estimate for ψ(r) everywhere inside the small sphere. 

Then

(2)2e−0

1

ψ2 =

=

. 

32πa3

8πa3

0

0

The probability of finding it in a sphere of radius 1.1×10−15m is

Z

1.1×10−15m 4πr2 dr

1 (1.1×10−15m)3

=

= 1.5×10−15. 

0

8πa3

6 (5.29

0

×10−11m)3

P47-12

(a) The wave function squared is

e−2r/a0

ψ2 =

πa30

The probability of finding it in a sphere of radius r = xa0 is

Z

xa0 4πr2e−2r/a0 dr

P

=

, 

0

πa30

Z

x

=

4x2e−2x dx, 

0

=

1 − e−2x(1 + 2x + 2x2). 

(b) Let x = 1, then

P = 1 − e−2(5) = 0.323. 

P47-13

We want to evaluate the difference between the values of P at x = 2 and x = 2. Then

P (2) − P (1) =

1 − e−4(1 + 2(2) + 2(2)2) − 1 − e−2(1 + 2(1) + 2(1)2) , 

=

5e−2 − 13e−4 = 0.439. 
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P47-14

Using the results of Problem 47-12, 

0.5 = 1 − e−2x(1 + 2x + 2x2), 

or

e−2x = 1 + 2x + 2x2. 

The result is x = 1.34, or r = 1.34a0. 

P47-15

The probability of finding it in a sphere of radius r = xa0 is

Z

xa0 r2(2 − r/a0)2e−r/a0 dr

P

=

0

8a30

1 Z x

=

x2(2 − x)2e−x dx

8 0

=

1 − e−x(y4/8 + y2/2 + y + 1). 

The minimum occurs at x = 2, so

P = 1 − e−2(2 + 2 + 2 + 1) = 0.0527. 
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E48-1

The highest energy x-ray photon will have an energy equal to the bombarding electrons, 

as is shown in Eq. 48-1, 

hc

λmin = eV

Insert the appropriate values into the above expression, 

(4.14 × 10−15 eV · s)(3.00 × 108 m/s)

1240 × 10−9 eV · m

λmin =

=

. 

eV

eV

The expression is then

1240 × 10−9 V · m

1240 kV · pm

λmin =

=

. 

V

V

So long as we are certain that the “V ” will be measured in units of kilovolts, we can write this as

λmin = 1240 pm/V. 

E48-2

f = c/λ = (3.00×108m/s)/(31.1×10−12m) = 9.646×1018/s. Planck’s constant is then

E

(40.0 keV)

h =

=

= 4.14×10−15 eV · s. 

f

(9.646×1018/s)

E48-3

Applying the results of Exercise 48-1, 

(1240kV · pm)

∆V =

= 9.84 kV. 

(126 pm)

E48-4

(a) Applying the results of Exercise 48-1, 

(1240kV · pm)

λmin =

= 35.4 pm. 

(35.0 kV)

(b) Applying the results of Exercise 45-1, 

(1240keV · pm)

λK =

= 49.6 pm. 

β

(25.51 keV) − (0.53 keV)

(c) Applying the results of Exercise 45-1, 

(1240keV · pm)

λK =

= 56.5 pm. 

α

(25.51 keV) − (3.56 keV)

E48-5

(a) Changing the accelerating potential of the x-ray tube will decrease λmin. The new

value will be (using the results of Exercise 48-1)

λmin = 1240 pm/(50.0) = 24.8 pm. 

(b) λK doesn’t change. It is a property of the atom, not a property of the accelerating potential

β

of the x-ray tube. The only way in which the accelerating potential might make a difference is if

λK < λ

line. 

β

min for which case there would not be a λKβ

(c) λK doesn’t change. See part (b). 

α
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E48-6

(a) Applying the results of Exercise 45-1, 

(1240keV · pm)

∆E =

= 64.2 keV. 

(19.3 pm)

(b) This is the transition n = 2 to n = 1, so

∆E = (13.6 eV)(1/12 − 1/22) = 10.2 eV. 

E48-7

Applying the results of Exercise 45-1, 

(1240keV · pm)

∆Eβ =

= 19.8 keV. 

(62.5 pm)

and

(1240keV · pm)

∆Eα =

= 17.6 keV. 

(70.5 pm)

The difference is

∆E = (19.8 keV) − (17.6 keV) = 2.2 eV. 

E48-8

Since Eλ = hf = hc/λ, and λ = h/mc = hc/mc2, then

Eλ = hc/λ = mc2. 

or ∆V = Eλ/e = mc2/e = 511 kV. 

E48-9

The 50.0 keV electron makes a collision and loses half of its energy to a photon, then the

photon has an energy of 25.0 keV. The electron is now a 25.0 keV electron, and on the next collision

again loses loses half of its energy to a photon, then this photon has an energy of 12.5 keV. On the

third collision the electron loses the remaining energy, so this photon has an energy of 12.5 keV. The wavelengths of these photons will be given by

(1240 keV · pm)

λ =

, 

E

which is a variation of Exercise 45-1. 

E48-10

(a) The x-ray will need to knock free a K shell electron, so it must have an energy of at

least 69.5 keV. 

(b) Applying the results of Exercise 48-1, 

(1240kV · pm)

λmin =

= 17.8 pm. 

(69.5 kV)

(c) Applying the results of Exercise 45-1, 

(1240keV · pm)

λK =

= 18.5 pm. 

β

(69.5 keV) − (2.3 keV)

Applying the results of Exercise 45-1, 

(1240keV · pm)

λK =

= 21.3 pm. 

α

(69.5 keV) − (11.3 keV)
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E48-11

(a) Applying the results of Exercise 45-1, 

(1240keV · pm)

EK =

= 19.7 keV. 

β

(63 pm)

Again applying the results of Exercise 45-1, 

(1240keV · pm)

EK =

= 17.5 keV. 

β

(71 pm)

(b) Zr or Nb; the others will not significantly absorb either line. 

E48-12

Applying the results of Exercise 45-1, 

(1240keV · pm)

λK =

= 154.5 pm. 

α

(8.979 keV) − (0.951 keV)

Applying the Bragg reflection relationship, 

λ

(154.5 pm)

d =

=

= 282 pm. 

2 sin θ

2 sin(15.9◦)

√

E48-13

Plot the data. The plot should look just like Fig 48-4. Note that the vertical axis is

f , 

√

which is related to the wavelength according to

f = pc/λ. 

E48-14

Remember that the m in Eq. 48-4 refers to the electron, not the nucleus. This means

√

that the constant C in Eq. 48-5 is the same for all elements. Since

f = pc/λ, we have

λ



2

1

Z2 − 1

=

. 

λ2

Z1 − 1

For Ga and Nb the wavelength ratio is then

λ



2

Nb

(31) − 1

=

= 0.5625. 

λGa

(41) − 1

E48-15

(a) The ground state question is fairly easy. The n = 1 shell is completely occupied by

the first two electrons. So the third electron will be in the n = 2 state. The lowest energy angular

momentum state in any shell is the s sub-shell, corresponding to l = 0. There is only one choice for

ml in this case: ml = 0. There is no way at this level of coverage to distinguish between the energy

of either the spin up or spin down configuration, so we’ll arbitrarily pick spin up. 

(b) Determining the configuration for the first excited state will require some thought. We could

assume that one of the K shell electrons (n = 1) is promoted to the L shell (n = 2). Or we could

assume that the L shell electron is promoted to the M shell. Or we could assume that the L shell

electron remains in the L shell, but that the angular momentum value is changed to l = 1. The

question that we would need to answer is which of these possibilities has the lowest energy. 

The answer is the last choice: increasing the l value results in a small increase in the energy of

multi-electron atoms. 

E48-16

Refer to Sample Problem 47-6:

a0(1)2

(5.29×10−11m)

r1 =

=

= 5.75×10−13 m. 

Z

(92)
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E48-17

We will assume that the ordering of the energy of the shells and sub-shells is the same. 

That ordering is

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p

< 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 8s. 

If there is no spin the s sub-shell would hold 1 electron, the p sub-shell would hold 3, the d sub-shell 5, and the f sub-shell 7. inert gases occur when a p sub-shell has filled, so the first three inert gases would be element 1 (Hydrogen), element 1 + 1 + 3 = 5 (Boron), and element 1 + 1 + 3 + 1 + 3 = 9

(Fluorine). 

Is there a pattern? Yes. The new inert gases have half of the atomic number of the original inert

gases. The factor of one-half comes about because there are no longer two spin states for each set

of n, l, ml quantum numbers. 

We can save time and simply divide the atomic numbers of the remaining inert gases in half:

element 18 (Argon), element 27 (Cobalt), element 43 (Technetium), element 59 (Praseodymium). 

E48-18

The pattern is

2 + 8 + 8 + 18 + 18 + 32 + 32+? 

or

2(12 + 22 + 22 + 33 + 33 + 42 + 42 + x2)

The unknown is probably x = 5, the next noble element is probably

118 + 2 · 52 = 168. 

E48-19

(a) Apply Eq. 47-23, which can be written as

(−13.6 eV)Z2

En =

. 

n2

For the valence electron of sodium n = 3, 

s

(5.14 eV)(3)2

Z =

= 1.84, 

(13.6 eV)

while for the valence electron of potassium n = 4, 

s

(4.34 eV)(4)2

Z =

= 2.26, 

(13.6 eV)

(b) The ratios with the actual values of Z are 0.167 and 0.119, respectively. 

E48-20

(a) There are three ml states allowed, and two ms states. The first electron can be in

any one of these six combinations of M1 and m2. The second electron, given no exclusion principle, 

could also be in any one of these six states. The total is 36. Unfortunately, this is wrong, because

we can’t distinguish electrons. Of this total of 36, six involve the electrons being in the same state, while 30 involve the electron being in different states. But if the electrons are in different states, then they could be swapped, and we won’t know, so we must divide this number by two. The total

number of distinguishable states is then

(30/2) + 6 = 21. 

(b) Six. See the above discussion. 
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E48-21

(a) The Bohr orbits are circular orbits of radius rn = a0n2 (Eq. 47-20). The electron is

orbiting where the force is

e2

Fn =

, 

4π0r2n

and this force is equal to the centripetal force, so

mv2

e2

=

. 

rn

4π0r2n

where v is the velocity of the electron. Rearranging, 

s

e2

v =

. 

4π0mrn

The time it takes for the electron to make one orbit can be used to calculate the current, 

s

q

e

e

e2

i =

=

=

. 

t

2πrn/v

2πrn

4π0mrn

The magnetic moment of a current loop is the current times the area of the loop, so

s

e

e2

µ = iA =

πr2 , 

2πr

n

n

4π0mrn

which can be simplified to

s

e

e2

µ =

rn. 

2

4π0mrn

But rn = a0n2, so

s

e

a0e2

µ = n

. 

2

4π0m

This might not look right, but a0 = 0h2/πme2, so the expression can simplify to

r

e

h2



eh 

µ = n

= n

= nµB. 

2

4π2m2

4πm

(b) In reality the magnetic moments depend on the angular momentum quantum number, not

the principle quantum number. Although the Bohr theory correctly predicts the magnitudes, it does

not correctly predict when these values would occur. 

E48-22

(a) Apply Eq. 48-14:

dBz

Fz = µz

= (9.27×10−24J/T)(16×10−3T/m) = 1.5×10−25 N. 

dz

(b) a = F/m, ∆z = at2/2, and t = y/vy. Then

F y2

(1.5×10−25 N)(0.82 m)2

∆z =

=

= 3.2×10−5m. 

2mv2

2(1.67

y

×10−27kg)(970 m/s)2

E48-23

a = (9.27×10−24J/T)(1.4×103T/m)/(1.7×10−25kg) = 7.6×104m/s2. 
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E48-24

(a) ∆U = 2µB, or

∆U = 2(5.79×10−5eV/T)(0.520 T) = 6.02×10−5eV. 

(b) f = E/h = (6.02×10−5eV)(4.14×10−15eV · s) = 1.45×1010Hz. 

(c) λ = c/f = (3×108m/s)/(1.45×1010Hz) = 2.07×10−2m. 

E48-25

The energy change can be derived from Eq. 48-13; we multiply by a factor of 2 because

the spin is completely flipped. Then

∆E = 2µzBz = 2(9.27×10−24 J/T)(0.190 T) = 3.52×10−24J. 

The corresponding wavelength is

hc

(6.63×10−34J · s)(3.00×108m/s)

λ =

=

= 5.65×10−2m. 

E

(3.52×10−24J)

This is somewhere near the microwave range. 

E48-26

The photon has an energy E = hc/λ. This energy is related to the magnetic field in the

vicinity of the electron according to

E = 2µB, 

so

hc

(1240 eV · nm)

B =

=

= 0.051 T. 

2µλ

2(5.79×10−5J/T)(21×107nm)

E48-27

Applying the results of Exercise 45-1, 

(1240 eV · nm)

E =

= 1.55 eV. 

(800nm)

The production rate is then

(5.0×10−3W)

R =

= 2.0×1016/s. 

(1.55 eV)(1.6×10−19J/eV)

E48-28

(a) x = (3×108m/s)(12×10−12s) = 3.6×10−3m. 

(b) Applying the results of Exercise 45-1, 

(1240 eV · nm)

E =

= 1.786 eV. 

(694.4nm)

The number of photons in the pulse is then

N = (0.150J)/(1.786 eV)(1.6×10−19J/eV) = 5.25×1017. 

E48-29

We need to find out how many 10 MHz wide signals can fit between the two wavelengths. 

The lower frequency is

c

(3.00 × 108 m/s)

f1 =

=

= 4.29 × 1014 Hz. 

λ1

700 × 10−9 m)
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The higher frequency is

c

(3.00 × 108 m/s)

f1 =

=

= 7.50 × 1014 Hz. 

λ1

400 × 10−9 m)

The number of signals that can be sent in this range is

f2 − f1

(7.50 × 1014 Hz) − (4.29 × 1014 Hz)

=

= 3.21 × 107. 

