
[image:]

Table of Contents

Chapter 1: Introduction

Formatting Guidelines

Suggested Solutions

Chapter 2: Getting Ready for Python

Integrated Development Environment

Installing an IDE on your computer

Chapter 3: The World of Variables and Operators

Chapter 3: Answers

Chapter 4: Data Types in Python

Chapter 4: Answers

Chapter 5: Making Your Program Interactive

Chapter 5: Answers

Chapter 6: Making Choices and Decisions

Chapter 6: Answers

Chapter 7: Functions and Modules

Chapter 7: Answers

Chapter 8: Working with Files

Chapter 8: Answers

Chapter 9: Object Oriented Programming Part 1

Chapter 9: Answers

Chapter 10: Object Oriented Programming Part 2

Chapter 10: Answers

Project 1

Spelling Out Numbers Part 1

Suggested Solution

Run Through

Spelling out Numbers Part 2

Suggested Solution

Project 2

Finding nth term of sequences

Linear Sequences

Quadratic Sequences

Suggested Solution

Run Through

Learn Python in One Day and Learn It Well (Second Edition)

--Workbook--

By Jamie Chan

https://www.learncodingfast.com/python

Copyright © 2019

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

Preface

This book is designed to be the accompanying workbook for the book “Learn Python In One Day and Learn It Well (2nd Edition)
” by the same author.

If you are new to Python, you are strongly encouraged to get the above-mentioned book and use this accompanying workbook to help you in your learning.

If you are familiar with Python, you can use this book as a standalone workbook to test and improve your knowledge of the Python syntax, or use it as a compilation of examples, providing you with a quick reference to the syntax.

The goal of this workbook is to help you build your programming skills one concept at a time before working on bigger projects.

At the end of the book, there are two projects for you to work on to help you consolidate your learning and see how it all works together.

You can download the source code for the questions, solutions and projects at

https://www.learncodingfast.com/python

Any errata can be found at

https://www.learncodingfast.com/errata

Contact Information

I would love to hear from you.

For feedback or queries, you can contact me at

jamie@learncodingfast.com
.

More Books by Jamie

[image:]

Python: Learn Python in One Day and Learn It Well (1st Edition)

[image:]

Python: Learn Python in One Day and Learn It Well (2nd Edition)

[image:]

C#: Learn C# in One Day and Learn It Well

[image:]

Java: Learn Java in One Day and Learn It Well

[image:]

CSS: Learn CSS in One Day and Learn It Well

[image:]

SQL: Learn SQL (using MySQL) in One Day and Learn It Well

Chapter 1: Introduction

Thank you for picking up this book.

This book is designed to be a workbook for the book “Learn Python In One Day and Learn It Well (2nd Edition)
” by the same author. It can also be used as a standalone workbook for you to test and improve your knowledge of the Python syntax.

Each question in this workbook is designed to test one or two key concepts. All solutions are extensively tested by a group of beta readers. The solutions provided are simplified as much as possible so that they can serve as examples for you to refer to when you are learning a new syntax.

Once you are familiar with the concepts tested in different chapters, you can work on the two projects at the end of the book to help you consolidate your learning. These projects require the application of topics covered in previous chapters and allow you to see how everything works together.

A few advanced concepts (like recursion and abstract methods) that were not covered in the main book will also be covered and explained in this book.

Formatting Guidelines

The book uses the following formatting guidelines:

Python code, variable names, values to be assigned, parameters and arguments will be presented in Monospaced
 font.

Output that you are required to display on the screen will be presented in italics
 in the question section.

User input is presented in italics bold
.

File names will be underlined and presented in italics
.

Suggested Solutions

Note that the answers provided in this book are only suggested solutions. Your solution may differ. As long as your solution behaves as described in the question, chances are your solution is valid too. The desired outputs for all questions are provided where applicable, either in the question or answer section.

The answers can be found at the end of each chapter. Some of the code consists of rather long statements. Hence, some statements may wrap around to the next line, making them difficult to read.

If you have a problem reading the code, you can download the source code for the questions, solutions and projects at https://www.learncodingfast.com/python
.

Note that this workbook is designed for beginners. If you are an advanced programmer, this workbook will likely not be as useful.

Chapter 2: Getting Ready for Python

Integrated Development Environment

Before we start coding in Python, we need to install an integrated development environment.

Python code resembles the English language which computers are unable to understand. Code that we write in Python has to be “translated” into a language that computers can understand. This is done using a special program known as the Python interpreter.

An integrated development environment (IDE) is a software application that includes an editor for you to type your code and an interpreter to translate the code. We can also use the IDE to run our code and view the output.

Installing an IDE on your computer

If you have yet to install any Python IDE on your computer, you can download a free IDE called IDLE.

Please go over to https://learncodingfast.com/how-to-install-python/
 for detailed instructions on how to install and use IDLE.

Instructions are available on the accompanying site of this workbook so that whenever there are any changes to the IDE, you can find the updated instructions on the site. This will ensure that you'll always get the latest installation instructions.

Note that this book uses Python 3. Hence, you will have to run the code using an IDE that runs on Python 3 (preferably 3.4 and above). If you use Python 2, some of the code will not run properly.

Subsequent chapters consist mainly of questions and solutions, with discussions of the solutions where applicable. If you are asked to write some code, you are strongly encouraged to write the code inside the IDE and execute your code to see if it produces the desired output.

Ready to start? Let's go!

Chapter 3: The World of Variables and Operators

Question 1

Assign the number 11
 to a variable called myFavNumber
.

Question 2

Assign the string 'Python'
 to a variable called myFavWord
.

Question 3

Assign the string 'Lee'
 to a variable called userName
 and use the print()
 function to print the value of userName
.

After printing the value of userName
, update userName
 to 'James'
 and print it again.

Note: The print()
 function is a built-in Python function that we use to display messages, values of variables or results of mathematical operations.

We simply enclose the message, variable name or mathematical expression inside the pair of parentheses. For instance, to print the value of userName
, we write

print(userName)

Question 4

Determine the output of the following program without running the code:

num1 = 5

NUM1 = 7

print(num1)

print(NUM1)

Question 5

Explain what is wrong with the following statement:

1num = 7 + 5

Question 6

Determine the output of the following program without running the code:

a = 17

b = 12

a = b

print(a)

Question 7

Determine the output of the following program without running the code:

x, y = 5, 4

print(x+y)

print(x-y)

print(x*y)

print(x/y)

print(x//y)

print(x%y)

print(x**y)

Question 8

Assign the values 12
 and 5
 to two variables a
 and b
 respectively.

Find the sum and product of a
 and b
 and assign the results to another two variables called sum
 and product
 respectively.

Find the remainder when a
 is divided by b
 and assign the result to a variable called remainder
.

Print the values of sum
, product
 and remainder
.

Question 9

Assign the values 13
, 7
 and 5
 to three variables a
, b
 and c
 respectively. Use the variables to evaluate the mathematical expression below:

(13 + 5)*7 + 5 – 13

Assign the result to a variable called result
 and print the value of result
.

Question 10

Determine the output of the following program without running the code:

s = 12

s = s - 3

print(s)

Question 11

Assign the value 5
 to a variable called num
. Next, add 10
 to num
 and assign the result back to num
. Print the value of num
.

Question 12

Determine the output of the following program without running the code:

t = 10

t = t + 1

t = t*2

t = t/5

print(t)

Question 13

Determine the output of the following program without running the code:

p, q = 12, 4

p += 3

print(p)

q **= 2

print(q)

Question 14

Assign the values 11
 and 7
 to two variables r
 and s
 respectively. Add r
 to s
 and assign the result back to r
. Print the values of r
 and s
.

Question 15

Think of an integer and assign it to a variable. Perform the following steps on the variable:

Add 17 to it.

Double the result.

Subtract 4 from the result.

Double the result again.

Add 20 to the result.

Divide the result by 4.

Subtract 20 from the result.

Each step involves operating on the result from the previous step and assigning the new result back to the variable.

Print the final answer. What number do you get?

Chapter 3: Answers

Question 1

myFavNumber = 11

Question 2

myFavWord = 'Python'

Question 3

userName = 'Lee'

print(userName)

userName = 'James'

print(userName)

Output

Lee

James

Question 4

5

7

Question 5

Variable names cannot start with a number. Hence, the name 1num
 is not allowed as it starts with the number 1.

Question 6

12

Question 7

9

1

20

1.25

1

1

625

Question 8

a = 12

b = 5

sum = a + b

product = a*b

remainder = a%b

print(sum)

print(product)

print(remainder)

Output

17

60

2

Question 9

a = 13

b = 7

c = 5

result = (a+c)*b + c - a

print(result)

Output

118

Question 10

9

Question 11

num = 5

num = num + 10

print(num)

Output

15

Question 12

4.4

Question 13

15

16

Question 14

r = 11

s = 7

r = r + s

print(r)

print(s)

Output

18

7

Question 15

number = 10

number = number + 17

number = number*2

number = number - 4

number = number*2

number = number + 20

number = number/4

number = number - 20

print(number)

Output

10.0

Note: You will get back the original number, converted to a decimal number due to the division.

Chapter 4: Data Types in Python

Question 1

Determine the output of the following program without running the code:

name1 = 'Jamie'

print(name1)

name2 = 'Aaron'.upper()

print(name2)

message = 'The names are %s and %s.' %(name1, name2)

print(message)

Question 2

Assign the strings 'Python'
, 'Java'
 and 'C#'
 to three variables lang1
, lang2
 and lang3
 respectively.

Use the three variables
 and the %
 operator to generate the following strings:

The most popular programming languages are Python, Java and C#.

The most popular programming languages are Python, C# and Java.

Assign the new strings to message1
 and message2
 respectively and print the values of message1
 and message2
.

Question 3

Determine the output of the following program without running the code:

num = 12

message = '%d' %(num)

print(message)

message = '%4d' %(num)

print(message)

Question 4

Determine the output of the following program without running the code:

decnum = 1.72498329745

message = '%5.3f' %(decnum)

print(message)

message = '%7.2f' %(decnum)

print(message)

Question 5

Assign the values 111
 and 13
 to two variables p
 and q
 respectively.