(10 MHz)

(10 × 106 Hz)

That’s quite a number of television channels. 

E48-30

Applying the results of Exercise 45-1, 

(1240 eV · nm)

E =

= 1.960 eV. 

(632.8nm)

The number of photons emitted in one minute is then

(2.3×10−3W)(60 s)

N =

= 4.4×1017. 

(1.960 eV)(1.6×10−19J/eV)

E48-31

Apply Eq. 48-19. E13 − E11 = 2(1.2 eV).. The ratio is then

n13 = e−(2.4 eV)/(8.62×10−5eV/K)(2000 K) = 9×10−7. 

n11

E48-32

(a) Population inversion means that the higher energy state is more populated; this can

only happen if the ratio in Eq. 48-19 is greater than one, which can only happen if the argument of

the exponent is positive. That would require a negative temperature. 

(b) If n2 = 1.1n1 then the ratio is 1.1, so

(−2.26 eV

T =

= −2.75×105K. 

(8.62×10−5eV/K) ln(1.1)

E48-33

(a) At thermal equilibrium the population ratio is given by

N2

e−E2/kT

=

= e−∆E/kT . 

N1

e−E1/kT

But ∆E can be written in terms of the transition photon wavelength, so this expression becomes

N2 = N1e−hc/λkT . 

Putting in the numbers, 

N2 = (4.0×1020)e−(1240 eV·nm)/(582 nm)(8.62×10−5 eV/K)(300 K)) = 6.62×10−16. 

That’s effectively none. 

(b) If the population of the upper state were 7.0×1020, then in a single laser pulse

hc

(6.63×10−34J · s)(3.00×108m/s)

E = N

= (7.0×1020)

= 240 J. 

λ

(582×10−9m)
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E48-34

The allowed wavelength in a standing wave chamber are λn = 2L/n. For large n we can

write

2L

2L

2L

λn+1 =

≈

−

. 


n + 1

n

n2

The wavelength difference is then

2L

λ2

∆λ =

=

n , 

n2

2L

which in this case is

(533×10−9m)2

∆λ =

= 1.7×10−12m. 

2(8.3×10−2m)

E48-35

(a) The central disk will have an angle as measured from the center given by

d sin θ = (1.22)λ, 

and since the parallel rays of the laser are focused on the screen in a distance f , we also have

R/f = sin θ. Combining, and rearranging, 

1.22f λ

R =

. 

d

(b) R = 1.22(3.5 cm)(515 nm)/(3 mm) = 7.2×10−6m. 

(c) I = P/A = (5.21 W)/π(1.5 mm)2 = 7.37×105W/m2. 

(d) I = P/A = (0.84)(5.21 W)/π(7.2 µm)2 = 2.7×1010W/m2. 

E48-36

P48-1

Let λ1 be the wavelength of the first photon. Then λ2 = λ1 + 130 pm. The total energy

transfered to the two photons is then

hc

hc

E1 + E2 =

+

= 20.0 keV. 

λ1

λ2

We can solve this for λ1, 

20.0 keV

1

1

=

+

, 

hc

λ1

λ1 + 130 pm

2λ1 + 130 pm

=

, 

λ1(λ1 + 130 pm)

which can also be written as

λ1(λ1 + 130 pm)

=

(62 pm)(2λ1 + 130 pm), 

λ2 + (6 pm)λ

1

1 − (8060 pm2)

=

0. 

This equation has solutions

λ1 = 86.8 pm and − 92.8 pm. 

Only the positive answer has physical meaning. The energy of this first photon is then

(1240 keV · pm)

E1 =

= 14.3 keV. 

(86.8 pm)

(a) After this first photon is emitted the electron still has a kinetic energy of

20.0 keV − 14.3 keV = 5.7 keV. 

(b) We found the energy and wavelength of the first photon above. The energy of the second

photon must be 5.7 keV, with wavelength

λ2 = (86.8 pm) + 130 pm = 217 pm. 
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P48-2

Originally, 

1

γ =

= 2.412. 

p1 − (2.73×108m/s)2/(3×108m/s)2

The energy of the electron is

E0 = γmc2 = (2.412)(511 keV) = 1232 keV. 

Upon emitting the photon the new energy is

E = (1232 keV) − (43.8 keV) = 1189 keV, 

so the new gamma factor is

γ = (1189 keV)/(511 keV) = 2.326, 

and the new speed is

p

v = c

1 − 1/(2.326)2 = (0.903)c. 

P48-3

Switch to a reference frame where the electron is originally at rest. 

Momentum conservation requires

0 = pλ + pe = 0, 

while energy conservation requires

mc2 = Eλ + Ee. 

Rearrange to

Ee = mc2 − Eλ. 

Square both sides of this energy expression and

E2

= p2c2 + m2c4, 

λ − 2Eλmc2 + m2c4

=

E2

e

e

E2

c2, 

λ − 2Eλmc2

=

p2e

p2 c2

c2. 

λ

− 2Eλmc2 = p2e

But the momentum expression can be used here, and the result is

−2Eλmc2 = 0. 

Not likely. 

P48-4

(a) In the Bohr theory we can assume that the K shell electrons “see” a nucleus with charge

Z. The L shell electrons, however, are shielded by the one electron in the K shell and so they “see” 

a nucleus with charge Z − 1. Finally, the M shell electrons are shielded by the one electron in the

K shell and the eight electrons in the K shell, so they “see” a nucleus with charge Z − 9. 

The transition wavelengths are then

1

∆E

E





0(Z − 1)2

1

1

=

=

−

, 

λα

hc

hc

22

12

E0(Z − 1)2 3

=

. 

hc

4

and

1

∆E

E 



0

1

1

=

=

−

, 

λβ

hc

hc

32

12

E0(Z − 9)2 −8

=

. 

hc

9
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The ratio of these two wavelengths is

λβ

27 (Z − 1)2

=

. 

λα

32 (Z − 9)2

Note that the formula in the text has the square in the wrong place! 

P48-5

(a) E = hc/λ; the energy difference is then

 1

1 

∆E

=

hc

−

, 

λ1

λ2

λ2 − λ1

=

hc

. 

λ2λ1

hc

=

∆λ. 

λ2λ1

Since λ1 and λ2 are so close together we can treat the product λ1λ2 as being either λ2 or λ2. Then

1

2

(1240 eV · nm)

∆E =

(0.597 nm) = 2.1×10−3eV. 

(589 nm)2

(b) The same energy difference exists in the 4s → 3p doublet, so

(1139 nm)2

∆λ =

(2.1×10−3eV) = 2.2 nm. 

(1240 eV · nm)

P48-6

(a) We can assume that the K shell electron “sees” a nucleus of charge Z − 1, since the

other electron in the shell screens it. Then, according to the derivation leading to Eq. 47-22, 

rK = a0/(Z − 1). 

(b) The outermost electron “sees” a nucleus screened by all of the other electrons; as such Z = 1, 

and the radius is

r = a0

P48-7

We assume in this crude model that one electron moves in a circular orbit attracted to

the helium nucleus but repelled from the other electron. Look back to Sample Problem 47-6; we

need to use some of the results from that Sample Problem to solve this problem. 

The factor of e2 in Eq. 47-20 (the expression for the Bohr radius) and the factor of (e2)2 in Eq. 

47-21 (the expression for the Bohr energy levels) was from the Coulomb force between the single

electron and the single proton in the nucleus. This force is

e2

F =

. 

4π0r2

In our approximation the force of attraction between the one electron and the helium nucleus is

2e2

F1 =

. 

4π0r2

The factor of two is because there are two protons in the helium nucleus. 

There is also a repulsive force between the one electron and the other electron, 

e2

F2 =

, 

4π0(2r)2
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where the factor of 2r is because the two electrons are on opposite side of the nucleus. 

The net force on the first electron in our approximation is then

2e2

e2

F1 − F2 =

−

, 

4π0r2

4π0(2r)2

which can be rearranged to yield

e2



1 

e2

 7 

F net =

2 −

=

. 

4π0r2

4

4π0r2

4

It is apparent that we need to substitute 7e2/4 for every occurrence of e2. 

(a) The ground state radius of the helium atom will then be given by Eq. 

47-20 with the

appropriate substitution, 

0h2

4

r =

=

a0. 

πm(7e2/4)

7

(b) The energy of one electron in this ground state is given by Eq. 47-21 with the substitution

of 7e2/4 for every occurrence of e2, then

m(7e2/4)2

49 me4

E = −

= −

. 

84h2

16 84h2

0

0

We already evaluated all of the constants to be 13.6 eV. 

One last thing. There are two electrons, so we need to double the above expression. The ground

state energy of a helium atom in this approximation is

49

E0 = −2

(13.6 eV) = −83.3eV. 

16

(c) Removing one electron will allow the remaining electron to move closer to the nucleus. The

energy of the remaining electron is given by the Bohr theory for He+, and is

EHe+ = (4)(−13.60 eV) = 54.4 eV, 

so the ionization energy is 83.3 eV - 54.4 eV = 28.9 eV. This compares well with the accepted value. 

P48-8

Applying Eq. 48-19:

(−3.2 eV)

T =

= 1.0×104K. 

(8.62×10−5eV/K) ln(6.1×1013/2.5×1015)

P48-9

sin θ ≈ r/R, where r is the radius of the beam on the moon and R is the distance to the

moon. Then

1.22(600×10−9m)(3.82×108m)

r =

= 2360 m. 

(0.118 m)

The beam diameter is twice this, or 4740 m. 

P48-10

(a) N = 2L/λn, or

2(6×10−2m)(1.75)

N =

= 3.03×105. 

(694×10−9)
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(b) N = 2nLf /c, so

c

(3×108m/s)

∆f =

=

= 1.43×109/s. 

2nL

2(1.75)(6×10−2m)

Note that the travel time to and fro is ∆t = 2nL/c! 

(c) ∆f /f is then

∆f

λ

(694×10−9)

=

=

= 3.3×10−6. 

f

2nL

2(1.75)(6×10−2m)
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E49-1

(a) Equation 49-2 is

√

√

8 2πm3/2

8 2π(mc2)3/2

n(E) =

E1/2 =

E1/2. 

h3

(hc)3

We can evaluate this by substituting in all known quantities, 

√

8 2π(0.511 × 106 eV)3/2

n(E) =

E1/2 = (6.81 × 1027 m−3 · eV−3/2)E1/2. 

(1240 × 10−9 eV · m)3

Once again, we simplified the expression by writing hc wherever we could, and then using hc =

1240 × 10−9 eV · m. 

(b) Then, if E = 5.00 eV, 

n(E) = (6.81 × 1027 m−3 · eV−3/2)(5.00 eV)1/2 = 1.52 × 1028 m−3 · eV−1. 

E49-2

Apply the results of Ex. 49-1:

n(E) = (6.81 × 1027 m−3 · eV−3/2)(8.00 eV)1/2 = 1.93 × 1028 m−3 · eV−1. 

E49-3

Monovalent means only one electron is available as a conducting electron. Hence we need

only calculate the density of atoms:

N

ρNA

(19.3×103kg/m3)(6.02×1023mol−1)

=

=

= 5.90×1028/m3. 

V

Ar

(0.197 kg/mol)

E49-4

Use the ideal gas law: pV = N kT . Then

N

p =

kT = (8.49×1028m3)(1.38×10−23J/ · K)(297 K) = 3.48×108Pa. 

V

E49-5

(a) The approximate volume of a single sodium atom is

(0.023 kg/mol)

V1 =

= 3.93×10−29m3. 

(6.02×1023part/mol)(971 kg/m3)

The volume of the sodium ion sphere is

4π

V2 =

(98×10−12 m)3 = 3.94×10−30 m3. 

3

The fractional volume available for conduction electrons is

V1 − V2

(3.93×10−29m3) − (3.94×10−30 m3)

=

= 90%. 

V1

(3.93×10−29m3)

(b) The approximate volume of a single copper atom is

(0.0635 kg/mol)

V1 =

= 1.18×10−29m3. 

(6.02×1023part/mol)(8960 kg/m3)

The volume of the copper ion sphere is

4π

V2 =

(96×10−12 m)3 = 3.71×10−30 m3. 

3

The fractional volume available for conduction electrons is

V1 − V2

(1.18×10−29m3) − (3.71×10−30 m3)

=

= 69%. 

V1

(1.18×10−29m3)

(c) Sodium, since more of the volume is available for the conduction electron. 
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E49-6

(a) Apply Eq. 49-6:

h

i

p = 1/ e(0.0730 eV)/(8.62×10−5eV/K)(0 K) + 1 = 0. 

(b) Apply Eq. 49-6:

h

i

p = 1/ e(0.0730 eV)/(8.62×10−5eV/K)(320 K) + 1 = 6.62×10−2. 

E49-7

Apply Eq. 49-6, remembering to use the energy difference:

h

i

p = 1/ e(−1.1) eV)/(8.62×10−5eV/K)(273 K) + 1 = 1.00, 

h

i

p = 1/ e(−0.1) eV)/(8.62×10−5eV/K)(273 K) + 1 = 0.986, 

h

i

p = 1/ e(0.0) eV)/(8.62×10−5eV/K)(273 K) + 1 = 0.5, 

h

i

p = 1/ e(0.1) eV)/(8.62×10−5eV/K)(273 K) + 1 = 0.014, 

h

i

p = 1/ e(1.1) eV)/(8.62×10−5eV/K)(273 K) + 1 = 0.0. 