Divide p
 by q
 and assign the result to a variable called result
.

Use the three variables and the %
 operator to generate the following string:

The result of 111 divided by 13 is 8.538, correct to 3 decimal places.

Assign the string to a variable called message
 and print the value of message
.

Question 6

Determine the output of the following program without running the code:

message = 'My name is {} and I am {} years old.'.format('Jamie', 31)

print(message)

Question 7

Determine the output of the following program without running the code:

message1 = 'My favorite colors are {}, {} and {}.'.format('orange', 'blue', 'black')

message2 = 'My favorite colors are {1}, {0} and {2}.'.format('orange', 'blue', 'black')

print(message1)

print(message2)

Question 8

Assign the strings 'Aaron'
, 'Beck'
 and 'Carol'
 to three variables student1
, student2
 and student3
 respectively.

Use the three variables and the format()
 method to generate the following string:

My best friends are Aaron, Beck and Carol.

Assign the new string to a variable called message
 and print the value of message
.

Question 9

Determine the output of the following program without running the code:

message1 = '{:7.2f} and {:d}'.format(21.3124, 12)

message2 = '{1} and {0}'.format(21.3124, 12)

print(message1)

print(message2)

Question 10

Assign the values 12
 and 7
 to two variables x
 and y
 respectively.

Divide x
 by y
 and assign the result to a variable called quotient
.

Use the format()
 method and the variables x
, y
 and quotient
 to generate the following string:

The result of 12 divided by 7 is 1.7143, correct to 4 decimal places.

Assign the string to a variable called message
 and print the value of message
.

Question 11

Assign the value 2.7123
 to a variable called number
. Cast number
 into an integer and assign it back to number
. Print the value of number
.

Question 12

How do you convert the number 2.12431 into a string?

Question 13

Assign the string '12'
 to a variable called userInput
. Cast userInput
 into an integer and assign it back to userInput
. Print the value of userInput
.

Question 14

Given that myList = [1, 2, 3, 4, 5, 6]
, what is the number at index 1 and index -2? Explain why index 6 is invalid.

Question 15

Assign the numbers 10
, 11
, 12
 and 13
 to a list called testScores
.

Print the numbers at index 3 and index -1.

Question 16

Determine the output of the following program without running the code:

myList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

myList1 = myList

myList2 = myList[3:6]

myList3 = myList[:5]

myList4 = myList[2:]

myList5 = myList[1:7:2]

myList6 = myList[: :3]

print(myList)

print(myList1)

print(myList2)

print(myList3)

print(myList4)

print(myList5)

print(myList6)

Question 17

Assign the values 11
, 12
, 13
, 14
, 15
, 16
, 17
, 18
, 19
 and 20
 to a list called q17
.

Use a slice to select the numbers 13 to 18 from q17
 and assign them to a new list called sliceA
.

Use another slice to select the numbers 13, 16 and 19 from q17
 and assign them to a list called sliceB
.

Use the print()
 function to print sliceA
 and sliceB
.

Question 18

Create a list called emptyList
 with no initial values.

Add the numbers 12
, 5
, 9
 and 11
 to emptyList
 and use the print()
 function to print the list.

Question 19

Assign the numbers 1
, 2
, 3
, 4
 and 5
 to a list called q19
.

Next, change the third number to 10
 and use the print()
 function to print the list.

Question 20

Assign the letters 'A'
, 'B'
, 'C'
, 'D'
 and 'E'
 to a list called q20
.

Remove 'A'
 and 'C'
from the list and print the list.

Hint: It is easier to remove 'C'
 first. Why do you think that is so?

Question 21

Assign the strings 'Sun'
, 'Mon'
, 'Tues'
, 'Wed'
, 'Thurs'
, 'Fri'
 and 'Sat'
 to a tuple called daysOfWeek
.

Assign the third element in daysOfWeek
 to a variable called myDay
 and print the value of myDay
.

Question 22

What is wrong with the following dictionary?

nameAgeDict = {'John':12, 'Matthew':15, 'Aaron':13, 'John':14, 'Melvin':10}

Question 23

Determine the output of the following program without running the code:

dict1 = {'Aaron': 11, 'Betty': 5, 0: 'Zero', 3.9: 'Three'}

print(dict1['Aaron'])

print(dict1[0])

print(dict1[3.9])

dict1['Aaron'] = 12

print(dict1)

del dict1['Betty']

print(dict1)

Question 24

The statement below shows one way of declaring and initializing a dictionary called dict1
.

dict1 = {'One':1, 'Two':2, 'Three':3, 'Four':4, 'Five':5}

(a) Rewrite
 the statement above using the dict()
 method to declare and initialize dict1
.

(b) Print the item with key = 'Four'
.

(c) Modify the item with key = 'Three'
. Change it from 3
 to 3.1
.

(d) Delete the item with key = 'Two'
.

(e) Use the print()
 function to print dict1
.

Question 25

Create a dictionary that maps the following countries to their respective capitals. The capitals are indicated in parenthesis beside the country names below.

USA (Washington, D.C.)

United Kingdom (London)

China (Beijing)

Japan (Tokyo)

France (Paris)

The country name should serve as the key for accessing the capital.

Next, print the dictionary.

Delete the third country from the dictionary and print it again.

Add the following two countries to the dictionary and print it again.

Germany (Berlin)

Malaysia (Kuala Lumpur)

Chapter 4: Answers

Question 1

Jamie

AARON

The names are Jamie and AARON.

Question 2

lang1 = 'Python'

lang2 = 'Java'

lang3 = 'C#'

message1 = 'The most popular programming languages are %s, %s and %s.' %(lang1, lang2, lang3)

message2 = 'The most popular programming languages are %s, %s and %s.' %(lang1, lang3, lang2)

print(message1)

print(message2)

Question 3

12

12

In the second statement above, there are two spaces before the number 12.

Question 4

1.725

1.72

In the second statement above, there are three spaces before the number 1.72. This results in a total of 7 characters (three spaces, the digits 1, 7, 2 and the decimal point)

Question 5

p, q = 111, 13

result = p/q

message = 'The result of %d divided by %d is %.3f, correct to 3 decimal places.' %(p, q, result)

print(message)

In the solution above, we did not specify the total length of result
 when we use the %.3f
 formatter. This is acceptable as the specifying the total length is optional.

Question 6

My name is Jamie and I am 31 years old.

Question 7

My favorite colors are orange, blue and black.

My favorite colors are blue, orange and black.

Question 8

student1 = 'Aaron'

student2 = 'Beck'

student3 = 'Carol'

message = 'My best friends are {}, {} and {}.'.format(student1, student2, student3)

print(message)

Question 9

21.31 and 12

12 and 21.3124

In the first statement above, there are two spaces before the number 21.31.

Question 10

x, y = 12, 7

quotient = x/y

message = 'The result of {} divided by {} is {:.4f}, correct to 4 decimal places.'.format(x, y, quotient)

print(message)

Question 11

number = 2.7123

number = int(number)

print(number)

Output

2

Question 12

str(2.12431)

Question 13

userInput = '12'

userInput = int(userInput)

print(userInput)

Output

12

Question 14

2

5

myList
 has 6 elements. Hence, only indexes from 0 to 5 are valid.

Question 15

testScores = [10, 11, 12, 13]

print(testScores[3])

print(testScores[-1])

Output

13

13

Question 16

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[4, 5, 6]

[1, 2, 3, 4, 5]

[3, 4, 5, 6, 7, 8, 9, 10]

[2, 4, 6]

[1, 4, 7, 10]

Question 17

q17 = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

sliceA = q17[2:8]

sliceB = q17[2: :3]

print(sliceA)

print(sliceB)

Output

[13, 14, 15, 16, 17, 18]

[13, 16, 19]

Question 18

emptyList = []

emptyList.append(12)

emptyList.append(5)

emptyList.append(9)

emptyList.append(11)

print(emptyList)

Output

[12, 5, 9, 11]

Question 19

q19 = [1, 2, 3, 4, 5]

q19[2] = 10

print(q19)

Output

[1, 2, 10, 4, 5]

Question 20

q20 = ['A', 'B', 'C', 'D', 'E']

del q20[2]

del q20[0]

print(q20)

Output

['B', 'D', 'E']

It is easier to remove 'C'
 first because if we remove 'A'
 first, the indexes of the elements after
 'A'
 will change.

After removing 'A'
, q20
 becomes ['B', 'C', 'D', 'E']
.

The index of 'C'
 changes from 2 to 1.

In contrast, if we remove 'C'
 first, only the indexes of elements after it (i.e. 'D'
 and 'E'
) will be affected. The index of 'A'
 remains unchanged.

Question 21

daysOfWeek = ('Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat')

myDay = daysOfWeek[2]

print(myDay)

Output

Tues

Question 22

“John” is used as the dictionary key twice.

Question 23

11

Zero

Three

{'Aaron': 12, 'Betty': 5, 0: 'Zero', 3.9: 'Three'}

{'Aaron': 12, 0: 'Zero', 3.9: 'Three'}

Question 24

a) dict1 = dict(One = 1, Two = 2, Three = 3, Four = 4, Five = 5)

b) print(dict1['Four'])

c) dict1['Three'] = 3.1

d) del dict1['Two']

e) print(dict1)

Output

b) 4

e) {'One': 1, 'Three': 3.1, 'Four': 4, 'Five': 5}

Question 25

capitals = {'USA':'Washington, D.C.', 'United Kingdom':'London', 'China':'Beijing', 'Japan':'Tokyo', 'France':'Paris'}

print(capitals)

del capitals['China']

print(capitals)

capitals['Germany'] = 'Berlin'

capitals['Malaysia'] = 'Kuala Lumpur'

print(capitals)

Output

{'USA': 'Washington, D.C.', 'United Kingdom': 'London', 'China': 'Beijing', 'Japan': 'Tokyo', 'France': 'Paris'}

{'USA': 'Washington, D.C.', 'United Kingdom': 'London', 'Japan': 'Tokyo', 'France': 'Paris'}

{'USA': 'Washington, D.C.', 'United Kingdom': 'London', 'Japan': 'Tokyo', 'France': 'Paris', 'Germany': 'Berlin', 'Malaysia': 'Kuala Lumpur'}

Chapter 5: Making Your Program Interactive

Question 1

Determine the output of the following program without running the code:

a = 10

b = 4

print(a, "-", b, "=", a-b)

Question 2

Rewrite the print()
 statement in Question 1 to display the same output using the %
 operator.

Question 3

Rewrite the print()
 statement in Question 1 to display the same output using the format()
 method.

Question 4

Determine the output of the following program without running the code:

print('''Date:\nJan 11, 2019

Time:\n1.28pm

Venue:\nConvention Center

Number of Pax:\n30''')

Question 5

print('This is a single quotation (') mark and this is a double quotation (") mark.')

The code above will result in a syntax error. Make the necessary amendment to correct it so that we get the following output:

This is a single quotation (') mark and this is a double quotation (") mark.

Question 6

The code below shows the last few lines of a program:

print('Day 1 (%s): %s' %(day[1], venue[1]))

print('Day 2 (%s): %s' %(day[2], venue[2]))

print('Day 3 (%s): %s' %(day[3], venue[3]))

print('Day 4 (%s): %s' %(day[4], venue[4]))

print('Day 5 (%s): %s' %(day[5], venue[5]))

print('Day 6 (%s): %s' %(day[6], venue[6]))

print('Day 7 (%s): %s' %(day[7], venue[7]))

The lines before them are missing.

Add the missing lines so that the program prints the following output:

Travel Itinerary

Day 1 (Tuesday): Tokyo to Osaka

Day 2 (Wednesday): Osaka

Day 3 (Thursday): Kyoto

Day 4 (Friday): Kyoto to Nara

Day 5(Saturday): Nara to Osaka

Day 6 (Sunday): Osaka to Tokyo

Day 7(Monday): Tokyo

Hint: You need to use dictionaries in your solution.

Question 7

Write a program that uses the input()
 function to prompt the user to enter an integer. Store the user's input into a variable called num1
.

Next, prompt the user to enter another integer and store the input into another variable called num2
.

Use the print()
 function to display the following message:

You entered * and ^

where * and ^ represent the two numbers entered by the user.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter an integer:
 5

Please enter another integer:
 12

You entered 5 and 12

Question 8

Use the input()
 function twice to prompt users to enter two integers and store the inputs into two variables called in1
 and in2
.

Use the int()
 function to cast the inputs into integers and store the results back into in1
 and in2
.

Calculate the average of the two numbers and assign the result to a variable called average
. The average is found by adding the two numbers and dividing the result by 2.

Use the print()
 function to display the message

The average is *

where * represents the value of average
, correct to two decimal places.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter an integer:
 3

Please enter another integer:
 10

The average is 6.50

Question 9

Write a program that prompts the user to enter his/her name.

The program then prompts the user to enter his/her favorite number using the prompt below:

Hi *, what is your favorite number?:

where * is to be replaced by the user's name.

Finally, the program displays the message

*'s favorite number is ^.

where * represents the user's name and ^ represents his/her favorite number.

For instance, the program may behave as shown below (user input is in bold italics):

What is your name?:
 Jamie

Hi Jamie, what is your favorite number?:
 111

Jamie's favorite number is 111.

Question 10

Write a program that uses a dictionary to store the following information about a city and the country that it's in.

City, Country

Chicago, USA

Los Angeles, USA

New York, USA

Osaka, Japan

Tokyo, Japan

Shanghai, China

Moscow, Russia

Paris, France

London, England

Seoul, South Korea

The program then prompts the user to enter a city name from one of the 10 cities above. Based on the user's input, the program displays a message telling the user which country the city is located in.

For instance, the program may behave as shown below (user input is in bold italics):

Cities: Chicago, Los Angeles, New York, Osaka, Tokyo, Shanghai, Moscow, Paris, London, Seoul

Please enter a city name from the list above:
 Osaka

Osaka is located in Japan.

Question 11

Write a program that prompts the user to enter 5 numbers, separating the numbers with commas. Calculate the sum of the 5 numbers and display the numbers entered and the sum to the user.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter 5 numbers, separated by commas:
 23, 1, 12, 4, 5

You entered 23, 1, 12, 4, 5.

The sum is 45.

Hint: You can use the built-in Python method split()
 to work with the string input.

For instance, the statement

'1+24+51'.split('+')

uses a plus sign (+
) as the delimiter to split the string

'1+24+51'

into the list

['1', '24', '51']
.

For our question, you need to use a comma as the delimiter.

Chapter 5: Answers

Question 1

10 - 4 = 6

Question 2

print("%d - %d = %d" %(a, b, a-b))

Question 3

print("{} - {} = {}".format(a, b, a-b))

Question 4

Date:

Jan 11, 2019

Time:

1.28pm

Venue:

Convention Center

Number of Pax:

30

Question 5

print('This is a single quotation (\') mark and this is a double quotation (") mark.')

Question 6

day = {1:'Tuesday', 2:'Wednesday', 3:'Thursday', 4:'Friday', 5:'Saturday', 6:'Sunday', 7:'Monday'}

venue = {1:'Tokyo to Osaka', 2:'Osaka', 3:'Kyoto', 4:'Kyoto to Nara', 5:'Nara to Osaka', 6:'Osaka to Tokyo', 7:'Tokyo'}

print('\nTravel Itinerary\n')

print('Day 1 (%s): %s' %(day[1], venue[1]))

print('Day 2 (%s): %s' %(day[2], venue[2]))

print('Day 3 (%s): %s' %(day[3], venue[3]))

print('Day 4 (%s): %s' %(day[4], venue[4]))

print('Day 5 (%s): %s' %(day[5], venue[5]))

print('Day 6 (%s): %s' %(day[6], venue[6]))

print('Day 7 (%s): %s' %(day[7], venue[7]))

Question 7

num1 = input('Please enter an integer: ')

num2 = input('Please enter another integer: ')

print('You entered %s and %s' %(num1, num2))

Question 8

in1 = input('Please enter an integer: ')

in2 = input('Please enter another integer: ')

in1 = int(in1)

in2 = int(in2)

average = (in1+in2)/2

print('The average is %.2f' %(average))

Question 9

name = input('What is your name?: ')

favNum = input('Hi %s, what is your favorite number?: ' %(name))

print('%s\'s favorite number is %s.' %(name, favNum))

Question 10

cities = {'Chicago':'USA', 'Los Angeles':'USA', 'New York':'USA', 'Osaka':'Japan', 'Tokyo':'Japan', 'Shanghai':'China', 'Moscow':'Russia', 'Paris':'France', 'London':'England', 'Seoul':'South Korea'}

print('Cities: Chicago, Los Angeles, New York, Osaka, Tokyo, Shanghai, Moscow, Paris, London, Seoul')

print()

city = input('Please enter a city name from the list above: ')

print('%s is located in %s.' %(city, cities[city]))

Question 11

userInput = input('Please enter 5 numbers, separated by commas: ')

inputList = userInput.split(',')

print('\nYou entered %s,%s,%s,%s,%s.' %(inputList[0], inputList[1], inputList[2], inputList[3], inputList[4]))

print('The sum is %d.' %(int(inputList[0]) + int(inputList[1]) + int(inputList[2]) + int(inputList[3]) + int(inputList[4])))

Chapter 6: Making Choices and Decisions

Question 1

State which of the following statements are true:

(a) 2 > 5

(b) 9 < 11

(c) 7 >= 3

(d) 8 <= 8

(e) 10 != 12

(f) 6 == 3

(g) 4 > 2 and 7!=9

(h) 3 > 1 and 9==9 and 1 > 2

(i) 2 > 3 or 5 > 1

(j) 3 > 1 or 5 == 5

(k) 3 > 1 or 10 != 8 or 9 < 2

Question 2

Determine the output of the following program without running the code:

num = 5

if num == 1:

print('num is 1')

elif num == 2:

print('num is 2')

else:

print('num is neither 1 nor 2')

Question 3

Use the input()
 function to prompt users to enter an integer and use the int()
 function to cast the input into an integer. Store the integer into a variable called userInput
.

Next, write an if
 statement to perform the following tasks:

If userInput
 is positive, use the print()
 function to display the number entered.

If userInput
 is negative, multiply the number by -1 and assign it back to userInput
. Next, use the print()
 function to display the new value of userInput
.

Finally, if userInput
 is zero, use the print()
 function to display the message “You entered zero”.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter an integer:
 5

5

Example 2:

Please enter an integer:
 -2

2

Example 3:

Please enter an integer:
 0

You entered zero

Question 4

Use the input()
 function to prompt users to enter an integer from 0 to 100 inclusive, cast the input into an integer and store the integer into a variable called testScore
.

Use an if
 statement to display the grade that corresponds to testScore
 based on the following table:

70 to 100: A

60 to 69: B

50 to 59: C

0 to 49: Fail

Smaller than 0 or greater than 100: Invalid

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter an integer from 0 to 100 inclusive:
 20

Fail

Example 2:

Please enter an integer from 0 to 100 inclusive:
 54

C

Example 3:

Please enter an integer from 0 to 100 inclusive:
 -5

Invalid

Question 5

Determine the output of the following program without running the code:

num = 5

print('Orange Juice' if num == 5 else 'Peanut Butter')

Question 6

Use the input()
 function to prompt users to enter an integer, cast the input into an integer and store the integer into a variable called num1
.

Write an inline if
 statement to print the message “Odd” or “Even” depending on whether num1
 is odd or even.

Hint: num1
 is even if the remainder is zero when it is divided by 2.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter an integer:
 9

Odd

Example 2:

Please enter an integer:
 18

Even

Question 7

Given that myNumbers = [1, 21, 12, 45, 2, 7]
, use a for
 loop to print the elements in the list one by one.