(b) Inverting the equation, 

∆E

T =

, 

k ln(1/p − 1)

so

(0.1 eV)

T =

= 700 K

(8.62×10−5eV/K) ln(1/(0.16) − 1)

E49-8

The energy differences are equal, except for the sign. Then

1

1

+

=

, 

e+∆E/kt + 1

e−∆E/kt + 1

e−∆E/2kt

e+∆E/2kt

+

=

, 

e+∆E/2kt + e−∆E/2kt

e−∆E/2kt + e+∆E/2kt

e−∆E/2kt + e+∆E/2kt

=

1. 

e−∆E/2kt + e+∆E/2kt

E49-9

The Fermi energy is given by Eq. 49-5, 

h2  3n 2/3

EF =

, 

8m

π

where n is the density of conduction electrons. For gold we have

(19.3 g/cm3)(6.02×1023part/mol)

n =

= 5.90×1022 elect./cm3 = 59 elect./nm3

(197 g/mol)

The Fermi energy is then



!2/3

(1240 eV · nm)2

3(59 electrons/nm3)

EF =

= 5.53 eV. 

8(0.511×106 eV)

π
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E49-10

Combine the results of Ex. 49-1 and Eq. 49-6:

√

C

E

no =

. 

e∆E/kt + 1

Then for each of the energies we have

(6.81×1027 m−3 · eV−3/2)p(4 eV)

no =

= 1.36×1028/m3 · eV, 

e(−3.06 eV)/(8.62×10−5eV/K)(1000 K) + 1

(6.81×1027 m−3 · eV−3/2)p(6.75 eV)

no =

= 1.72×1028/m3 · eV, 

e(−0.31 eV)/(8.62×10−5eV/K)(1000 K) + 1

(6.81×1027 m−3 · eV−3/2)p(7 eV)

no =

= 9.02×1027/m3 · eV, 

e(−0.06 eV)/(8.62×10−5eV/K)(1000 K) + 1

(6.81×1027 m−3 · eV−3/2)p(7.25 eV)

no =

= 1.82×1027/m3 · eV, 

e(0.19 eV)/(8.62×10−5eV/K)(1000 K) + 1

(6.81×1027 m−3 · eV−3/2)p(9 eV)

no =

= 3.43×1018/m3 · eV. 

e(1.94 eV)/(8.62×10−5eV/K)(1000 K) + 1

E49-11

Solve

n2(hc)2

En = 8(mc2)L2

for n = 50, since there are two electrons in each level. Then

(50)2(1240 eV · nm)2

Ef =

= 6.53×104eV. 

8(5.11×105eV)(0.12 nm)2

E49-12

We need to be much higher than T = (7.06 eV)/(8.62×10−5eV/K) = 8.2×104K. 

E49-13

Equation 49-5 is

h2  3n 2/3

EF =

, 

8m

π

and if we collect the constants, 

h2  3 2/3

EF =

n3/2 = An3/2, 

8m

π

where, if we multiply the top and bottom by c2

(hc)2  3 2/3

(1240 × 10−9 eV · m)2  3 2/3

A =

=

= 3.65 × 10−19 m2 · eV. 

8mc2

π

8(0.511 × 106 eV)

π

E49-14

(a) Inverting Eq. 49-6, 

∆E = kT ln(1/p − 1), 

so

∆E = (8.62×10−5eV/K)(1050 K) ln(1/(0.91) − 1) = −0.209 eV. 

Then E = (−0.209 eV) + (7.06 eV) = 6.85 eV. 

(b) Apply the results of Ex. 49-1:

n(E) = (6.81 × 1027 m−3 · eV−3/2)(6.85 eV)1/2 = 1.78 × 1028 m−3 · eV−1. 

(c) no = np = (1.78 × 1028 m−3 · eV−1)(0.910) = 1.62 × 1028 m−3 · eV−1. 
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E49-15

Equation 49-5 is

h2  3n 2/3

EF =

, 

8m

π

and if we rearrange, 

3h3

E 3/2

F

=

√

n, 

16 2πm3/2

Equation 49-2 is then

√

8 2πm3/2

3

n(E) =

E1/2 =

nE −3/2

F

E1/2. 

h3

2

E49-16

ph = 1 − p, so

1

ph

=

1 −

, 

e∆E/kT + 1

e∆E/kT

=

, 

e∆E/kT + 1

1

=

. 

1 + e−∆E/kT

E49-17

The steps to solve this exercise are equivalent to the steps for Exercise 49-9, except now

the iron atoms each contribute 26 electrons and we have to find the density. 

First, the density is

m

(1.99×1030kg)

ρ =

=

= 1.84×109kg/m3

4πr3/3

4π(6.37×106m)3/3

Then

(26)(1.84×106 g/cm3)(6.02×1023part/mol)

n

=

= 5.1×1029 elect./cm3, 

(56 g/mol)

=

5.1×108 elect./nm3

The Fermi energy is then



!2/3

(1240 eV · nm)2

3(5.1×108 elect./nm3)

EF =

= 230 keV. 

8(0.511×106 eV)

π

E49-18

First, the density is

m

2(1.99×1030kg)

ρ =

=

= 9.5×1017kg/m3

4πr3/3

4π(10×103m)3/3

Then

n = (9.5×1017kg/m3)/(1.67×10−27kg) = 5.69×1044/m3. 

The Fermi energy is then



!2/3

(1240 MeV · fm)2

3(5.69×10−1/fm3)

EF =

= 137 MeV. 

8(940 MeV)

π
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E49-19

E49-20

(a) EF = 7.06 eV, so

3(8.62×10−5eV · K)(0 K)

f =

= 0, 

2(7.06 eV)

(b) f = 3(8.62×10−5eV · K)(300 K)/2(7.06 eV) = 0.0055. 

(c) f = 3(8.62×10−5eV · K)(1000 K)/2(7.06 eV) = 0.0183. 

E49-21

Using the results of Exercise 19, 

2f EF

2(0.0130)(4.71 eV)

T =

=

= 474 K. 

3k

3(8.62×10−5eV · K)

E49-22

f = 3(8.62×10−5eV · K)(1235 K)/2(5.5 eV) = 0.029. 

E49-23

(a) Monovalent means only one electron is available as a conducting electron. Hence we

need only calculate the density of atoms:

N

ρNA

(10.5×103kg/m3)(6.02×1023mol−1)

=

=

= 5.90×1028/m3. 

V

Ar

(0.107 kg/mol)

(b) Using the results of Ex. 49-13, 

EF = (3.65 × 10−19 m2 · eV)(5.90×1028/m3)2/3 = 5.5 eV. 

(c) v = p2K/m, or

p

v =

2(5.5 eV)(5.11×105eV/c2) = 1.4×108m/s. 

(d) λ = h/p, or

(6.63×10−34J · s)

λ =

= 5.2×10−12m. 

(9.11×10−31kg)(1.4×108m/s)

E49-24

(a) Bivalent means two electrons are available as a conducting electron. Hence we need

to double the calculation of the density of atoms:

N

ρNA

2(7.13×103kg/m3)(6.02×1023mol−1)

=

=

= 1.32×1029/m3. 

V

Ar

(0.065 kg/mol)

(b) Using the results of Ex. 49-13, 

EF = (3.65 × 10−19 m2 · eV)(1.32×1029/m3)2/3 = 9.4 eV. 

(c) v = p2K/m, or

p

v =

2(9.4 eV)(5.11×105eV/c2) = 1.8×108m/s. 

(d) λ = h/p, or

(6.63×10−34J · s)

λ =

= 4.0×10−12m. 

(9.11×10−31kg)(1.8×108m/s)
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E49-25

(a) Refer to Sample Problem 49-5 where we learn that the mean free path λ can be

written in terms of Fermi speed vF and mean time between collisions τ as

λ = vFτ. 

The Fermi speed is

p

p

vF = c

2EF /mc2 = c

2(5.51 eV)/(5.11×105 eV) = 4.64×10−3c. 

The time between collisions is

m

(9.11×10−31kg)

τ =

=

= 3.74×10−14s. 

ne2ρ

(5.86×1028m−3)(1.60×10−19C)2(1.62×10−8Ω · m)

We found n by looking up the answers from Exercise 49-23 in the back of the book. The mean free

path is then

λ = (4.64×10−3)(3.00×108m/s)(3.74×10−14s) = 52 nm. 

(b) The spacing between the ion cores is approximated by the cube root of volume per atom. 

This atomic volume for silver is

(108 g/mol)

V =

= 1.71×10−23cm3. 

(6.02×1023part/mol)(10.5 g/cm3)

The distance between the ions is then

√

l = 3 V = 0.257 nm. 

The ratio is

λ/l = 190. 

E49-26

(a) For T = 1000 K we can use the approximation, so for diamond

p = e−(5.5 eV)/2(8.62×10−5eV/K)(1000 K) = 1.4×10−14, 

while for silicon, 

p = e−(1.1 eV)/2(8.62×10−5eV/K)(1000 K) = 1.7×10−3, 

(b) For T = 4 K we can use the same approximation, but now ∆E  kT and the exponential

function goes to zero. 

E49-27

(a) E − EF ≈ 0.67 eV/2 = 0.34 eV.. The probability the state is occupied is then

h

i

p = 1/ e(0.34) eV)/(8.62×10−5eV/K)(290 K) + 1 = 1.2×10−6. 

(b) E − EF ≈ −0.67 eV/2 = −0.34 eV.. The probability the state is unoccupied is then 1 − p, or

h

i

p = 1 − 1/ e(−0.34) eV)/(8.62×10−5eV/K)(290 K) + 1 = 1.2×10−6. 

E49-28

(a) E − EF ≈ 0.67 eV/2 = 0.34 eV.. The probability the state is occupied is then

h

i

p = 1/ e(0.34) eV)/(8.62×10−5eV/K)(289 K) + 1 = 1.2×10−6. 
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E49-29

(a) The number of silicon atoms per unit volume is

(6.02×1023part/mol)(2.33 g/cm3)

n =

= 4.99×1022 part./cm3. 

(28.1 g/mol)

If one out of 1.0eex7 are replaced then there will be an additional charge carrier density of

4.99×1022 part./cm3/1.0×107 = 4.99×1015 part./cm3 = 4.99×1021m−3. 

(b) The ratio is

(4.99×1021m−3)/(2 × 1.5×1016m−3) = 1.7×105. 

The extra factor of two is because all of the charge carriers in silicon (holes and electrons) are charge carriers. 

E49-30

Since one out of every 5×106 silicon atoms needs to be replaced, then the mass of phos-

phorus would be

1

30

m =

= 2.1×10−7 g. 

5×106 28

E49-31

l = 3

p1/1022/m3 = 4.6×10−8m. 

E49-32

The atom density of germanium is

N

ρNA

(5.32×103kg/m3)(6.02×1023mol−1)

=

=

= 1.63×1028/m3. 

V

Ar

(0.197 kg/mol)

The atom density of the impurity is

(1.63×1028/m3)/(1.3×109) = 1.25×1019. 

The average spacing is

l = 3

p1/1.25×1019/m3 = 4.3×10−7m. 

E49-33

The first one is an insulator because the lower band is filled and band gap is so large; 

there is no impurity. 

The second one is an extrinsic n-type semiconductor: it is a semiconductor because the lower

band is filled and the band gap is small; it is extrinsic because there is an impurity; since the impurity level is close to the top of the band gap the impurity is a donor. 

The third sample is an intrinsic semiconductor: it is a semiconductor because the lower band is

filled and the band gap is small. 

The fourth sample is a conductor; although the band gap is large, the lower band is not completely

filled. 

The fifth sample is a conductor: the Fermi level is above the bottom of the upper band. 

The sixth one is an extrinsic p-type semiconductor: it is a semiconductor because the lower band

is filled and the band gap is small; it is extrinsic because there is an impurity; since the impurity level is close to the bottom of the band gap the impurity is an acceptor. 

E49-34

6.62×105eV/1.1 eV = 6.0×105 electron-hole pairs. 

E49-35

(a) R = (1 V)/(50×10−12A) = 2×1010Ω. 

(b) R = (0.75 V)/(8 mA) = 90Ω. 
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E49-36

(a) A region with some potential difference exists that has a gap between the charged

areas. 

(b) C = Q/∆V . Using the results in Sample Problem 49-9 for q and ∆V , 

n0eAd/2

C =

= 2κ0A/d. 

n0ed2/4κ0

E49-37

(a) Apply that ever so useful formula

hc

(1240 eV · nm)

λ =

=

= 225 nm. 

E

(5.5 eV)

Why is this a maximum? Because longer wavelengths would have lower energy, and so not enough

to cause an electron to jump across the band gap. 

(b) Ultraviolet. 

E49-38

Apply that ever so useful formula

hc

(1240 eV · nm)

E =

=

= 4.20 eV. 

λ

(295 nm)

E49-39

The photon energy is

hc

(1240 eV · nm)

E =

=

= 8.86 eV. 

λ

(140 nm)

which is enough to excite the electrons through the band gap. As such, the photon will be absorbed, 

which means the crystal is opaque to this wavelength. 

E49-40

P49-1

We can calculate the electron density from Eq. 49-5, 

π  8mc2E 3/2

F

n

=

, 

3

(hc)2

π  8(0.511×106 eV)(11.66 eV) 3/2

=

, 

3

(1240 eV · nm)2

=

181 electrons/nm3. 

From this we calculate the number of electrons per particle, 

(181 electrons/nm3)(27.0 g/mol)

= 3.01, 

(2.70 g/cm3)(6.02×1023 particles/mol)

which we can reasonably approximate as 3. 
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P49-2

At absolute zero all states below EF are filled, an none above. Using the results of Ex. 

49-15, 

1 Z EF

Eav

=

En(E) dE, 

n 0

3

Z

EF

=

E −3/2

F

E3/2 dE, 

2

0

3

2

=

E −3/2

5/2

F

EF

, 

2

5

3

=

EF. 

5

P49-3

(a) The total number of conduction electron is

(0.0031 kg)(6.02×1023mol−1)

n =

= 2.94×1022. 

(0.0635 kg/mol)

The total energy is

3

E =

(7.06 eV)(2.94×1022) = 1.24×1023eV = 2×104J. 

5

(b) This will light a 100 W bulb for

t = (2×104 J)/(100 W) = 200 s. 

P49-4

(a) First do the easy part: nc = N cp(Ec), so

N c

. 

e(Ec−EF)/kT + 1

Then use the results of Ex. 49-16, and write

N v

nv = N v[1 − p(Ev)] =

. 

e−(Ev−EF)/kT + 1

Since each electron in the conduction band must have left a hole in the valence band, then these two

expressions must be equal. 

(b) If the exponentials dominate then we can drop the +1 in each denominator, and

N c

N v

=

, 

e(Ec−EF)/kT

e−(Ev−EF)/kT

N c

=

e(Ec−2EF+Ev)/kT , 

N v

1

EF

=

(Ec + Ev + kT ln(N c/N v)) . 

2

P49-5

(a) We want to use Eq. 49-6; although we don’t know the Fermi energy, we do know

the differences between the energies in question. In the un-doped silicon E − EF = 0.55 eV for the

bottom of the conduction band. The quantity

kT = (8.62×10−5 eV/K)(290 K) = 0.025 eV, 

which is a good number to remember— at room temperature kT is 1/40 of an electron-volt. 
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Then

1

p =

= 2.8×10−10. 

e(0.55 eV)/(0.025 eV) + 1

In the doped silicon E − EF = 0.084 eV for the bottom of the conduction band. Then

1

p =

= 3.4×10−2. 

e(0.084 eV)/(0.025 eV) + 1

(b) For the donor state E − EF = −0.066 eV, so

1

p =

= 0.93. 

e(−0.066 eV)/(0.025 eV) + 1

P49-6

(a) Inverting Eq. 49-6, 

E − EF = kT ln(1/p − 1), 

so

EF = (1.1 eV − 0.11 eV) − (8.62×10−5 eV/K)(290 K) ln(1/(4.8×10−5) − 1) = 0.74 eV

above the valence band. 

(b) E − EF = (1.1 eV) − (0.74 eV) = 0.36 eV, so

1

p =

= 5.6×10−7. 

e(0.36 eV)/(0.025 eV) + 1

P49-7

(a) Plot the graph with a spreadsheet. It should look like Fig. 49-12. 

(b) kT = 0.025 eV when T = 290 K. The ratio is then

if

e(0.5 eV)/(0.025 eV) + 1

=

= 4.9×108. 

ir

e(−0.5 eV)/(0.025 eV) + 1

P49-8
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E50-1

We want to follow the example set in Sample Problem 50-1. The distance of closest

approach is given by

qQ

d

=

, 

4π0Kα

(2)(29)(1.60×10−19C)2

=

, 

4π(8.85×10−12C2/Nm2)(5.30MeV)(1.60 × 10−13J/MeV)

=

1.57×10−14 m. 

That’s pretty close. 

E50-2

(a) The gold atom can be treated as a point particle:

q1q2

F

=

, 

4π0r2

(2)(79)(1.60×10−19C)2

=

, 

4π(8.85×10−12C2/Nm2)(0.16×10−9m)2

=

1.4×10−6N. 

(b) W = F d, so

(5.3×106eV)(1.6×10−19J/eV)

d =

= 6.06×10−7m. 

(1.4×10−6N)

That’s 1900 gold atom diameters. 

E50-3

Take an approach similar to Sample Problem 50-1:

qQ

K

=

, 

4π0d

(2)(79)(1.60×10−19C)2

=

, 

4π(8.85×10−12C2/Nm2)(8.78×10−15m)(1.60 × 10−19J/eV)

=

2.6×107eV. 

E50-4

All are stable except 88Rb and 239Pb. 

E50-5

We can make an estimate of the mass number A from Eq. 50-1, 

R = R0A1/3, 

where R0 = 1.2 fm. If the measurements indicate a radius of 3.6 fm we would have

A = (R/R0)3 = ((3.6 fm)/(1.2 fm))3 = 27. 

E50-6

E50-7

The mass number of the sun is

A = (1.99×1030kg)/(1.67×10−27kg) = 1.2×1057. 

The radius would be

R = (1.2×10−15m) 3

p1.2×1057 = 1.3×104m. 

298

E50-8

239Pu is composed of 94 protons and 239 − 94 = 145 neutrons. The combined mass of the

free particles is

M = Zmp + N mn = (94)(1.007825 u) + (145)(1.008665 u) = 240.991975 u. 

The binding energy is the difference

EB = (240.991975 u − 239.052156 u)(931.5 MeV/u) = 1806.9 MeV, 

and the binding energy per nucleon is then

(1806.9 MeV)/(239) = 7.56 MeV. 

E50-9

62Ni is composed of 28 protons and 62 − 28 = 34 neutrons. The combined mass of the

free particles is

M = Zmp + N mn = (28)(1.007825 u) + (34)(1.008665 u) = 62.513710 u. 

The binding energy is the difference

EB = (62.513710 u − 61.928349 u)(931.5 MeV/u) = 545.3 MeV, 

and the binding energy per nucleon is then

(545.3 MeV)/(62) = 8.795 MeV. 

E50-10

(a) Multiply each by 1/1.007825, so

m1 = 1.00000, 

H

m12 = 11.906829, 

C

and

m238 = 236.202500. 

U

E50-11

(a) Since the binding energy per nucleon is fairly constant, the energy must be proportional

to A. 

(b) Coulomb repulsion acts between pairs of protons; there are Z protons that can be chosen as

first in the pair, and Z − 1 protons remaining that can make up the partner in the pair. That makes

for Z(Z − 1) pairs. The electrostatic energy must be proportional to this. 

(c) Z2 grows faster than A, which is roughly proportional to Z. 

E50-12

Solve

(0.7899)(23.985042) + x(24.985837) + (0.2101 − x)(25.982593) = 24.305

for x. The result is x = 0.1001, and then the amount 26Mg is 0.1100. 
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E50-13

The neutron confined in a nucleus of radius R will have a position uncertainty on the

order of ∆x ≈ R. The momentum uncertainty will then be no less than

h

h

∆p ≥

≈

. 

2π∆x

2πR

Assuming that p ≈ ∆p, we have

h

p ≥

, 

2πR

and then the neutron will have a (minimum) kinetic energy of

p2

h2

E ≈

≈

. 

2m

8π2mR2

But R = R0A1/3, so

(hc)2

E ≈

. 

8π2mc2R2A2/3

0

For an atom with A = 100 we get

(1240 MeV · fm)2

E ≈

= 0.668 MeV. 

8π2(940 MeV)(1.2 fm)2(100)2/3

This is about a factor of 5 or 10 less than the binding energy per nucleon. 

E50-14

(a) To remove a proton, 

E = [(1.007825) + (3.016049) − (4.002603)] (931.5 MeV) = 19.81 MeV. 

To remove a neutron, 

E = [(1.008665) + (2.014102) − (3.016049)] (931.5 MeV) = 6.258 MeV. 

To remove a proton, 

E = [(1.007825) + (1.008665) − (2.014102)] (931.5 MeV) = 2.224 MeV. 

(b) E = (19.81 + 6.258 + 2.224)MeV = 28.30 MeV. 

(c) (28.30 MeV)/4 = 7.07 MeV. 

E50-15

(a) ∆ = [(1.007825) − (1)](931.5 MeV) = 7.289 MeV. 

(b) ∆ = [(1.008665) − (1)](931.5 MeV) = 8.071 MeV. 

(c) ∆ = [(119.902197) − (120)](931.5 MeV) = −91.10 MeV. 

E50-16

(a) EB = (ZmH + N mN −m)c2. Substitute the definition for mass excess, mc2 = Ac2 +∆, 

and

EB

=

Z(c2 + ∆H) + N (c2 + ∆N) − Ac2 − ∆, 

=

Z∆H + N ∆N − ∆. 

(b) For 197Au, 

EB = (79)(7.289 MeV) + (197 − 79)(8.071 MeV) − (−31.157 MeV) = 1559 MeV, 

and the binding energy per nucleon is then

(1559 MeV)/(197) = 7.92 MeV. 
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E50-17

The binding energy of 63Cu is given by

M = Zmp + N mn = (29)(1.007825 u) + (34)(1.008665 u) = 63.521535 u. 

The binding energy is the difference

EB = (63.521535 u − 62.929601 u)(931.5 MeV/u) = 551.4 MeV. 

The number of atoms in the sample is

(0.003 kg)(6.02×1023mol−1)

n =

= 2.87×1022. 

(0.0629 kg/mol)

The total energy is then

(2.87×1022)(551.4 MeV)(1.6×10−19J/eV) = 2.53×1012J. 

E50-18

(a) For ultra-relativistic particles E = pc, so

(1240 MeV · fm)

λ =

= 2.59 fm. 

(480 MeV)

(b) Yes, since the wavelength is smaller than nuclear radii. 

E50-19

We will do this one the easy way because we can. This method won’t work except when

there is an integer number of half-lives. The activity of the sample will fall to one-half of the initial decay rate after one half-life; it will fall to one-half of one-half (one-fourth) after two half-lives. So two half-lives have elapsed, for a total of (2)(140 d) = 280 d. 

E50-20

N = N0(1/2)t/t1/2 , so

N = (48×1019)(0.5)(26)/(6.5) = 3.0×1019. 

E50-21

(a) t1/2 = ln 2/(0.0108/h) = 64.2 h. 

(b) N = N0(1/2)t/t1/2 , so

N/N0 = (0.5)(3) = 0.125. 

(c) N = N0(1/2)t/t1/2 , so

N/N0 = (0.5)(240)/(64.2) = 0.0749. 

E50-22

(a) λ = (−dN/dt)/N , or

λ = (12/s)/(2.5×1018) = 4.8×10−18/s. 

(b) t1/2 = ln 2/λ, so

t1/2 = ln 2/(4.8×10−18/s) = 1.44×1017s, 

which is 4.5 billion years. 
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E50-23

(a) The decay constant for 67Ga can be derived from Eq. 50-8, 

ln 2

ln 2

λ =

=

= 2.461×10−6s−1. 

t1/2

(2.817×105 s)

The activity is given by R = λN , so we want to know how many atoms are present. That can be

found from



1 u

  1 atom 

3.42 g

= 3.077×1022 atoms. 

1.6605×10−24 g

66.93 u

So the activity is

R = (2.461×10−6/s−1)(3.077×1022 atoms) = 7.572×1016 decays/s. 

(b) After 1.728×105 s the activity would have decreased to

R = R0e−λt = (7.572×1016 decays/s)e−(2.461×10−6/s−1)(1.728×105 s) = 4.949×1016 decays/s. 

E50-24

N = N0e−λt, but λ = ln 2/t1/2, so

 1 t/t1/2

N = N0e− ln 2t/t1/2 = N0(2)−t/t1/2 = N0

. 

2

E50-25

The remaining 223 is

N = (4.7×1021)(0.5)(28)/(11.43) = 8.6×1020. 

The number of decays, each of which produced an alpha particle, is

(4.7×1021) − (8.6×1020) = 3.84×1021. 

E50-26

The amount remaining after 14 hours is

m = (5.50 g)(0.5)(14)/(12.7) = 2.562 g. 

The amount remaining after 16 hours is

m = (5.50 g)(0.5)(16)/(12.7) = 2.297 g. 

The difference is the amount which decayed during the two hour interval:

(2.562 g) − (2.297 g) = 0.265 g. 

E50-27

(a) Apply Eq. 50-7, 

R = R0e−λt. 

We first need to know the decay constant from Eq. 50-8, 

ln 2

ln 2

λ =

=

= 5.618×10−7s−1. 

t1/2

(1.234×106 s)

And the the time is found from

1

R

t

=

− ln

, 

λ

R0

1

(170 counts/s)

=

−

ln

, 

(5.618×10−7s−1)

(3050 counts/s)

=

5.139×106 s ≈ 59.5 days. 
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Note that counts/s is not the same as decays/s. Not all decay events will be picked up by a detector

and recorded as a count; we are assuming that whatever scaling factor which connects the initial

count rate to the initial decay rate is valid at later times as well. Such an assumption is a reasonable assumption. 

(b) The purpose of such an experiment would be to measure the amount of phosphorus that is

taken up in a leaf. But the activity of the tracer decays with time, and so without a correction factor we would record the wrong amount of phosphorus in the leaf. That correction factor is R0/R; we

need to multiply the measured counts by this factor to correct for the decay. 

In this case

R = eλt = e(5.618×10−7s−1)(3.007×105 s) = 1.184. 

R0

E50-28

The number of particles of 147Sm is

(0.001 kg)(6.02×1023mol−1)

n = (0.15)

= 6.143×1020. 

(0.147 kg/mol)

The decay constant is

λ = (120/s)/(6.143×1020) = 1.95×10−19/s. 

The half-life is

t1/2 = ln 2/(1.95×10−19/s) = 3.55×1018s, 

or 110 Gy. 

E50-29

The number of particles of 239Pu is

(0.012 kg)(6.02×1023mol−1)

n0 =

= 3.023×1022. 

(0.239 kg/mol)

The number which decay is

h

i

n0 − n = (3.025×1022) 1 − (0.5)(20000)/(24100) = 1.32×1022. 

The mass of helium produced is then

(0.004 kg/mol)(1.32×1022)

m =

= 8.78×10−5kg. 

(6.02×1023mol−1)

E50-30

Let R33/(R33 + R32) = x, where x0 = 0.1 originally, and we want to find out at what

time x = 0.9. Rearranging, 

(R33 + R32)/R33 = 1/x, 

so

R32/R33 = 1/x − 1. 

Since R = R0(0.5)t/t1/2 we can write a ratio

1

 1



− 1 =

− 1 (0.5)t/t32−t/t33. 

x

x0

Put in some of the numbers, and



1

1 

ln[(1/9)/(9)] = ln[0.5]t

−

, 

14.3

25.3

which has solution t = 209 d. 
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E50-31

E50-32

(a) N/N0 = (0.5)(4500)/(82) = 3.0×10−17. 

(b) N/N0 = (0.5)(4500)/(0.034) = 0. 