Question 8

Given that marks = [12, 4, 3, 17, 20, 19, 16]
, use a for
 loop to find the sum of the numbers in the list. Use the print()
 function to print the sum.

Question 9

Given that classRanking = ['Jane', 'Peter', 'Michael', 'Tom']
, use a for
 loop and the enumerate()
 method to display the following output:

1 Jane

2 Peter

3 Michael

4 Tom

Each line consists of a number, followed by a tab
 and a name.

Question 10

Given that testScores = {'Aaron':12, 'Betty':17, 'Carol':14}
, write a for
 loop that gives us the following output:

Aaron scored 12 marks.

Betty scored 17 marks.

Carol scored 14 marks.

Question 11

Determine the output of the following code without running the code:

ages = {'Abigail':7, 'Bond':13, 'Calvin':4}

for i, j in ages.items():

print('%s\t%s' %(j, i))

Question 12

Determine the output of the following code without running the code:

message = 'Happy Birthday'

for i in message:

if (i == 'a'):

print('@')

else:

print(i)

Question 13

Determine the output of the following code without running the code:

(i) for i in range(10):

print (i)

(ii) for i in range(2, 5):

print(i)

(iii) for i in range(4, 10, 2):

print(i)

Question 14

Explain what is wrong with the following code:

i = 0

while i < 5:

print('The value of i = ', i)

Modify the code so that it produces the following output:

The value of i = 0

The value of i = 1

The value of i = 2

The value of i = 3

The value of i = 4

Question 15

Determine the output of the following code without running the code:

i = 5

while i>0:

if i%3 == 0:

print(i, 'is a multiple of 3')

else:

print(i, 'is not a multiple of 3')

i = i - 1

Question 16

Write a while
 loop that repeatedly prompts users to enter a number or enter “END” to exit.

After the user enters the number, the while
 loop simply displays the number entered. If the user enters “END”, the program displays the message “Goodbye!” and ends.

For instance, the program may behave as shown below (user input is in bold italics):

Enter a number or END to exit:
 3

3

Enter a number or END to exit:
 123

123

Enter a number or END to exit:
 -2

-2

Enter a number or END to exit:
 END

Goodbye!

Question 17

Write a while
 loop that repeatedly prompts users to enter a positive integer or enter -1 to exit.

After the user enters the integer, the while
 loop should display the sum of all numbers entered so far. If the user enters -1, the program displays the message “Goodbye!” and ends.

For instance, the program may behave as shown below (user input is in bold italics):

Enter a positive integer or -1 to exit:
 3

Sum = 3

Enter a positive integer or -1 to exit:
 5

Sum = 8

Enter a positive integer or -1 to exit:
 1

Sum = 9

Enter a positive integer or -1 to exit:
 -1

Goodbye!

Question 18

Modify the code in Question 17 so that if the user enters a non positive integer (other than -1), the program displays the message “You entered a non positive integer” and does not add the number to the sum.

For instance, the program may behave as shown below (user input is in bold italics):

Enter a positive integer or -1 to exit:
 3

Sum = 3

Enter a positive integer or -1 to exit:
 5

Sum = 8

Enter a positive integer or -1 to exit:
 -2

You entered a non positive integer

Enter a positive integer or -1 to exit:
 4

Sum = 12

Enter a positive integer or -1 to exit:
 -1

Goodbye!

Question 19

Write a program that prompts the user to enter two integers.

Suppose the integers are p and q. The program then prints p rows of q asterisks.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter the number of rows:
 5

Please enter the number of asterisks per row:
 10

Note: By default, the print()
 function adds a new line at the end of its output. If you do not want that to happen, you have to pass in end = ''
 to the print()
 function. This will remove the new line. Note that ''
 is made up of two single quotes, not a single double quote.

For instance,

print('A')

print('B')

gives us

A

B

while

print('A', end = '')

print('B', end = '')

gives us

AB

Question 20

Write a program that prompts the user to enter a short message. The program then replaces the first three occurrences of the letter “a” in the message with “@” and subsequent occurrences of the letter “a” with “A”. Finally, the program displays the new message.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter a message:
 Python is an excellent language to learn for both beginners and experienced programmers

Python is @n excellent l@ngu@ge to leArn for both beginners And experienced progrAmmers

Question 21

Write a program that uses a for
 loop to prompt the user to enter 10 numbers. The program then finds the smallest and largest number and displays the result to the user.

For instance, the program may behave as shown below (user input is in bold italics):

Please enter number 1:
 5

Please enter number 2:
 12

Please enter number 3:
 2

Please enter number 4:
 3

Please enter number 5:
 -1

Please enter number 6:
 5.7

Please enter number 7:
 11

Please enter number 8:
 111

Please enter number 9:
 0

Please enter number 10:
 -3.9

The smallest number is -3.9

The largest number is 111

Question 22

Write a program that prompts the user to enter two integers, a and b. The program then calculates the product of all integers between a and b inclusive and displays the result to the user.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter the first integer:
 10

Please enter the second integer:
 13

17160

Note:

10*11*12*13 = 17160

Example 2:

Please enter the first integer:
 11

Please enter the second integer:
 6

332640

Question 23

Modify the program in Question 22 to satisfy the two rules below:

Rule 1

If 0 falls within a and b, it is not multiplied
 with the other numbers.

For instance, if a = -3 and b = 2, the program performs the calculation (-3)x(-2)x(-1)x1x2 without multiplying 0 with the other integers.

Rule 2

If the product is smaller than -500 or greater than 500, the program stops calculating and displays the message “Range Exceeded”.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter the first integer:
 -3

Please enter the second integer:
 2

-12

Example 2:

Please enter the first integer:
 11

Please enter the second integer:
 6

Range Exceeded

Question 24

The code below leads to an infinite loop. Try modifying the code using the break
 keyword to exit the loop when users enter -1.

while 0==0:

userInput = input('Press any key to continue or -1 to exit: ')

print('You entered', userInput)

Question 25

Modify the code below using the continue
 keyword so that even numbers are not printed:

for i in range(10):

print('i = ', i)

Hint: A number is even if the remainder is zero when it is divided by 2.

Question 26

The factorial of a number n (denoted as n!) is given by the formula

n! = n(n-1)(n-2)(n-3)...(3)(2)(1)

For instance, 5! = 5x4x3x2x1 = 120

Write a program that calculates the factorial of a number entered by the user.

The program should first prompt the user to enter a positive integer.

Next, the program checks if the input is positive. If it is, it calculates the factorial of that number and displays the result on the screen. Else, it displays the message “The number you entered is not positive”.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Enter a positive integer:
 4

24

Example 2:

Enter a positive integer:
 -2

The number you entered is not positive

Question 27

With reference to Question 26 above, modify the program using a try-except
 statement so that if the user did not enter an integer, the program displays the message “You did not enter an integer”.

For any other errors, the program displays the error messages pre-defined in Python.

For instance, the program may behave as shown below (user input is in bold italics):

Enter a positive integer:
 abcd

You did not enter an integer

Question 28

Given that proLang = ['Python', 'Java', 'C', 'C++', 'C#', 'PHP', 'Javascript']
, write a program that uses a try-except
 statement to prompt the user to enter an integer.

The program displays “Out Of Range” if the user enters an integer that is beyond the index of the list.

For any other errors, the program displays the error messages that are pre-defined in Python.

If no error occurs, the program displays the item from the proLang
 list based on the index.

For instance, the program may behave as shown below (user input is in bold italics):

Example 1:

Please enter the index:
 3

C++

Example 2:

Please enter the index:
 10

Out of Range

Example 3:

Please enter the index:
 asdfa

invalid literal for int() with base 10: 'asdfa'.

Question 29

With reference to Question 10 in Chapter 5, modify the code so that the program repeatedly prompts the user to enter a city name or enter “END” to exit.

Based on the user's input, the program displays a message telling the user where the city is located in.

If the user enters a name that is not from the 10 cities listed, the program notifies the user that no result is found.

For instance, the program may behave as shown below (user input is in bold italics):

Cities: Chicago, Los Angeles, New York, Osaka, Tokyo, Shanghai, Moscow, Paris, London, Seoul

Please enter a city name from the list above or enter END to exit:
 Shanghai

Shanghai is located in China.

Please enter a city name from the list above or enter END to exit:
 Berlin

Sorry, no result found.

Please enter a city name from the list above or enter END to exit:
 END

Hint: You can use a try-except
 statement to handle the error when the user enters a city that is not found.

Chapter 6: Answers

Question 1

(b), (c), (d), (e), (g), (i), (j) and (k) are true

Question 2

num is neither 1 nor 2

Question 3

userInput = int(input('Please enter an integer: '))

if userInput > 0:

print(userInput)

elif userInput < 0:

userInput = -1*userInput

print(userInput)

else:

print('You entered zero')

Note: In the first line of the code above, we use input('Please enter an integer: ')
 to prompt the user for an integer. This gives us the input as a string.

We pass this string to the int()
 function to cast it into an integer.

Here, we do the prompting and casting in one step. We can also break it down into two steps as shown below:

userInput = input('Please enter an integer: ')

userInput = int(userInput)

Question 4

testScore = int(input('Please enter an integer from 0 to 100 inclusive: '))

if testScore > 100:

print('Invalid')

elif testScore >= 70:

print('A')

elif testScore >= 60:

print('B')

elif testScore >= 50:

print('C')

elif testScore >= 0:

print('Fail')

else:

print('Invalid')

Question 5

Orange Juice

Question 6

num1 = int(input('Please enter an integer: '))

print('Even' if num1%2 == 0 else 'Odd')

Question 7

myNumbers = [1, 21, 12, 45, 2, 7]

for i in myNumbers:

print (i)

Output

1

21

12

45

2

7

Question 8

marks = [12, 4, 3, 17, 20, 19, 16]

sum = 0

for i in marks:

sum = sum + i

print(sum)

Output

91

Question 9

classRanking = ['Jane', 'Peter', 'Michael', 'Tom']

for index, rank in enumerate(classRanking):

print('%d\t%s' %(index+1, rank))

Question 10

testScores = {'Aaron':12, 'Betty':17, 'Carol':14}

for i in testScores:

print(i, 'scored', testScores[i], 'marks.')