E50-33

The Q values are

Q3

=

(235.043923 − 232.038050 − 3.016029)(931.5 MeV) = −9.46 MeV, 

Q4

=

(235.043923 − 231.036297 − 4.002603)(931.5 MeV) = 4.68 MeV, 

Q5

=

(235.043923 − 230.033127 − 5.012228)(931.5 MeV) = −1.33 MeV. 

Only reactions with positive Q values are energetically possible. 

E50-34

(a) For the 14C decay, 

Q = (223.018497 − 208.981075 − 14.003242)(931.5 MeV) = 31.84 MeV. 

For the 4He decay, 

Q = (223.018497 − 219.009475 − 4.002603)(931.5 MeV) = 5.979 MeV. 

E50-35

Q = (136.907084 − 136.905821)(931.5 MeV) = 1.17 MeV. 

E50-36

Q = (1.008665 − 1.007825)(931.5 MeV) = 0.782 MeV. 

E50-37

(a) The kinetic energy of this electron is significant compared to the rest mass energy, 

so we must use relativity to find the momentum. The total energy of the electron is E = K + mc2, 

the momentum will be given by

p

p

pc

=

E2 − m2c4 =

K2 + 2Kmc2, 

p

=

(1.00 MeV)2 + 2(1.00 MeV)(0.511 MeV) = 1.42 MeV. 

The de Broglie wavelength is then

hc

(1240 MeV · fm)

λ =

=

= 873 fm. 

pc

(1.42 MeV)

(b) The radius of the emitting nucleus is

R = R0A1/3 = (1.2 fm)(150)1/3 = 6.4 fm. 

(c) The longest wavelength standing wave on a string fixed at each end is twice the length of

the string. Although the rules for standing waves in a box are slightly more complicated, it is a fair assumption that the electron could not exist as a standing a wave in the nucleus. 

(d) See part (c). 
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E50-38

The electron is relativistic, so

p

pc

=

E2 − m2c4, 

p

=

(1.71 MeV + 0.51 MeV)2 − (0.51 MeV)2, 

=

2.16 MeV. 

This is also the magnitude of the momentum of the recoiling 32S. Non-relativistic relations are

K = p2/2m, so

(2.16 MeV)2

K =

= 78.4 eV. 

2(31.97)(931.5 MeV)

E50-39

N = mNA/Mr will give the number of atoms of 198Au; R = λN will give the activity; 

λ = ln 2/t1/2 will give the decay constant. Combining, 

N Mr

Rt1/2Mr

m =

=

. 

NA

ln 2NA

Then for the sample in question

(250)(3.7×1010/s)(2.693)(86400 s)(198 g/mol)

m =

= 1.02×10−3g. 

ln 2(6.02×1023/mol)

E50-40

R = (8722/60 s)/(3.7×1010/s) = 3.93×10−9Ci. 

E50-41

The radiation absorbed dose (rad) is related to the roentgen equivalent man (rem) by

the quality factor, so for the chest x-ray

(25 mrem) = 29 mrad. 

(0.85)

This is well beneath the annual exposure average. 

Each rad corresponds to the delivery of 10−5 J/g, so the energy absorbed by the patient is

 1 

(0.029)(10−5 J/g)

(88 kg) = 1.28×10−2 J. 

2

E50-42

(a) (75 kg)(10−2J/kg)(0.024 rad) = 1.8×10−2J. 

(b) (0.024 rad)(12) = 0.29 rem. 

E50-43

R = R0(0.5)t/t1/2 , so

R0 = (3.94 µCi)(2)(6.048×105s)/(1.82×105s) = 39.4 µCi. 

E50-44

(a) N = mNA/MR, so

(2×10−3g)(6.02×1023/mol)

N =

= 5.08×1018. 

(239 g/mol)

(b) R = λN = ln 2N/t1/2, so

R = ln 2(5.08×1018)/(2.411×104y)(3.15×107s/y) = 4.64×106/s. 

(c) R = (4.64×106/s)/(3.7×1010 decays/s · Ci) = 1.25×10−4Ci. 
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E50-45

The hospital uses a 6000 Ci source, and that is all the information we need to find the

number of disintegrations per second:

(6000 Ci)(3.7×1010 decays/s · Ci) = 2.22×1014 decays/s. 

We are told the half life, but to find the number of radioactive nuclei present we want to know the

decay constant. Then

ln 2

ln 2

λ =

=

= 4.17×10−9 s−1. 

t1/2

(1.66×108 s)

The number of 60Co nuclei is then

R

(2.22×1014 decays/s)

N =

=

= 5.32×1022. 

λ

(4.17×10−9 s−1)

E50-46

The annual equivalent does is

(12×10−4rem/h)(20 h/week)(52 week/y) = 1.25 rem. 

E50-47

(a) N = mNA/MR and MR = (226) + 2(35) = 296, so

(1×10−1g)(6.02×1023/mol)

N =

= 2.03×1020. 

(296 g/mol)

(b) R = λN = ln 2N/t1/2, so

R = ln 2(2.03×1020)/(1600 y)(3.15×107s/y) = 2.8×109Bq. 

(c) (2.8×109)/(3.7×1010) = 76 mCi. 

E50-48

R = λN = ln 2N/t1/2, so

(4.6×10−6)(3.7×1010/s)(1.28×109y)(3.15×107s/y)

N =

= 9.9×1021, 

ln 2

N = mNA/MR, so

(40 g/mol)(9.9×1021)

m =

= 0.658 g. 

(6.02×1023/mol)

E50-49

We can apply Eq. 50-18 to find the age of the rock, 

t





1/2

NF

t

=

ln

1 +

, 

ln 2

NI

(4.47×109y)



(2.00×10−3g)/(206 g/mol) 

=

ln

1 +

, 

ln 2

(4.20×10−3g)/(238 g/mol)

=

2.83×109y. 
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E50-50

The number of atoms of 238U originally present is

(3.71×10−3g)(6.02×1023/mol)

N =

= 9.38×1018. 

(238 g/mol)

The number remaining after 260 million years is

N = (9.38×1018)(0.5)(260 My)/(4470 My) = 9.01×1018. 

The difference decays into lead (eventually), so the mass of lead present should be

(206 g/mol)(0.37×1018)

m =

= 1.27×10−4 g. 

(6.02×1023/mol)

E50-51

We can apply Eq. 50-18 to find the age of the rock, 

t





1/2

NF

t

=

ln

1 +

, 

ln 2

NI

(4.47×109y)



(150×10−6g)/(206 g/mol) 

=

ln

1 +

, 

ln 2

(860×10−6g)/(238 g/mol)

=

1.18×109y. 

Inverting Eq. 50-18 to find the mass of 40K originally present, 

N F = 2t/t1/2 − 1, 

N I

so (since they have the same atomic mass) the mass of 40K is

(1.6×10−3 g)

m =

= 1.78×10−3g. 

2(1.18)/(1.28) − 1

E50-52

(a) There is an excess proton on the left and an excess neutron, so the unknown must be

a deuteron, or d. 

(b) We’ve added two protons but only one (net) neutron, so the element is Ti and the mass

number is 43, or 43Ti. 

(c) The mass number doesn’t change but we swapped one proton for a neutron, so 7Li. 

E50-53

Do the math:

Q = (58.933200 + 1.007825 − 58.934352 − 1.008665)(931.5 MeV) = −1.86 MeV. 

E50-54

The reactions are

201Hg(γ, α)197Pt, 

197Au(n, p)197Pt, 

196Pt(n, γ)197Pt, 

198Pt(γ, n)197Pt, 

196Pt(d, p)197Pt, 

198Pt(p, d)197Pt. 
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E50-55

We will write these reactions in the same way as Eq. 50-20 represents the reaction of

Eq. 50-19. It is helpful to work backwards before proceeding by asking the following question: what

nuclei will we have if we subtract one of the allowed projectiles? 

The goal is 60Co, which has 27 protons and 60 − 27 = 33 neutrons. 

1. Removing a proton will leave 26 protons and 33 neutrons, which is 59Fe; but that nuclide is

unstable. 

2. Removing a neutron will leave 27 protons and 32 neutrons, which is 59Co; and that nuclide is

stable. 

3. Removing a deuteron will leave 26 protons and 32 neutrons, which is 58Fe; and that nuclide is

stable. 

It looks as if only 59Co(n)60Co and 58Fe(d)60Co are possible. If, however, we allow for the possibility of other daughter particles we should also consider some of the following reactions. 

1. Swapping a neutron for a proton: 60Ni(n,p)60Co. 

2. Using a neutron to knock out a deuteron: 61Ni(n,d)60Co. 

3. Using a neutron to knock out an alpha particle: 63Cu(n,α)60Co. 

4. Using a deuteron to knock out an alpha particle: 62Ni(d,α)60Co. 

E50-56

(a) The possible results are 64Zn, 66Zn, 64Cu, 66Cu, 61Ni, 63Ni, 65Zn, and 67Zn. 

(b) The stable results are 64Zn, 66Zn, 61Ni, and 67Zn. 

E50-57

E50-58

The resulting reactions are 194Pt(d,α)192Ir, 196Pt(d,α)194Ir, and 198Pt(d,α)196Ir. 

E50-59

E50-60

Shells occur at numbers 2, 8, 20, 28, 50, 82. The shells occur separately for protons and

neutrons. To answer the question you need to know both Z and N = A − Z of the isotope. 

(a) Filled shells are 18O, 60Ni, 92Mo, 144Sm, and 207Pb. 

(b) One nucleon outside a shell are 40K, 91Zr, 121Sb, and 143Nd. 

(c) One vacancy in a shell are 13C, 40K, 49Ti, 205Tl, and 207Pb. 

E50-61

(a) The binding energy of this neutron can be found by considering the Q value of the

reaction 90Zr(n)91Zr which is

(89.904704 + 1.008665 − 90.905645)(931.5 MeV) = 7.19 MeV. 

(b) The binding energy of this neutron can be found by considering the Q value of the reaction

89Zr(n)90Zr which is

(88.908889 + 1.008665 − 89.904704)(931.5 MeV) = 12.0 MeV. 

This neutron is bound more tightly that the one in part (a). 

(c) The binding energy per nucleon is found by dividing the binding energy by the number of

nucleons:

(40×1.007825 + 51×1.008665 − 90.905645)(931.5 MeV) = 8.69 MeV. 

91

The neutron in the outside shell of 91Zr is less tightly bound than the average nucleon in 91Zr. 
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P50-1

Before doing anything we need to know whether or not the motion is relativistic. The

rest mass energy of an α particle is

mc2 = (4.00)(931.5 MeV) = 3.73 GeV, 

and since this is much greater than the kinetic energy we can assume the motion is non-relativistic, 

and we can apply non-relativistic momentum and energy conservation principles. The initial velocity

of the α particle is then

p

p

p

v =

2K/m = c

2K/mc2 = c

2(5.00 MeV)/(3.73 GeV) = 5.18×10−2c. 

For an elastic collision where the second particle is at originally at rest we have the final velocity of the first particle as

m2 − m1

(4.00u) − (197u)

v1,f = v1,i

= (5.18×10−2c)

= −4.97×10−2c, 

m2 + m1

(4.00u) + (197u)

while the final velocity of the second particle is

2m1

2(4.00u)

v2,f = v1,i

= (5.18×10−2c)

= 2.06×10−3c. 

m2 + m1

(4.00u) + (197u)

(a) The kinetic energy of the recoiling nucleus is

1

1

K =

mv2 =

m(2.06×10−3c)2 = (2.12×10−6)mc2

2

2

= (2.12×10−6)(197)(931.5 MeV) = 0.389 MeV. 

(b) Energy conservation is the fastest way to answer this question, since it is an elastic collision. 

Then

(5.00 MeV) − (0.389 MeV) = 4.61 MeV. 

P50-2

The gamma ray carries away a mass equivalent energy of

mγ = (2.2233 MeV)/(931.5 MeV/u) = 0.002387 u. 

The neutron mass would then be

mN = (2.014102 − 1.007825 + 0.002387)u = 1.008664 u. 

P50-3

(a) There are four substates: mj can be +3/2, +1/2, -1/2, and -3/2. 

(b) ∆E = (2/3)(3.26)(3.15×10−8eV/T)(2.16 T) = 1.48×10−7eV. 

(c) λ = (1240 eV · nm)/(1.48×10−7eV) = 8.38 m. 

(d) This is in the radio region. 

P50-4

(a) The charge density is ρ = 3Q/4πR3. The charge on the shell of radius r is dq = 4πr2ρ dr. 

The potential at the surface of a solid sphere of radius r is

q

ρr2

V =

=

. 

4π0r

30

The energy required to add a layer of charge dq is

4πρ2r4

dU = V dq =

dr, 

30
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which can be integrated to yield

4πρ2R5

3Q2

U =

=

. 

30

20π0R

(b) For 239Pu, 

3(94)2(1.6×10−19C)

U =

= 1024×106eV. 

20π(8.85×10−12F/m)(7.45×10−15m)

(c) The electrostatic energy is 10.9 MeV per proton. 

P50-5

The decay rate is given by R = λN , where N is the number of radioactive nuclei present. 

If R exceeds P then nuclei will decay faster than they are produced; but this will cause N to decrease, which means R will decrease until it is equal to P . If R is less than P then nuclei will be produced faster than they are decaying; but this will cause N to increase, which means R will increase until it is equal to P . In either case equilibrium occurs when R = P , and it is a stable equilibrium because it is approached no matter which side is larger. Then

P = R = λN

at equilibrium, so N = P/λ. 

P50-6

(a) A = λN ; at equilibrium A = P , so P = 8.88×1010/s. 

(b) (8.88×1010/s)(1−e−0.269t), where t is in hours. The factor 0.269 comes from ln(2)/(2.58) = λ. 

(c) N = P/λ = (8.88×1010/s)(3600 s/h)/(0.269/h) = 1.19×1015. 

(d) m = N Mr/NA, or

(1.19×1015)(55.94 g/mol)

m =

= 1.10×10−7g. 