Question 11

7 Abigail

13 Bond

4 Calvin

Question 12

H

@

p

p

y

B

i

r

t

h

d

@

y

Question 13

	
(i)

	
0

1

2

3

4

5

6

7

8

9

	
(ii)

(iii)

	
2

3

4

4

6

8

Question 14

The while
 loop is an infinite loop because i
 will always be smaller than 5.

The correct code should be:

i = 0

while i < 5:

print('The value of i = ', i)

i = i + 1

Question 15

5 is not a multiple of 3

4 is not a multiple of 3

3 is a multiple of 3

2 is not a multiple of 3

1 is not a multiple of 3

Question 16

userInput = input('Enter a number or END to exit: ')

while userInput != 'END':

print(userInput)

userInput = input('Enter a number or END to exit: ')

print('Goodbye!')

Question 17

sum = 0

userInput = int(input('Enter a positive integer or -1 to exit: '))

while userInput != -1:

sum += userInput

print('Sum = ', sum)

print()

userInput = int(input('Enter a positive integer or -1 to exit: '))

print('Goodbye!')

Question 18

sum = 0

userInput = int(input('Enter a positive integer or -1 to exit: '))

while userInput != -1:

if userInput <= 0:

print('You entered a non positive integer.')

else:

sum += userInput

print('Sum = ', sum)

print()

userInput = int(input('Enter a positive integer or -1 to exit: '))

print('Goodbye!')

Question 19

p = int(input('Please enter the number of rows: '))

q = int(input('Please enter the number of asterisks per row: '))

for i in range(p):

for j in range(q):

print('*', end = '')

print()

Let's look at an example of how this code works.

Suppose p = 3
 and q = 5
.

The outer
 for
 loop

for i in range(p)

becomes

for i in range(3)

and loops from i = 0
 to i = 2
.

The inner
 for
 loop

for j in range(q)

becomes

for j in range(5)

and loops from j = 0
 to j = 4
.

This inner for
 loop is responsible for printing the asterisks. In our example, it loops from j = 0
 to j = 4
 and prints 5 asterisks (*****) using the line print('*', end = '')
.

Once that is done, the inner for
 loop ends and the line print()
 is executed to move the cursor to the next line.

The outer for
 loop then increases the value of i
 by 1
 and uses the inner for
 loop to print 5 asterisks again.

This is repeated from i = 0
 to i = 2
.

Once that is done, a total of 3 lines of 5 asterisks will be printed on the screen.

Question 20

message = input('Please enter a message: ')

j = 0

for i in message:

if i == 'a':

j = j + 1

if j <= 3:

print('@', end = '')

else:

print('A', end = '')

else:

print(i, end = '')

print()

Note: In the solution above, we use j
 to keep track of the number of occurrences of “a”. Each time “a” occurs, we increment j
 by 1.

Question 21

for i in range(10):

userInput = input('Please enter number %d: ' %(i+1))

#Assign the first user input

#to largest and smallest

if i == 0:

largest = userInput

smallest = userInput

#From the second user input onwards,

#compare user input with

#current largest and smallest

elif float(userInput) > float(largest):

largest = userInput

elif float(userInput) < float(smallest):

smallest = userInput

print('The smallest number is %s' %(smallest))

print('The largest number is %s' %(largest))

Note: In the solution above, userInput
, largest
 and smallest
 are all strings. Hence, we need to cast them into floats first before we can do any comparison.

Question 22

a = int(input('Please enter the first integer: '))

b = int(input('Please enter the second integer: '))

'''if b is smaller than a, we swap the two numbers'''

if b<a:

temp = b

b = a

a = temp

product = 1

for i in range(a, b+1):

product = product*i

print(product)

Question 23

a = int(input('Please enter the first integer: '))

b = int(input('Please enter the second integer: '))

'''if b is smaller than a, we swap the two numbers'''

if b<a:

temp = b

b = a

a = temp

product = 1

for i in range(a, b+1):

if i != 0:

product = product*i

if product > 500 or product < -500:

product = -1

break

if product == -1:

print('Range Exceeded')

else:

print(product)

Question 24

while 0==0:

userInput = input('Press any key to continue or -1 to exit: ')

if userInput == '-1':

break

else:

print('You entered', userInput)

Question 25

for i in range(10):

if i%2 == 0:

continue

print('i = ', i)

Output

i = 1

i = 3

i = 5

i = 7

i = 9

Question 26

number = int(input('Enter a positive integer: '))

if number <= 0:

print('The number you entered is not positive')

else:

factorial = 1

while number>0:

factorial = number*factorial

number -= 1

print(factorial)

Question 27

try:

number = int(input('Enter a positive integer: '))

if number <= 0:

print('The number you entered is not positive')

else:

factorial = 1

while number>0:

factorial = number*factorial

number -= 1

print(factorial)

except ValueError:

print('You did not enter an integer')

except Exception as e:

print(e)

Question 28

proLang = ['Python', 'Java', 'C', 'C++', 'C#', 'PHP', 'Javascript']

try:

index = int(input('Please enter the index: '))

print(proLang[index])

except IndexError:

print('Out of Range')

except Exception as e:

print(e)

Question 29

cities = {'Chicago':'USA', 'Los Angeles':'USA', 'New York':'USA', 'Osaka':'Japan', 'Tokyo':'Japan', 'Shanghai':'China', 'Moscow':'Russia', 'Paris':'France', 'London':'England', 'Seoul':'South Korea'}

print('Cities: Chicago, Los Angeles, New York, Osaka, Tokyo, Shanghai, Moscow, Paris, London, Seoul')

print()

city = input('Please enter a city name from the list above or enter END to exit: ')

while city != 'END':

try:

print('%s is located in %s.\n' %(city, cities[city]))

city = input('Please enter a city name from the list above or enter END to exit: ')

except:

print('Sorry, no result found.\n')

city = input('Please enter a city name from the list above or enter END to exit: ')

Note that in the solution above, we have the statement

city = input('Please enter a city name from the list above or enter END to exit: ')

in both
 the try
 and except
 blocks.

An alternative way is to use a finally
 block. A finally
 block is used for statements that should be executed regardless of whether the try
 or except
 block is executed.

The alternative solution is presented below:

cities = {'Chicago':'USA', 'Los Angeles':'USA', 'New York':'USA', 'Osaka':'Japan', 'Tokyo':'Japan', 'Shanghai':'China', 'Moscow':'Russia', 'Paris':'France', 'London':'England', 'Seoul':'South Korea'}

print('Cities: Chicago, Los Angeles, New York, Osaka, Tokyo, Shanghai, Moscow, Paris, London, Seoul')

print()

city = input('Please enter a city name from the list above or enter END to exit: ')

while city != 'END':

try:

print('%s is located in %s.\n' %(city, cities[city]))

except:

print('Sorry, no result found.\n')

finally:

city = input('Please enter a city name from the list above or enter END to exit: ')

Chapter 7: Functions and Modules

Question 1

Write a function called greetUser()
 that simply displays the message “Hello World” to users.

After coding the function, write a statement to call the function.

Question 2

Write a function called greetUserByName()
 that prompts the user for his/her name and displays the message

Hello ^

where ^ represents the name entered by the user.

After coding the function, write a statement to call the function.

Question 3

Write a function called displayMessage()
 that has one parameter greetings
. Within the function, use the print()
 function to display the value of greetings
.

After coding the function, write a statement to call the function using 'Good Morning'
 as the argument.

Question 4

Write a function called calculateQuotient()
 that has two parameters a
 and b
. Within the function, write a return
 statement to return the value of a/b
.

After coding the function, write a statement to call the function using 12
 and 3
 as the arguments. Assign the result to a variable called result
 and print the value of result
.

Question 5

Modify the function in the previous question to include error handling using a try-except
 statement. Return -1 when an error occurs. Call this new function calculateQuotient2()
.

After coding the function, write a statement to call the function using

(i) 12
 and 3
 as the arguments,

(ii) 5
 and 0
 as the arguments,

(iii) 'abcd'
 and 2
 as the arguments.

For each of the cases above, assign the result to a variable called result
 and print the value of result
.

Question 6

Write a function called absValue()
 that accepts a numerical input (the input can include decimal values).

If the input is zero or positive, it simply returns the number.

If the input is negative, it multiplies the number by -1 and returns the result.

If the input is non numerical, it returns -1.

After coding the function, call the function with the following inputs and print the results:

12

5.7

0

-4

-5.2

'abcd'

Question 7

Determine the output of the following code without running the code:

a = 1

def displayNumbers():

a = 2

print(a)

displayNumbers()

print(a)

Question 8

Explain what is wrong with the following code:

def functionwithb():

b = 1

print(b)

Question 9

Determine the output of the following code without running the code:

def calProduct(a, b, c = 1, d = 2):

product = a*b*c*d

print (product)

calProduct(2, 3)

calProduct(2, 3, 4)

calProduct(2, 3, 4, 5)

Question 10

The statements below show the function teamMembers()
 being called with different arguments:

Function Call

teamMembers('Joanne', 'Lee')

Output

The team members are Joanne, Lee, James and Kelly.

Function Call

teamMembers('Benny', 'Aaron')

Output

The team members are Benny, Aaron, James and Kelly.

Function Call

teamMembers('Peter', 'John', 'Ben')

Output

The team members are Peter, John, Ben and Kelly.

Function Call

teamMembers('Jamie', 'Adam', 'Calvin', 'Danny')

Output

The team members are Jamie, Adam, Calvin and Danny.

Code the teamMembers()
 function to get the outputs shown and run it to verify that your function performs correctly.

Question 11

Determine the output of the following code without running the code:

def findSum(*a):

sum = 0

for i in a:

sum = sum + i

print(sum)

findSum(1, 2, 3)

findSum(1, 2, 3, 4)

Question 12

The statements below show the function printFavColor()
 being called with different arguments:

Function Call

printFavColor('Yellow', 'Green')

Output

Your favorite colors are:

Yellow

Green

Function Call

printFavColor('Orange', 'Pink', 'Blue')

Output

Your favorite colors are:

Orange

Pink

Blue

Code the printFavColor()
 function to get the outputs shown and run it to verify that your function performs correctly.

Question 13

The statements below show the function printNamesAndGrades()
 being called with different arguments.

Function Call

printNamesAndGrades(Adam = 'C', Tim = 'A')

Output

Name : Grade

Adam : C

Tim : A

Function Call

printNamesAndGrades(Sam = 'A-', Lee = 'B', Joan = 'A+')

Output

Name : Grade

Sam : A-

Lee : B

Joan : A+

Code the printNamesAndGrades()
 function to get the outputs shown and run it to verify that your function performs correctly.

Question 14

Explain what is wrong with the following code:

def varlengthdemo(*b, a, **c):

print(a)

for i in b:

print (i)

for j, k in c.items():

print (j, 'scored', k)

Modify the varlengthdemo()
 function so that the statement

varlengthdemo('Jeremy', 2, 3, 4, Apple = 'A', Betty = 'B')

produces the following output:

Jeremy

2

3

4

Apple scored A

Betty scored B

Run the function to verify that it performs correctly.

Question 15

Write a function called sumOfTwoNumbers
() that has two parameters, target
 and *b
.

The function checks if there exists any two numbers in b
 that add up to target
.

If two numbers are found, the function displays an equation showing the addition.

If no numbers are found, the function prints the message “No result found”.

For instance, the statements below show the function being called with different arguments.

Function Call

sumOfTwoNumbers(12, 3, 1, 4, 5, 6, 13)

Output

No result found

The function prints “No result found” for this example as it is unable to find any two numbers from 3, 1, 4, 5, 6, 13 that add up to the target 12.

Function Call

sumOfTwoNumbers(5, 3, 1, 4, 2)

Output

3 + 2 = 5

For this example, even though there can be more than one way to get the target 5 (1 + 4 and 3 + 2), the function is only required to display one equation.

Try coding this function and run it to verify that it performs correctly.

Hint: You can access the numbers in b
 using the list notation. For instance, for the function call

sumOfTwoNumbers(5, 3, 1, 4, 2)

target = 5

b[0] = 3

b[1] = 1

b[2] = 4

b[3] = 2

Question 16

The statements below show the function capitalsOfCountries()
 being called with different arguments.

Function Call

capitalsOfCountries(Germany = 'Berlin')

Output

The capital of Germany is Berlin.

Function Call

capitalsOfCountries(USA = 'Washington D.C.', China = 'Beijing')

Output

The capitals of USA and China are Washington D.C. and Beijing respectively.

Function Call

capitalsOfCountries(Japan = 'Tokyo', Indonesia = 'Jakarta', France = 'Paris')

Output

The capitals of Japan, Indonesia and France are Tokyo, Jakarta and Paris respectively.

Code the capitalsOfCountries()
 function to get the outputs shown and run it to verify that your function performs correctly.

Note that the outputs produced by this function differ depending on the number of countries passed in. For instance, if there's only one country, the singular form is used (e.g. capital, is).

Hint:

You can use the len()
 method to find the number of items passed in to the capitalsOfCountries()
 function.

In addition, recall that you can use the enumerate()
 method to determine the index of the item that you are accessing when you loop through a dictionary.

For instance, if the dictionary is

capitals = {'USA':'Washington, D.C.', 'United Kingdom':'London', 'China':'Beijing', 'Japan':'Tokyo', 'France':'Paris'}

and we use

for i, j in enumerate(capitals):

to loop through the capitals
 dictionary, i
 gives us the index of the current item while j
 gives us the dictionary key of the item.

In other words, when i = 0
, j = 'USA'
.

Question 17

Suppose you have a file called myfunctions.py
 with the following code:

def func1():

print('This is a simple function')

def func2(message):

print(message)

The statements below show three ways of using functions from myfunctions.py
 inside another .py
 file stored in the same folder
. Write down the correct import
 statement for each of them:

(i)

myfunctions.func1()

myfunctions.func2('Hello')

(ii)

f.func1()

f.func2('Hello')

(iii)

func1()

func2('Hello')

Question 18

Now suppose we want to use func1()
 and func2()
 from the previous question inside a .py
 file that is NOT in the same folder as myfunctions.py
 and that myfunctions.py
 is stored in the C:\PythonFiles
 folder.

What code must we add to this new .py
 file so that we can continue to use the two functions?

Chapter 7: Answers

Question 1

def greetUser():

print('Hello World')

greetUser()

Output

Hello World

Question 2

def greetUserByName():

name = input('Please enter your name: ')

print('Hello %s' %(name))

greetUserByName()

Example of Output (user input is in bold italics)

Please enter your name: Jamie

Hello Jamie

Question 3

def displayMessage(greetings):

print(greetings)

displayMessage('Good Morning')

Output

Good Morning

Question 4

def calculateQuotient(a, b):

return a/b

result = calculateQuotient(12, 3)

print(result)

Output

4.0

Question 5

def calculateQuotient2(a, b):

try:

return a/b

except:

return -1

result = calculateQuotient2(12, 3)

print(result)

result = calculateQuotient2(5, 0)

print(result)

result = calculateQuotient2('abcd', 2)

print(result)

Output

4.0

-1

-1

Question 6

def absValue(a):

try:

num = float(a)

if num >= 0:

return a

else:

return -1*a

except Exception as e:

return -1

result = absValue(12)

print(result)

result = absValue(5.7)

print(result)

result = absValue(0)

print(result)

result = absValue(-4)

print(result)

result = absValue(-5.2)

print(result)

result = absValue('abcd')

print(result)

Output

12

5.7

0

4

5.2

-1

Question 7

2

1

Question 8

b
 is defined inside functionwithb()
.

Hence, it is not accessible outside the function when we try to print its value using print(b)
.

Question 9

12

48

120

Question 10

def teamMembers(a, b, c = 'James', d = 'Kelly'):

print('The team members are %s, %s, %s and %s.' %(a, b, c, d))

teamMembers('Joanne', 'Lee')

teamMembers('Benny', 'Aaron')

teamMembers('Peter', 'John', 'Ben')

teamMembers('Jamie', 'Adam', 'Calvin', 'Danny')

Question 11

6

10

Question 12

def printFavColor(*color):

print('Your favorite colors are:')

for i in color:

print(i)

printFavColor('Yellow', 'Green')

printFavColor('Orange', 'Pink', 'Blue')

Question 13

def printNamesAndGrades(**grades):

print('Name : Grade')

for i in grades:

print('%s : %s' %(i, grades[i]))

printNamesAndGrades(Adam = 'C', Tim = 'A')

printNamesAndGrades(Sam = 'A-', Lee = 'B', Joan = 'A+')

Question 14

The varlengthdemo()
 function has a formal argument (a
), a non-keyworded variable length argument (*b
) and a keyworded variable length argument (**c
).

When declaring the function, the formal argument must come first, followed by the non-keyworded argument and the keyworded argument (in that order).

The correct code is:

def varlengthdemo(a, *b, **c):

print(a)

for i in b:

print (i)

for j, k in c.items():

print (j, 'scored', k)

varlengthdemo('Jeremy', 2, 3, 4, Apple = 'A', Betty = 'B')

Question 15

def sumOfTwoNumbers(target, *b):

length = len(b)

for p in range(length-1):

for q in range(p+1, length):

if b[p] + b[q] == target:

print(b[p],'+',b[q],'=', target)

return

print ('No result found')

sumOfTwoNumbers(12, 3, 1, 4, 5, 6, 13)

sumOfTwoNumbers(5, 3, 1, 4, 2)

Let's look at an example of how this function works.

Suppose target = 5
 and b = [3, 1, 4, 2]

The first line in the function sets length
 to 4
 as there are 4 numbers in b
.

The next line for p in range(length – 1)
 becomes for p in range(3)
.

This causes the for
 loop to run from p = 0
 to p = 2
.

When p = 0
, the next line for q in range(p+1, length)
 becomes for q in range(1, 4)
, which runs from q = 1
 to q = 3
.

This means that the next line

if b[p] + b[q] == target:

becomes the following three if
 statements:

if b[0] + b[1] == target

if b[0] + b[2] == target

if b[0] + b[3] == target

Essentially, this means that when p = 0
, we take b[0]
 (which is the first number in b
) and add it to the subsequent numbers in b
 one by one. If any of the additions equals target
, we have found the equation we need and can exit the function.

On the other hand, if we cannot find the equation that we need, we repeat the loop with p = 1
. That is, we take b[1]
 (the second number in b
) and add it to the subsequent numbers in b
 one by one.

We keep doing this until we reach p = 2
. After p = 2
, if we are still unable to find an equation, we've come to the end of the function and simply print the message “No result found” to notify the caller that we are unable to find the equation needed.

Question 16

def capitalsOfCountries(**capitals):

if(len(capitals) == 1):

print('The capital of ', end = '')

else:

print('The capitals of ', end = '')

Print the country names

for i, j in enumerate(capitals):

if i == 0:

print(j, end = '')

elif i == len(capitals)-1:

print(' and %s' %(j), end = '')

else:

print(', %s' %(j), end = '')

if(len(capitals) == 1):

print(' is ', end = '')

else:

print(' are ', end = '')

Print the capitals

for i, j in enumerate(capitals):

if i == 0:

print(capitals[j], end = '')

elif i == len(capitals)-1:

print(' and %s' %(capitals[j]), end = '')

else:

print(', %s' %(capitals[j]), end = '')

if len(capitals) == 1:

print('.')

else:

print(' respectively.')

capitalsOfCountries(Germany = 'Berlin')

capitalsOfCountries(USA = 'Washington D.C.', China = 'Beijing')

capitalsOfCountries(Japan = 'Tokyo', Indonesia = 'Jakarta', France = 'Paris')

Most of the code above should be self-explanatory except for the enumerate()
 method.