(6.02×1023/mol)

P50-7

(a) A = λN , so

ln 2mNA

ln 2(1×10−3g)(6.02×1023/mol)

A =

=

= 3.66×107/s. 

t1/2Mr

(1600)(3.15×107s)(226 g/mol)

(b) The rate must be the same if the system is in secular equilibrium. 

(c) N = P/λ = t1/2P/ ln 2, so

(3.82)(86400 s)(3.66×107/s)(222 g/mol)

m =

= 6.43×10−9g. 

(6.02×1023/mol) ln 2

P50-8

The number of water molecules in the body is

N = (6.02×1023/mol)(70×103g)/(18 g/mol) = 2.34×1027. 

There are ten protons in each water molecule. The activity is then

A = (2.34×1027) ln 2/(1×1032y) = 1.62×10−5/y. 

The time between decays is then

1/A = 6200 y. 
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P50-9

Assuming the 238U nucleus is originally at rest the total initial momentum is zero, which

means the magnitudes of the final momenta of the α particle and the 234Th nucleus are equal. 

The α particle has a final velocity of

p

p

p

v =

2K/m = c

2K/mc2 = c

2(4.196 MeV)/(4.0026×931.5 MeV) = 4.744×10−2c. 

Since the magnitudes of the final momenta are the same, the 234Th nucleus has a final velocity

of

 (4.0026 u) 

(4.744×10−2c)

= 8.113×10−4c. 

(234.04 u)

The kinetic energy of the 234Th nucleus is

1

1

K =

mv2 =

m(8.113×10−4c)2 = (3.291×10−7)mc2

2

2

= (3.291×10−7)(234.04)(931.5 MeV) = 71.75 keV. 

The Q value for the reaction is then

(4.196 MeV) + (71.75 keV) = 4.268 MeV, 

which agrees well with the Sample Problem. 

P50-10

(a) The Q value is

Q = (238.050783 − 4.002603 − 234.043596)(931.5 MeV) = 4.27 MeV. 

(b) The Q values for each step are

Q = (238.050783 − 237.048724 − 1.008665)(931.5 MeV) = −6.153 MeV, 

Q = (237.048724 − 236.048674 − 1.007825)(931.5 MeV) = −7.242 MeV, 

Q = (236.048674 − 235.045432 − 1.008665)(931.5 MeV) = −5.052 MeV, 

Q = (235.045432 − 234.043596 − 1.007825)(931.5 MeV) = −5.579 MeV. 

(c) The total Q for part (b) is −24.026 MeV. The difference between (a) and (b) is 28.296 MeV. 

The binding energy for the alpha particle is

E = [2(1.007825) + 2(1.008665) − 4.002603](931.5 MeV) = 28.296 MeV. 

P50-11

(a) The emitted positron leaves the atom, so the mass must be subtracted. But the

daughter particle now has an extra electron, so that must also be subtracted. Hence the factor

−2me. 

(b) The Q value is

Q = [11.011434 − 11.009305 − 2(0.0005486)](931.5 MeV) = 0.961 MeV. 

P50-12

(a) Capturing an electron is equivalent to negative beta decay in that the total number

of electrons is accounted for on both the left and right sides of the equation. The loss of the K shell electron, however, must be taken into account as this energy may be significant. 

(b) The Q value is

Q = (48.948517 − 48.947871)(931.5 MeV) − (0.00547 MeV) = 0.596 MeV. 
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P50-13

The decay constant for 90Sr is

ln 2

ln 2

λ =

=

= 7.58×10−10s−1. 

t1/2

(9.15×108 s)

The number of nuclei present in 400 g of 90Sr is

(6.02×1023/mol)

N = (400 g)

= 2.68×1024, 

(89.9 g/mol)

so the overall activity of the 400 g of 90Sr is

R = λN = (7.58×10−10s−1)(2.68×1024)/(3.7×1010/Ci · s) = 5.49×104 Ci. 

This is spread out over a 2000 km2 area, so the “activity surface density” is

(5.49×104 Ci) = 2.74×10−5 Ci/m2. 

(20006 m2)

If the allowable limit is 0.002 mCi, then the area of land that would contain this activity is

(0.002×10−3 Ci) = 7.30×10−2m2. 

(2.74×10−5 Ci/m2)

P50-14

(a) N = mNA/Mr, so

N = (2.5×10−3g)(6.02×1023/mol)/(239 g/mol) = 6.3×1018. 

(b) A = ln 2N/t1/2, so the number that decay in 12 hours is

ln 2(6.3×1018)(12)(3600 s) = 2.5×1011. 

(24100)(3.15×107s)

(c) The energy absorbed by the body is

E = (2.5×1011)(5.2 MeV)(1.6×10−19J/eV) = 0.20 J. 

(d) The dose in rad is (0.20 J)/(87 kg) = 0.23 rad. 

(e) The biological dose in rem is (0.23)(13) = 3 rem. 

P50-15

(a) The amount of 238U per kilogram of granite is

(4×10−6kg)(6.02×1023/mol)

N =

= 1.01×1019. 

(0.238 kg/mol)

The activity is then

ln 2(1.01×1019)

A =

= 49.7/s. 

(4.47×109y)(3.15×107s/y)

The energy released in one second is

E = (49.7/s)(51.7 MeV) = 4.1×10−10J. 

The amount of 232Th per kilogram of granite is

(13×10−6kg)(6.02×1023/mol)

N =

= 3.37×1019. 

(0.232 kg/mol)
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The activity is then

ln 2(3.37×1019)

A =

= 52.6/s. 

(1.41×1010y)(3.15×107s/y)

The energy released in one second is

E = (52.6/s)(42.7 MeV) = 3.6×10−10J. 

The amount of 40K per kilogram of granite is

(4×10−6kg)(6.02×1023/mol)

N =

= 6.02×1019. 

(0.040 kg/mol)

The activity is then

ln 2(6.02×1019)

A =

= 1030/s. 

(1.28×109y)(3.15×107s/y)

The energy released in one second is

E = (1030/s)(1.32 MeV) = 2.2×10−10J. 

The total of the three is 9.9×10−10W per kilogram of granite. 

(b) The total for the Earth is 2.7×1013 W. 

P50-16

(a) Since only a is moving originally then the velocity of the center of mass is

mava + mX (0)

ma

V =

= va

. 

mX + ma

ma + mX

No, since momentum is conserved. 

(b) Moving to the center of mass frame gives the velocity of X as V , and the velocity of a as

va − V . The kinetic energy is now

1

Kcm

=

mX V 2 + ma(va − V )2 , 

2

v2 

m2

m2



=

a

m

a

X

X

+ ma

, 

2

(ma + mX )2

(ma + mX )2

mav2 mamX + m2

=

a

X , 

2

(ma + mX )2

mX

=

Klab

. 

ma + mX

Yes; kinetic energy is not conserved. 

(c) va = p2K/m, so

p

va =

2(15.9 MeV)/(1876 MeV)c = 0.130c. 

The center of mass velocity is

(2)

V = (0.130c)

= 2.83×10−3c. 

(2) + (90)

Finally, 

(90)

Kcm = (15.9 MeV)

= 15.6 MeV. 

(2) + (90)

313

P50-17

Let Q = Kcm in the result of Problem 50-16, and invert, solving for Klab. 

P50-18

(a) Removing a proton from 209Bi:

E = (207.976636 + 1.007825 − 208.980383)(931.5 MeV) = 3.80 MeV. 

Removing a proton from 208Pb:

E = (206.977408 + 1.007825 − 207.976636)(931.5 MeV) = 8.01 MeV. 

(b) Removing a neutron from 209Pb:

E = (207.976636 + 1.008665 − 208.981075)(931.5 MeV) = 3.94 MeV. 

Removing a neutron from 208Pb:

E = (206.975881 + 1.008665 − 207.976636)(931.5 MeV) = 7.37 MeV. 
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E51-1

(a) For the coal, 

m = (1×109J)/(2.9×107J/kg) = 34 kg. 

(b) For the uranium, 

m = (1×109J)/(8.2×1013J/kg) = 1.2×10−5kg. 

E51-2

(a) The energy from the coal is

E = (100 kg)(2.9×107J/kg) = 2.9×109J. 

(b) The energy from the uranium in the ash is

E = (3×10−6)(100 kg)(8.2×1013J) = 2.5×1010J. 

E51-3

(a) There are

(1.00 kg)(6.02×1023mol−1) = 2.56×1024

(235g/mol)

atoms in 1.00 kg of 235U. 

(b) If each atom releases 200 MeV, then

(200×106 eV)(1.6×10−19J/ eV)(2.56×1024) = 8.19×1013 J

of energy could be released from 1.00 kg of 235U. 

(c) This amount of energy would keep a 100-W lamp lit for

(8.19×1013 J)

t =

= 8.19×1011s ≈ 26, 000 y! 

(100 W)

E51-4

2 W = 1.25×1019eV/s. This requires

(1.25×1019eV/s)/(200×106eV) = 6.25×1010/s

as the fission rate. 

E51-5

There are

(1.00 kg)(6.02×1023mol−1) = 2.56×1024

(235g/mol)

atoms in 1.00 kg of 235U. If each atom releases 200 MeV, then

(200×106 eV)(1.6×10−19J/ eV)(2.56×1024) = 8.19×1013 J

of energy could be released from 1.00 kg of 235U. This amount of energy would keep a 100-W lamp

lit for

(8.19×1013 J)

t =

= 8.19×1011s ≈ 30, 000 y! 

(100 W)

E51-6

There are

(1.00 kg)(6.02×1023mol−1) = 2.52×1024

(239g/mol)

atoms in 1.00 kg of 239Pu. If each atom releases 180 MeV, then

(180×106 eV)(1.6×10−19J/ eV)(2.52×1024) = 7.25×1013 J

of energy could be released from 1.00 kg of 239Pu. 
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E51-7

When the 233U nucleus absorbs a neutron we are given a total of 92 protons and 142

neutrons. Gallium has 31 protons and around 39 neutrons; chromium has 24 protons and around

28 neutrons. There are then 37 protons and around 75 neutrons left over. This would be rubidium, 

but the number of neutrons is very wrong. Although the elemental identification is correct, because

we must conserve proton number, the isotopes are wrong in our above choices for neutron numbers. 

E51-8

Beta decay is the emission of an electron from the nucleus; one of the neutrons changes into

a proton. The atom now needs one more electron in the electron shells; by using atomic masses (as

opposed to nuclear masses) then the beta electron is accounted for. This is only true for negative

beta decay, not for positive beta decay. 

E51-9

(a) There are

(1.0 g)(6.02×1023mol−1) = 2.56×1021

(235g/mol)

atoms in 1.00 g of 235U. The fission rate is

A = ln 2N/t1/2 = ln 2(2.56×1021)/(3.5×1017y)(365d/y) = 13.9/d. 

(b) The ratio is the inverse ratio of the half-lives:

(3.5×1017y)/(7.04×108y) = 4.97×108. 

E51-10

(a) The atomic number of Y must be 92 − 54 = 38, so the element is Sr. The mass number

is 235 + 1 − 140 − 1 = 95, so Y is 95Sr. 

(b) The atomic number of Y must be 92 − 53 = 39, so the element is Y. The mass number is

235 + 1 − 139 − 2 = 95, so Y is 95Y. 

(c) The atomic number of X must be 92 − 40 = 52, so the element is Te. The mass number is

235 + 1 − 100 − 2 = 134, so X is 134Te. 

(d) The mass number difference is 235 + 1 − 141 − 92 = 3, so b = 3. 

E51-11

The Q value is

Q = [51.94012 − 2(25.982593)](931.5 MeV) = −23 MeV. 

The negative value implies that this fission reaction is not possible. 

E51-12

The Q value is

Q = [97.905408 − 2(48.950024)](931.5 MeV) = 4.99 MeV. 

The two fragments would have a very large Coulomb barrier to overcome. 

E51-13

The energy released is

(235.043923 − 140.920044 − 91.919726 − 2×1.008665)(931.5 MeV) = 174 MeV. 

E51-14

Since En > Eb fission is possible by thermal neutrons. 

E51-15

(a) The uranium starts with 92 protons. The two end products have a total of 58 + 44 =

102. This means that there must have been ten beta decays. 

(b) The Q value for this process is

Q = (238.050783 + 1.008665 − 139.905434 − 98.905939)(931.5 MeV) = 231 MeV. 
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E51-16

(a) The other fragment has 92 − 32 = 60 protons and 235 + 1 − 83 = 153 neutrons. That

element is 153Nd. 

(b) Since K = p2/2m and momentum is conserved, then 2m1K1 = 2m2K2. This means that

K2 = (m1/m2)K1. But K1 + K2 = Q, so

m2 + m1

K1

= Q, 

m2

or

m2

K1 =

Q, 

m1 + m2

with a similar expression for K2. Then for 83Ge

(153)

K =

(170 MeV) = 110 MeV, 

(83 + 153)

while for 153Nd

(83)

K =

(170 MeV) = 60 MeV, 

(83 + 153)

(c) For 83Ge, 

r

s

2K

2(110 MeV)

v =

=

c = 0.053c, 

m

(83)(931 MeV)

while for 153Nd

r

s

2K

2(60 MeV)

v =

=

c = 0.029c. 

m

(153)(931 MeV)

E51-17

Since 239Pu is one nucleon heavier than 238U only one neutron capture is required. The

atomic number of Pu is two more than U, so two beta decays will be required. The reaction series

is then

238U + n → 239U, 

239U → 239Np + β− + ¯ν, 

239Np → 239Pu + β− + ¯ν. 

E51-18

Each fission releases 200 MeV. The total energy released over the three years is

(190×106W)(3)(3.15×107s) = 1.8×1016J. 

That’s

(1.8×1016J)/(1.6×10−19J/eV)(200×106eV) = 5.6×1026

fission events. That requires

m = (5.6×1026)(0.235 kg/mol)/(6.02×1023/mol) = 218 kg. 

But this is only half the original amount, or 437 kg. 

E51-19

According to Sample Problem 51-3 the rate at which non-fission thermal neutron capture

occurs is one quarter that of fission. Hence the mass which undergoes non-fission thermal neutron

capture is one quarter the answer of Ex. 51-18. The total is then

(437 kg)(1 + 0.25) = 546 kg. 
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E51-20

(a) Qeff = E/∆N , where E is the total energy released and ∆N is the number of decays. 

This can also be written as

P

P t1/2

P t1/2Mr

Qeff =

=

=

, 

A

ln 2N

ln 2NAm

where A is the activity and P the power output from the sample. Solving, 

(2.3 W)(29 y)(3.15×107s)(90 g/mol)

Qeff =

= 4.53×10−13J = 2.8 MeV. 

ln 2(6.02×1023/mol)(1 g)

(b) P = (0.05)m(2300 W/kg), so

(150 W)

m =

= 1.3 kg. 

(0.05)(2300 W/kg)

E51-21

Let the energy released by one fission be E1. If the average time to the next fission event

is tgen, then the “average” power output from the one fission is P1 = E1/tgen. If every fission event results in the release of k neutrons, each of which cause a later fission event, then after every time period tgen the number of fission events, and hence the average power output from all of the fission

events, will increase by a factor of k. 

For long enough times we can write

P (t) = P0kt/tgen . 

E51-22

Invert the expression derived in Exercise 51-21:

 P tgen/t

 (350) (1.3×10−3s)/(2.6 s)

k =

=

= 0.99938. 

P0

(1200)

E51-23

Each fission releases 200 MeV. Then the fission rate is

(500×106W)/(200×106eV)(1.6×10−19J/eV) = 1.6×1019/s

The number of neutrons in “transit” is then

(1.6×1019/s)(1.0×10−3s) = 1.6×1016. 

E51-24

Using the results of Exercise 51-21:

P = (400 MW)(1.0003)(300 s)/(0.03 s) = 8030 MW. 

E51-25

The time constant for this decay is

ln 2

λ =

= 2.50×10−10s−1. 

(2.77×109 s)

The number of nuclei present in 1.00 kg is

(1.00 kg)(6.02×1023 mol−1)

N =

= 2.53×1024. 

(238 g/mol)

The decay rate is then

R = λN = (2.50×10−10s−1)(2.53×1024) = 6.33×1014s−1. 

The power generated is the decay rate times the energy released per decay, 

P = (6.33×1014s−1)(5.59×106 eV)(1.6×10−19 J/eV) = 566 W. 
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E51-26

The detector detects only a fraction of the emitted neutrons. This fraction is

A

(2.5 m2)

=

= 1.62×10−4. 

4πR2

4π(35 m)2

The total flux out of the warhead is then

(4.0/s)/(1.62×10−4) = 2.47×104/s. 

The number of 239Pu atoms is

A

(2.47×104/s)(1.34×1011y)(3.15×107s/y)

N =

=

= 6.02×1022. 

λ

ln 2(2.5)

That’s one tenth of a mole, so the mass is (239)/10 = 24 g. 

E51-27

Using the results of Sample Problem 51-4, 

ln[R(0)/R(t)]

t =

, 

λ5 − λ8

so

ln[(0.03)/(0.0072)]

t =

= 1.72×109y. 

(0.984 − 0.155)(1×10−9/y)

E51-28

(a) (15×109W · y)(2×105y) = 7.5×104W. 

(b) The number of fissions required is

(15×109W · y)(3.15×107s/y)

N =

= 1.5×1028. 

(200 MeV)(1.6×10−19J/eV)

The mass of 235U consumed is

m = (1.5×1028)(0.235kg/mol)/(6.02×10−23/mol) = 5.8×103kg. 

E51-29

If 238U absorbs a neutron it becomes 239U, which will decay by beta decay to first 239Np

and then 239Pu; we looked at this in Exercise 51-17. This can decay by alpha emission according to

239Pu →235 U + α. 

E51-30

The number of atoms present in the sample is

N = (6.02×1023/mol)(1000 kg)/(2.014g/mol) = 2.99×1026. 

It takes two to make a fusion, so the energy released is

(3.27 MeV)(2.99×1026)/2 = 4.89×1026MeV. 

That’s 7.8×1013J, which is enough to burn the lamp for

t = (7.8×1013J)/(100 W) = 7.8×1011s = 24800 y. 

E51-31

The potential energy at closest approach is

(1.6×10−19C)2

U =

= 9×105eV. 

4π(8.85×10−12F/m)(1.6×10−15m)
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E51-32

The ratio can be written as

n(K

r

1)

K1

=

e(K2−K1)/kT , 

n(K2)

K2

so the ratio is

s

(5000 eV) e(−3100eV)/(8.62×10−5eV/K)(1.5×107K) = 0.15. 

(1900 eV)

E51-33

(a) See Sample Problem 51-5. 

E51-34

Add up all of the Q values in the cycle of Fig. 51-10. 

E51-35

The energy released is

(3×4.002603 − 12.0000000)(931.5 MeV) = 7.27 MeV. 

E51-36

(a) The number of particle of hydrogen in 1 m3 is

N = (0.35)(1.5×105kg)(6.02×1023/mol)/(0.001 kg/mol) = 3.16×1031

(b) The density of particles is N/V = p/kT ; the ratio is

(3.16×1031)(1.38×10−23J/K)(298 K) = 1.2×106. 

(1.01×105Pa)

E51-37

(a) There are

(1.00 kg)(6.02×1023mol−1) = 6.02×1026

(1g/mol)

atoms in 1.00 kg of 1H. If four atoms fuse to releases 26.7 MeV, then

(26.7 MeV)(6.02×1026)/4 = 4.0×1027MeV

of energy could be released from 1.00 kg of 1H. 

(b) There are

(1.00 kg)(6.02×1023mol−1) = 2.56×1024

(235g/mol)

atoms in 1.00 kg of 235U. If each atom releases 200 MeV, then

(200 MeV)(2.56×1024) = 5.1×1026MeV

of energy could be released from 1.00 kg of 235U. 

E51-38

(a) E = ∆mc2, so

(3.9×1026J/s)

∆m =

= 4.3×109kg/s. 

(3.0×108m/s)2

(b) The fraction of the Sun’s mass “lost” is

(4.3×109kg/s)(3.15×107s/y)(4.5×109y) = 0.03 %. 

(2.0×1030kg)
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E51-39

The rate of consumption is 6.2 ×1011kg/s, the core has 1/8 the mass but only 35% is

hydrogen, so the time remaining is

t = (0.35)(1/8)(2.0×1030kg)/(6.2×1011kg/s) = 1.4×1017s, 

or about 4.5×109 years. 

E51-40

For the first two reactions into one:

Q = [2(1.007825) − (2.014102)](931.5 MeV) = 1.44 MeV. 

For the second, 

Q = [(1.007825) + (2.014102) − (3.016029)](931.5 MeV) = 5.49 MeV. 

For the last, 

Q = [2(3.016029) − (4.002603) − 2(1.007825)](931.5 MeV) = 12.86 MeV. 

E51-41

(a) Use mNA/Mr = N , so

(0.012 kg/mol)

1

(3.3×107J/kg)

= 4.1 eV. 

(6.02×1023/mol) (1.6×10−19J/eV)

(b) For every 12 grams of carbon we require 32 grams of oxygen, the total is 44 grams. The total

mass required is then 40/12 that of carbon alone. The energy production is then

(3.3×107J/kg)(12/44) = 9×106J/kg. 

(c) The sun would burn for

(2×1030kg)(9×106J/kg) = 4.6×1010s. 

(3.9×1026W)

That’s only 1500 years! 

E51-42

The rate of fusion events is

(5.3×1030W)

= 4.56×1042/s. 

(7.27×106eV)(1.6×10−19J/eV)

The carbon is then produced at a rate

(4.56×1042/s)(0.012 kg/mol)/(6.02×1023/mol) = 9.08×1016kg/s. 

The process will be complete in

(4.6×1032kg)

= 1.6×108y. 

(9.08×1016kg/s)(3.15×107s/y)

E51-43

(a) For the reaction d-d, 

Q = [2(2.014102) − (3.016029) − (1.008665)](931.5 MeV) = 3.27 MeV. 

(b) For the reaction d-d, 

Q = [2(2.014102) − (3.016029) − (1.007825)](931.5 MeV) = 4.03 MeV. 

(c) For the reaction d-t, 

Q = [(2.014102) + (3.016049) − (4.002603) − (1.008665)](931.5 MeV) = 17.59 MeV. 
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E51-44

One liter of water has a mass of one kilogram. The number of atoms of 2H is

(6.02×1023/mol)

(0.00015 kg)

= 4.5×1022. 

(0.002 kg/mol)

The energy available is

(3.27×106eV)(1.6×10−19J/eV)(4.5×1022)/2 = 1.18×1010J. 

The power output is then

(1.18×1010J) = 1.4×105W

(86400 s)

E51-45

Assume momentum conservation, then

pα = pn or vn/vα = mα/mn. 

The ratio of the kinetic energies is then

Kn

mnv2

mα

=

n =

≈ 4. 

Kα

mαv2

m

α

n

Then Kn = 4Q/5 = 14.07 MeV while Kα = Q/5 = 3.52 MeV. 

E51-46

The Q value is

Q = (6.015122 + 1.008665 − 3.016049 − 4.002603)(931.5 MeV) = 4.78 MeV. 

Combine the two reactions to get a net Q = 22.37 MeV. The amount of 6Li required is

N = (2.6×1028MeV)/(22.37 MeV) = 1.16×1027. 

The mass of LiD required is

(1.16×1027)(0.008 kg/mol)

m =

= 15.4 kg. 

(6.02×1023/mol)

P51-1

(a) Equation 50-1 is

R = R0A1/3, 

where R0 = 1.2 fm. The distance between the two nuclei will be the sum of the radii, or





R0 (140)1/3 + (94)1/3 . 

The potential energy will be

1

q1q2

U

=

, 

4π0 r

e2

(54)(38)

=

, 

4π0R0 (140)1/3 + (94)1/3

(1.60×10−19C)2

=

211, 

4π(8.85×10−12C2/Nm2)(1.2 fm)

=

253 MeV. 

(b) The energy will eventually appear as thermal energy. 
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√

P51-2

(a) Since R = R 3

0

A, the surface area a is proportional to A2/3. The fractional change in

surface area is

(a1 + a2) − a0

(140)2/3 + (96)2/3 − (236)2/3

=

= 25 %. 

a0

(236)2/3

(b) Nuclei have a constant density, so there is no change in volume. 

√

(c) Since U ∝ Q2/R, U ∝ Q2/ 3 A. The fractional change in the electrostatic potential energy is

U1 + U2 − U0

(54)2(140)−1/3 + (38)2(96)−1/3 − (92)2(236)−1/3

=

= −36 %. 

U0

(92)2(236)−1/3

P51-3

(a) There are

(2.5 kg)(6.02×1023mol−1) = 6.29×1024

(239g/mol)

atoms in 2.5 kg of 239Pu. If each atom releases 180 MeV, then

(180 MeV)(6.29×1024)/(2.6×1028MeV/megaton) = 44 kiloton

is the bomb yield. 

P51-4

(a) In an elastic collision the nucleus moves forward with a speed of

2mn

v = v0

, 

mn + m

so the kinetic energy when it moves forward is

m

4m2

mnm

∆K =

v2

n

= K

, 

2 0 (m + mn)2

(mn + m)2

where we can write ∆K because in an elastic collision whatever energy kinetic energy the nucleus

carries off had to come from the neutron. 

(b) For hydrogen, 

∆K

4(1)(1)

=

= 1.00. 

K

(1 + 1)2

For deuterium, 

∆K

4(1)(2)

=

= 0.89. 

K

(1 + 2)2

For carbon, 

∆K

4(1)(12)

=

= 0.28. 

K

(1 + 12)2

For lead, 

∆K

4(1)(206)

=

= 0.019. 

K

(1 + 206)2

(c) If each collision reduces the energy by a factor of 1−0.89 = 0.11, then the number of collisions

required is the solution to

(0.025 eV) = (1×106eV)(0.11)N , 

which is N = 8. 
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P51-5

The radii of the nuclei are

√

R = (1.2 fm) 3 7 = 2.3 fm. 

The using the derivation of Sample Problem 51-5, 

(3)2(1.6×10−19C)2

K =

= 1.4×106eV. 

16π(8.85×10−12F/m)(2.3×10−15m)

P51-6

(a) Add up the six equations to get

12C

+1H +13 N +13 C +1 H +14 N +1 H +15 O +15 N +1 H →

13N + γ +13 C + e+ + ν +14 N + γ +15 O + γ +15 N + e+ + ν +12 C +4 He. 

Cancel out things that occur on both sides and get

1H +1 H +1 H +1 H → γ + e+ + ν + γ + γ + e+ + ν +4 He. 

(b) Add up the Q values, and then add on 4(0.511 MeV for the annihilation of the two positrons. 

P51-7

(a) Demonstrating the consistency of this expression is considerably easier than deriving

it from first principles. From Problem 50-4 we have that a uniform sphere of charge Q and radius

R has potential energy

3Q2

U =

. 

20π0R

This expression was derived from the fundamental expression

1

q dq

dU =

. 

4π0 r

For gravity the fundamental expression is

Gm dm

dU =

, 

r

so we replace 1/4π0 with G and Q with M . But like charges repel while all masses attract, so we

pick up a negative sign. 

(b) The initial energy would be zero if R = ∞, so the energy released is

3GM 2

3(6.7×10−11N·m2/kg2)(2.0×1030kg)2

U =

=

= 2.3×1041J. 

5R

5(7.0×108m)

At the current rate (see Sample Problem 51-6), the sun would be

(2.3×1041J)

t =

= 5.9×1014 s, 

(3.9×1026W)

or 187 million years old. 
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P51-8

(a) The rate of fusion events is

(3.9×1026W)

= 9.3×1037/s. 