The enumerate()
 method lets us know the index of the item that we are accessing in an iterable. For instance, in the code

for i, j in enumerate(capitals):

if i == 0:

print(j, end = '')

elif i == len(capitals)-1:

print(' and %s' %(j), end = '')

else:

print(', %s' %(j), end = '')

we use the enumerate()
 method to determine which item we are accessing from the capitals
 dictionary.

If it is the first item (i == 0
), we print the country name.

If it is not the first item but is the last item (i == len(capitals)-1
), we print the word “and”, followed by the country name.

If it is neither the first nor the last item, we print a comma followed by the country name.

For instance, if

capitals = {'USA':'Washington, D.C.', 'United Kingdom':'London', 'China':'Beijing'}

this segment of the code prints the following output:

USA, United Kingdom and China

Question 17

(i) import myfunctions

(ii) import myfunctions as f

(iii) from myfunctions import func1, func2

Question 18

import sys

if 'C:\\PythonFiles' not in sys.path:

sys.path.append('C:\\PythonFiles')

Chapter 8: Working with Files

Question 1

Create a text file called ch8q1.txt
 with the following text:

Top Students:

Carol

Zoe

Andy

Caleb

Xavier

Aaron

Ben

Adam

Betty

Write a simple program to read and display the first four lines
 from ch8q1.txt
. The output should not have any blank lines between each line.

For this question, you can assume that ch8q1.txt
 is in the same folder as your .py
 file.

Question 2

Suppose we have a text file called ch8q2.txt
 that contains an unknown number of lines. Each line contains an integer.

Write a simple program to read the integers from ch8q2.txt
 and sum all the positive numbers
. Display the result of the sum.

Next, create the ch8q2.txt
 file as follows:

12

32

15

9

16

-3

45

-10

Run your code to verify that it works as intended. For this question, you can assume that ch8q2.txt
 is in the same folder as your .py
 file.

Question 3

What is the difference between the 'w'
 and 'a'
 mode when using the open()
 function to work with files?

Question 4

Write a function called getNumbers()
 that repeatedly prompts the user to enter an integer or enter “Q” to quit.

Write the integers that the user entered into a text file called ch8q4.txt
, overwriting any previous data. You need to ensure that the user did indeed enter an integer before writing the value into ch8q4.txt
.

Next, write another function called findSum()
 that reads from ch8q4.txt
, adds up all the integers and returns the result.

Finally, call getNumbers()
 and findSum()
 and print the result returned by findSum()
.

For this question, you can assume that ch8q4.txt
 is in the same folder as your .py
 file.

For instance, the program may behave as shown below (user input is in bold italics):

Enter an integer or type Q to exit:
 1.11

Input is not an integer and will be ignored

Enter an integer or type Q to exit:
 1

Enter an integer or type Q to exit:
 12

Enter an integer or type Q to exit:
 123

Enter an integer or type Q to exit:
 -1

Enter an integer or type Q to exit:
 asfa

Input is not an integer and will be ignored

Enter an integer or type Q to exit:
 -11

Enter an integer or type Q to exit:
 Q

124

Question 5

Create a text file called stars.txt
 with a single line of 100 asterisks.

Use a for
 loop to read from the file and print the following output:

*

**

For this question, you can assume that stars.txt
 is in the same folder as your .py
 file.

Question 6

Suppose you have a folder on your C:\
 drive called images
. Inside the images
 folder, you have a file called happy.jpg
.

Write a program to read from C:\images\happy.jpg
 and write its content to a new file called newhappy.jpg
.

For this question, you can write newhappy.jpg
 to the same folder as your .py
 file.

However, your .py
 file and happy.jpg
 should not be in the same folder (i.e. your .py
 file should not be in the C:\images
 folder).

Next, write code to change the name of the new file from newhappy.jpg
 to happy.jpg
 and delete the original happy.jpg
 file from C:\images
.

Chapter 8: Answers

Question 1

f = open('ch8q1.txt', 'r')

for i in range(4):

line = f.readline()

print(line, end = '')

f.close()

Output

Top Students:

Carol

Zoe

Andy

Question 2

f = open('ch8q2.txt', 'r')

sum = 0

for line in f:

if int(line) > 0:

sum = sum + int(line)

print(sum)

f.close()

Output

129

Question 3

The 'w'
 mode is for writing to an output file. If the specified file does not exist, it will be created. If the specified file exists, any existing data on the file will be erased.

The 'a'
 mode is for appending to an output file. If the specified file does not exist, it will be created. If the specified file exists, any data written to the file is appended to the file (i.e. added to the end of the file).

Question 4

def getNumbers():

f = open('ch8q4.txt', 'w')

userInput = input('Enter an integer or type Q to exit: ')

while userInput != 'Q':

try:

num = int(userInput)

f.write(userInput + '\n')

except:

print('Input is not an integer and will be ignored')

finally:

userInput = input('Enter an integer or type Q to exit: ')

f.close()

def findSum():

f = open('ch8q4.txt', 'r')

sum = 0

for line in f:

sum = sum + int(line)

f.close()

return sum

getNumbers()

print(findSum())

Question 5

f = open('stars.txt', 'r')

for i in range(9):

line = f.read(i+1)

print(line)

f.close()

Question 6

from os import rename, remove

oldfile = open('C:\\images\\happy.jpg', 'rb')

newfile = open('newhappy.jpg', 'wb')

msg = oldfile.read(10)

while len(msg):

newfile.write(msg)

msg = oldfile.read(10)

oldfile.close()

newfile.close()

rename('newhappy.jpg', 'happy.jpg')

remove('C:\\images\\happy.jpg')

Chapter 9: Object Oriented Programming Part 1

Question 1

class Car:

def __init__(self, pMake, pModel, pColor, pPrice):

self.make = pMake

self.model = pModel

self.color = pColor

self.price = pPrice

def __str__(self):

return 'Make = %s, Model = %s, Color = %s, Price = %s' %(self.make, self.model, self.color, self.price)

def selectColor(self):

self.color = input('What is the new color? ')

def calculateTax(self):

priceWithTax = 1.1*self.price

return priceWithTax

Copy the code above into a file called c
ar.py
. Within the same file, but outside the Car
 class, write code for each of the following tasks:

(a) Instantiate a Car
 object called myFirstCar
 with the following values:

make = 'Honda'

model = 'Civic'

color = 'White'

price = 15000

(b) Print a string representation of myFirstCar
 using the __str__
 method. You should get

Make = Honda, Model = Civic, Color = White, Price = 15000

as the output.

(c) Update the price of myFirstCar
 to 18000 and print a string representation of it again.

(d) Update the color of myFirstCar
 to “Orange” using the selectColor()
 method and print a string representation of it again.

(e) Use myFirstCar
 to call the calculateTax()
 method and assign the result to a variable called finalPrice
. Print the value of finalPrice
.

Question 2

(a) Write a class called Room
 that has four instance variables, size
, view
, type
 and basicRates
.

Within the class, you need to have the __init__
 and __str__
 methods.

(b) Next, write an instance method called calculateRates()
 within the Room
 class.

The calculateRates()
 method has a parameter (in addition to self
) called day
. Based on the value of day
, the method multiplies basicRates
 by a certain factor.

If day
 equals 'Weekends'
, it multiplies basicRates
 by 1.5

If day
 equals 'Public Holidays'
, it multiplies it by 2.

If day
 equals 'Christmas'
, it multiplies it by 2.5.

For any other values of day
, it multiplies it by 1.

After multiplying, the method returns the result.

(c) Next, outside the class, instantiate a Room
 object called room1
 with size = 132
, view = 'City'
, type = 'Double'
 and basicRates = 120
 and print a string representation of room1
.

(d) Use room1
 to call the calculateRates()
 method, using 'Public Holidays'
 as the argument. Assign the result to a variable called newRates
 and print the value of newRates
.

Question 3

(a) For the code below, add a property called bonus
 for the instance variable _bonus
.

class HumanResource:

def __init__(self, pName, pSalary, pBonus):

self.name = pName

self.salary = pSalary

self._bonus = pBonus

def __str__(self):

return 'Name = %s, Salary = %.2f, Bonus = %.2f' %(self.name, self.salary, self._bonus)

The getter method of the property simply returns the value of _bonus
.

The setter method, on the other hand, allows us to set the value of _bonus
. If we try to set it to a negative value, the setter method should display the message

Bonus cannot be negative
.

(b) Outside the class, instantiate a HumanResource
 object called chiefOps
 with the following values:

name = 'Kelly'

salary = 715000

_bonus = 0

(c) Use the bonus
 property
 to set _bonus
 to -20 for chiefOps
. Verify that you get the message “Bonus cannot be negative”.

(d) Next, use the bonus
 property to change _bonus
 to 50000. and use the getter method of the property to verify that _bonus
 is set correctly.

Question 4

class NameManglingDemo:

def __init__(self):

self.__myData = 1

In the code above, myData
 is preceded by two leading underscores. What is the mangled name for myData
?

Question 5

(a) What is the difference between a class variable and an instance variable?

(b)

With reference to the code below, list the instance and class variable(s).

class Book:

message = 'Welcome to Books Online'

def __init__(self, pTitle, pAuthor, pPrice):

self.title = pTitle

self.author = pAuthor

self.price = pPrice

def __str__(self):

return 'Title = %s, Author = %s, Price = %.2f' %(self.title, self.author, self.price)

(c) With reference to the Book
 class in part (b), determine the output of the following code without running the code:

aRomanceBook = Book('Sunset', 'Jerry', 10)

aSciFiBook = Book('Viz', 'Lee', 10)

aRomanceBook.price = 20

print(aRomanceBook.price)

print(aSciFiBook.price)

Book.message = 'Books Online'

print(aRomanceBook.message)

print(aSciFiBook.message)

Question 6

(a) Write a class called Student
 that has two instance variables, name
 and marks
, and one class variable, passingMark
. Assign 50
 to passingMark
.