(26.2×106eV)(1.6×10−19J/eV)

Each event produces two neutrinos, so the rate is

1.86×1038/s. 

(b) The rate these neutrinos impinge on the Earth is proportional to the solid angle subtended

by the Earth as seen from the Sun:

πr2

(6.37×106m)2

=

= 4.5×10−10, 

4πR2

4(1.50×1011m)2

so the rate of neutrinos impinging on the Earth is

(1.86×1038/s)(4.5×10−10) = 8.4×1028/s. 

P51-9

(a) Reaction A releases, for each d

(1/2)(4.03 MeV) = 2.02 MeV, 

Reaction B releases, for each d

(1/3)(17.59 MeV) + (1/3)(4.03 MeV) = 7.21 MeV. 

Reaction B is better, and releases

(7.21 MeV) − (2/02 MeV) = 5.19 MeV

more for each N . 

P51-10

(a) The mass of the pellet is

4

m =

π(2.0×10−5m)3(200 kg/m3) = 6.7×10−12kg. 

3

The number of d-t pairs is

(6.7×10−12kg)(6.02×1023/mol)

N =

= 8.06×1014, 

(0.005 kg/mol)

and if 10% fuse then the energy release is

(17.59 MeV)(0.1)(8.06×1014)(1.6×10−19J/eV) = 230 J. 

(b) That’s

(230 J)/(4.6×106J/kg) = 0.05 kg

of TNT. 

(c) The power released would be (230 J)(100/s) = 2.3×104W. 
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E52-1

(a) The gravitational force is given by Gm2/r2, while the electrostatic force is given by

q2/4π0r2. The ratio is

4π0Gm2

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(9.11×10−31kg)2

=

, 

q2

(1.60×10−19C)2

=

2.4×10−43. 

Gravitational effects would be swamped by electrostatic effects at any separation. 

(b) The ratio is

4π0Gm2

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(1.67×10−27kg)2

=

, 

q2

(1.60×10−19C)2

=

8.1×10−37. 

E52-2

(a) Q = 938.27 MeV − 0.511 MeV) = 937.76 MeV. 

(b) Q = 938.27 MeV − 135 MeV) = 803 MeV. 

E52-3

The gravitational force from the lead sphere is

GmeM

4πGρmeR

=

. 

R2

3

Setting this equal to the electrostatic force from the proton and solving for R, 

3e2

R =

, 

16π20Gρmea20

or

3(1.6×10−19C)2

16π2(8.85×10−12F/m)(6.67×10−11Nm2/kg2)(11350 kg/m3)(9.11×10−31kg)(5.29×10−11m)2

which means R = 2.85×1028m. 

E52-4

Each γ takes half the energy of the pion, so

(1240 MeV · fm)

λ =

= 18.4 fm. 

(135 MeV)/2

E52-5

The energy of one of the pions will be

p

p

E =

(pc)2 + (mc2)2 =

(358.3 MeV)2 + (140 MeV)2 = 385 MeV. 

There are two of these pions, so the rest mass energy of the ρ0 is 770 MeV. 

E52-6

E = γmc2, so

γ = (1.5×106eV)/(20 eV) = 7.5×104. 

The speed is given by

p

v = c

1 − 1/γ2 ≈ c − c/2γ2, 

where the approximation is true for large γ. Then

∆v = c/2(7.5×104)2 = 2.7×10−2m/s. 
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E52-7

d = c∆t = hc/2π∆E. Then

(1240 MeV · fm)

d =

= 2.16×10−3fm. 

2π(91200 MeV)

E52-8

(a) Electromagnetic. 

(b) Weak, since neutrinos are present. 

(c) Strong. 

(d) Weak, since strangeness changes. 

E52-9

(a) Baryon number is conserved by having two “p” on one side and a “p” and a ∆0 on the

other. Charge will only be conserved if the particle x is positive. Strangeness will only be conserved if x is strange. Since it can’t be a baryon it must be a meson. Then x is K+. 

(b) Baryon number on the left is 0, so x must be an anti-baryon. Charge on the left is zero, so x

must be neutral because “n” is neutral. Strangeness is everywhere zero, so the particle must be ¯

n. 

(c) There is one baryon on the left and one on the right, so x has baryon number 0. The charge

on the left adds to zero, so x is neutral. The strangeness of x must also be 0, so it must be a π0. 

E52-10

There are two positive on the left, and two on the right. The anti-neutron must then be

neutral. The baryon number on the right is one, that on the left would be two, unless the anti-

neutron has a baryon number of minus one. There is no strangeness on the right or left, except

possible the anti-neutron, so it must also have strangeness zero. 

E52-11

(a) Annihilation reactions are electromagnetic, and this involves s¯

s. 

(b) This is neither weak nor electromagnetic, so it must be strong. 

(c) This is strangeness changing, so it is weak. 

(d) Strangeness is conserved, so this is neither weak nor electromagnetic, so it must be strong. 

E52-12

(a) K0 → e+ + νe, 

(b) K0 → π+ + π0, 

(c) K0 → π+ + π+ + π−, 

(d) K0 → π+ + π0 + π0, 

E52-13

(a) ¯

∆0 → ¯

p + π+. 

(b) ¯

n → ¯

p + e+ + νe. 

(c) τ + → µ+ + νµ + ¯

ντ . 

(d) K− → µ− + ¯

νµ. 

E52-14

E52-15

From top to bottom, they are ∆∗++, ∆∗+, ∆∗0, Σ∗+, Ξ∗0, Σ∗0, ∆∗−, Σ∗−, Ξ∗−, and Ω−. 

E52-16

(a) This is not possible. 

(b) uuu works. 

E52-17

A strangeness of +1 corresponds to the existence of an ¯

s anti-quark, which has a charge

of +1/3. The only quarks that can combine with this anti-quark to form a meson will have charges of

-1/3 or +2/3. It is only possible to have a net charge of 0 or +1. The reverse is true for strangeness

-1. 
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E52-18

Put bars over everything. For the anti-proton, ¯

u¯

u¯

dZ, for the anti-neutron, ¯

u¯

d¯

d. 

quarks

Q

S

C

particle

u¯

c

0

0

-1

¯

D0

d¯

c

-1

0

-1

D−

s¯

c

-1

-1

-1

D−

E52-19

We’ll construct a table:

s

c¯

c

0

0

0

ηc

c¯

u

0

0

1

D0

c¯

d

1

0

1

D+

c¯

s

1

1

1

D+

s

E52-20

(a) Write the quark content out then cancel out the parts which are the same on both

sides:

dds → udd + d¯

u, 

so the fundamental process is

s → u + d + ¯

u. 

(b) Write the quark content out then cancel out the parts which are the same on both sides:

d¯

s → u¯

d + d¯

u, 

so the fundamental process is

¯

s → u + ¯

d + ¯

u. 

(c) Write the quark content out then cancel out the parts which are the same on both sides:

u¯

d + uud → uus + u¯s, 

so the fundamental process is

¯

d + d → s + ¯s. 

(d) Write the quark content out then cancel out the parts which are the same on both sides:

γ + udd → uud + d¯

u, 

so the fundamental process is

γ → u + ¯

u. 

E52-21

The slope is

(7000 km/s) = 70 km/s · Mpc. 

(100 Mpc)

E52-22

c = Hd, so

d = (3×105 km/s)/(72 km/s · Mpc) = 4300 Mpc. 

E52-23

The question should read “What is the...” 

The speed of the galaxy is

v = Hd = (72 km/s · Mpc)(240 Mpc) = 1.72×107m/s. 

The red shift of this would then be

p1 − (1.72×107m/s)2/(3×108m/s)2

λ = (656.3nm)

= 695 nm. 

1 − (1.72×107m/s)/(3×108m/s)
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E52-24

We can approximate the red shift as

λ = λ0/(1 − u/c), 

so



λ 





0

(590 nm)

u = c

1 −

= c

1 −

= 0.02c. 

λ

(602 nm)

The distance is

d = v/H = (0.02)(3×108m/s)/(72 km/s · Mpc) = 83 Mpc. 

E52-25

The minimum energy required to produce the pairs is through the collision of two 140

MeV photons. This corresponds to a temperature of

T = (140 MeV)/(8.62×10−5eV/K) = 1.62×1012K. 

This temperature existed at a time

(1.5×1010s1/2K)2

t =

= 86 µs. 

(1.62×1012K)2

E52-26

(a) λ ≈ 0.002 m. 

(b) f = (3×108m/s)/(0.002 m) = 1.5×1011Hz. 

(c) E = (1240 eV · nm)/(2×106nm) = 6.2×10−4eV. 

E52-27

(a) Use Eq. 52-3:

√

(1.5×1010 sK)2

t =

= 9×1012s. 

(5000 K)2

That’s about 280,000 years. 

(b) kT = (8.62×10−5eV/K)(5000 K) = 0.43 eV. 

(c) The ratio is

(109)(0.43 eV) = 0.457. 

(940×106eV)

P52-1

The total energy of the pion is 135 + 80 = 215 MeV. The gamma factor of relativity is

γ = E/mc2 = (215 MeV)/(135 MeV) = 1.59, 

so the velocity parameter is

p

β =

1 − 1/γ2 = 0.777. 

The lifetime of the pion as measured in the laboratory is

t = (8.4×10−17 s)(1.59) = 1.34×10−16s, 

so the distance traveled is

d = vt = (0.777)(3.00×108m/s)(1.34×10−16s) = 31 nm. 
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P52-2

(a) E = K + mc2 and pc = pE2 − (mc2)2, so

p

pc =

(2200 MeV + 1777 MeV)2 − (1777 MeV)2 = 3558 MeV. 

That’s the same as

(3558×106eV)

p =

(1.6×10−19J/eV) = 1.90×10−18kg · m/s

(3×108m/s)

. 

(b) qvB = mv2/r, so p/qB = r. Then

(1.90×10−18kg · m/s)

r =

= 9.9 m. 

(1.6×10−19C)(1.2 T)

P52-3

(a) Apply the results of Exercise 45-1:

(1240 MeV · fm)

E =

= (4.28×10−10MeV/K)T. 

(2898 µm · K)T

(b) T = 2(0.511 MeV)/(4.28×10−10MeV/K) = 2.39×109K. 

P52-4

(a) Since

p1 − β2

λ = λ0

, 

1 − β

we have

p

∆λ

1 − β2

=

− 1, 

λ0

1 − β

or

p1 − β2 + β − 1

z =

. 

1 − β

Now invert, 

p

z(1 − β) + 1 − β

=

1 − β2, 

(z + 1)2(1 − β)2

=

1 − β2, 

(z2 + 2z + 1)(1 − 2β + β2) = 1 − β2, 

(z2 + 2z + 2)β2 − 2(z2 + 2z + 1)β + (z2 + 2z) = 0. 

Solve this quadratic for β, and

z2 + 2z

β =

. 

z2 + 2z + 2

(b) Using the result, 

(4.43)2 + 2(4.43)

β =

= 0.934. 

(4.43)2 + 2(4.43) + 2

(c) The distance is

d = v/H = (0.934)(3×108m/s)/(72 km/s · Mpc) = 3893 Mpc. 

330

P52-5

(a) Using Eq. 48-19, 

n1

∆E = −kT ln

. 

n2

Here n1 = 0.23 while n2 = 1 − 0.23, then

∆E = −(8.62×10−5eV/K)(2.7 K) ln(0.23/0.77) = 2.8×10−4eV. 

(b) Apply the results of Exercise 45-1:

(1240 eV · nm)

λ =

= 4.4 mm. 

(2.8×10−4eV)

P52-6

(a) Unlimited expansion means that v ≥ Hr, so we are interested in v = Hr. Then

p

Hr

=

2GM/r, 

H2r3

=

2G(4πr3ρ/3), 

3H2/8πG

=

ρ. 

(b) Evaluating, 

3[72×103m/s · (3.084×1022m)]2 (6.02×1023/mol) = 5.9/m3. 

8π(6.67×10−11N · m2/kg2)

(0.001 kg/mol)

P52-7

(a) The force on a particle in a spherical distribution of matter depends only on the matter

contained in a sphere of radius smaller than the distance to the center of the spherical distribution. 

And then we can treat all that relevant matter as being concentrated at the center. If M is the total mass, then

r3

M 0 = M

, 

R3

is the fraction of matter contained in the sphere of radius r < R. The force on a star of mass m a distance r from the center is

F = GmM 0/r2 = GmM r/R3. 

This force is the source of the centripetal force, so the velocity is

√

p

p

v =

ar =

F r/m = r

GM/R3. 

The time required to make a revolution is then

2πr

p

T =

= 2π

R3/GM . 

v

Note that this means that the system rotates as if it were a solid body! 

(b) If, instead, all of the mass were concentrated at the center, then the centripetal force would

be

F = GmM/r2, 

so

√

p

p

v =

ar =

F r/m =

GM/r, 

and the period would be

2πr

p

T =

= 2π

r3/GM . 

v
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P52-8

We will need to integrate Eq. 45-6 from 0 to λmin, divide this by I(T ), and set it equal to

z = 0.2×10−9. Unfortunately, we need to know T to perform the integration. Writing what we do

know and then letting x = hc/λkT , 

15c2h3 Z λm 2πc2h

dλ

z

=

, 

2π5k4T 4

0

λ5

ehc/λkT − 1

15c2h3 2πk4T 4 Z xm x3 dx

=

, 

2π5k4T 4

h3c2

∞

ex − 1

15 Z ∞ x3 dx

=

. 

π4

x

ex − 1

m

The result is a small number, so we expect that xm is fairly large. We can then ignore the −1 in

the denominator and then write

Z

∞

zπ4/15 =

x3e−xdx

xm

which easily integrates to

zπ4/15 ≈ x 3

m exm . 

The solution is

x ≈ 30, 

so

(2.2×106eV)

T =

= 8.5×108K. 

(8.62×10−5eV/K)(30)
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