Within the class, you need to code the __init__
 and __str__
 methods.

(b) Next, write an instance method called passOrFail()
 within the Student
 class. This method returns the string “Pass” if marks
 is greater than or equal to passingMark
 or “Fail” if marks
 is lower than passingMark
.

(c) Outside the class, instantiate a Student
 object called student1
 with name = 'John'
 and marks = 52
 and use it to call the passOrFail()
 method. Assign the result to a variable called status1
 and print the value of status1
.

(d) Instantiate another Student
 object called student2
 with name = 'Jenny'
 and marks = 69
 and use it to call the passOrFail()
 method. Assign the result to a variable called status2
 and print the value of status2
.

(e) Update the value of passingMark
 to 60
 for all instances of the Student
 class and call the passOrFail()
 method for student1
 and student2
 again. Assign the results to status1
 and status2
 respectively and print the two values.

Question 7

(a) What is the difference between an instance method, a class method and a static method?

(b) In the code below, which is an instance method and which is a class method?

class MethodsDemo:

message = 'Class message'

def __init__(self, pMessage):

self.message = pMessage

@classmethod

def printMessage(cls):

print(cls.message)

def printAnotherMessage(self):

print(self.message)

(c) Given that md1 = MethodsDemo('md1 Instance Message')
, what are the two ways to call the class method?

(d) Add a static method called printThirdMessage()
 to the MethodsDemo
 class that simply prints the message “This is a static method”.

(e) What are the two ways to call the static method in part d?

Question 8

Create a class called Movies
 that stores information about movies. The class should store the following information: the title of the movie, its genre, the main language it is in, the director(s) and the year it was first released.

The class should also have the __init__
 and __str__
 methods.

In addition, the class should have a property that allows users to get and set the genre of the movie. The setter method should only allow users to set the genre to 'Romance'
, 'Action'
, 'Drama'
, 'Thriller'
 or 'Horror'
. If the user tries to set the genre to anything else, the setter method should display an appropriate error message to the user.

Next, we need an instance method called recommendMovie()
 that recommends users a new movie to watch based on the genre of the instance used to call the method.

If the genre is 'Romance'
, the movie 'First Date'
 is recommended.

If the genre is 'Action'
, the movie 'Mutant'
 is recommended.

If the genre is 'Drama'
, the movie 'The Awakening'
 is recommended.

If the genre is 'Thriller'
, the movie 'Mr K'
 is recommended.

If the genre is 'Horror'
, the movie 'A walk down Dawson Street'
 is recommended.

This method should display the recommended movie on the screen.

Save the code above into a file called movie.py
.

Next, create another file called main.py
 and import the Movies
 class into this file.

Instantiate a Movies
 instance called mov1
 with the following information:

Title of the movie = 'And so it begins'

Genre = ''

Main language = 'English'

Director = 'Robert Kingman, Joe Patterson'

Year it was first released = 2019

After creating mov1
, set its genre to 'Fantasy'
. This should fail. Next, set the genre to 'Romance'
 and print a string representation of mov1
.

Finally, use mov1
 to call the recommendMovie()
 method.

Chapter 9: Answers

Question 1

(a)

myFirstCar = Car('Honda', 'Civic', 'White', 15000)

(b)

print(myFirstCar)

(c)

myFirstCar.price = 18000

print(myFirstCar)

Output

Make = Honda, Model = Civic, Color = White, Price = 18000

(d)

myFirstCar.selectColor()

print(myFirstCar)

Output

What is the new color? Orange

Make = Honda, Model = Civic, Color = Orange, Price = 18000

(e)

finalPrice = myFirstCar.calculateTax()

print(finalPrice)

Output

19800.0

Question 2

(a) and (b)

class Room:

def __init__(self, pSize, pView, pType, pBasicRates):

self.size = pSize

self.view = pView

self.type = pType

self.basicRates = pBasicRates

def __str__(self):

return 'Size = %s sq ft\nView = %s\nType = %s\nBasic Rates = USD%s' %(self.size, self.view, self.type, self.basicRates)

def calculateRates(self, day):

if day == 'Weekends':

return 1.5*self.basicRates

elif day == 'Public Holidays':

return 2*self.basicRates

elif day == 'Christmas':

return 2.5*self.basicRates

else:

return 1*self.basicRates

(c)

room1 = Room(132, 'City', 'Double', 120)

print(room1)

Output

Size = 132 sq ft

View = City

Type = Double

Basic Rates = USD120

(d)

newRates = room1.calculateRates('Public Holidays')

print(newRates)

Output

240

Question 3

(a)

class HumanResource:

def __init__(self, pName, pSalary, pBonus):

self.name = pName

self.salary = pSalary

self._bonus = pBonus

def __str__(self):

return 'Name = %s, Salary = %.2f, Bonus = %.2f' %(self.name, self.salary, self._bonus)

@property

def bonus(self):

return self._bonus

@bonus.setter

def bonus(self, value):

if value < 0:

print('Bonus cannot be negative')

else:

self._bonus = value

(b)

chiefOps = HumanResource('Kelly', 715000, 0)

(c)

chiefOps.bonus = -20

Output

Bonus cannot be negative

(d)

chiefOps.bonus = 50000

print(chiefOps.bonus)

Output

50000

Question 4

_NameManglingDemo__myData

Question 5

(a)

A class variable belongs to the class and is shared by all instances of that class. It is defined outside any method in the class. We can access it by prefixing the variable name with the class name.

An instance variable, on the other hand, is defined inside a method and belongs to an instance. It is always prefixed with the self
 keyword.

(b)

title
, author
 and price
 are instance variables.

message
 is a class variable.

(c)

20

10

Books Online

Books Online

Question 6

(a) and (b)

class Student:

passingMark = 50

def __init__(self, pName, pMarks):

self.name = pName

self.marks = pMarks

def __str__(self):

return 'Name of Student = %s\nMarks = %d' %(self.name, self.marks)

def passOrFail(self):

if self.marks >= Student.passingMark:

return 'Pass'

else:

return 'Fail'

(c)

student1 = Student('John', 52)

status1 = student1.passOrFail()

print(status1)

Output

Pass

(d)

student2 = Student('Jenny', 69)

status2 = student2.passOrFail()

print(status2)

Output

Pass

(e)

Student.passingMark = 60

status1 = student1.passOrFail()

print(status1)

status2 = student2.passOrFail()

print(status2)

Output

Fail

Pass

Question 7

(a)

An instance method has an instance of the class as its first parameter. self
 is commonly used to represent this instance.

A class method, on the other hand, has a class object (instead of self
) as its first parameter. cls
 is commonly used to represent that class object.

A static method is a method that is not passed an instance or a class object (i.e. it is not passed self
 or cls
).

To call an instance method, we use the instance name.

To call a static or class method, we can use the class name or instance name.

(b)

printAnotherMessage()
 is an instance method

printMessage()
 is a class method.

(c)

md1.printMessage()
 or MethodsDemo.printMessage()

Output

Class message

Class message

(d)

class MethodsDemo:

message = 'Class message'

def __init__(self, pMessage):

self.message = pMessage

@classmethod

def printMessage(cls):

print(cls.message)

def printAnotherMessage(self):

print(self.message)

@staticmethod

def printThirdMessage():

print('This is a static method')

(e)

md1.printThirdMessage()
 or MethodsDemo.printThirdMessage()

Output

This is a static method

This is a static method

Question 8

movie.py

class Movies:

def __init__(self, pTitle, pGenre, pLanguage, pDirectors, pYear):

self.title = pTitle

self._genre = pGenre

self.language = pLanguage

self.directors = pDirectors

self.year = pYear

def __str__(self):

return 'Title = %s\nGenre = %s\nLanguage = %s\nDirectors = %s\nYear = %s\n' %(self.title, self._genre, self.language, self.directors, self.year)

@property

def genre(self):

return self._genre

@genre.setter

def genre(self, value):

if value in ['Romance', 'Action', 'Drama', 'Thriller', 'Horror']:

self._genre = value

else:

print ('%s is an invalid genre.\n' %(value))

def recommendMovie(self):

recommendations = {'Romance':'First Date', 'Action':'Mutant', 'Drama':'The Awakening', 'Thriller':'Mr K', 'Horror':'A walk down Dawson Street'}

print ('You may also like the following movie: %s.' %(recommendations[self._genre]))

main.py

from movie import Movies

mov1 = Movies('And so it begins', '', 'English', 'Robert Kingman, Joe Patterson', 2019)

mov1.genre = 'Fantasy'

mov1.genre = 'Romance'

print(mov1)

mov1.recommendMovie()

Output

Fantasy is an invalid genre.

Title = And so it begins

Genre = Romance

Language = English

Directors = Robert Kingman, Joe Patterson

Year = 2019

You may also like the following movie: First Date.

Chapter 10: Object Oriented Programming Part 2

Question 1

Create a file called shape.py
 and save it onto your desktop. Add the following code to the file:

class Shape:

def __init__(self, pType, pArea):

self.type = pType

self.area = pArea

def __str__(self):

return '%s of area %4.2f units square' %(self.type, self.area)

class Square(Shape):

def __init__(self, pLength):

super().__init__('Square', 0)

self.length = pLength

self.area = self.length*self.length

The code above consists of two classes – Shape
 and Square
.

Square
 is a subclass that inherits from Shape
. This subclass only has one method __init__
, with two parameters self
 and pLength
.

Within the method, we first call the __init__
 method from the parent class (using the super()
 function), passing in 'Square'
 and 0
 as arguments.

These arguments are used to initialized the instance variables type
 and area
 in the parent class, which the subclass class inherits.

Next, we assign the parameter pLength
 to a new instance variable called length
. In addition, we calculate the area of a square and use it to update the value of the inherited instance variable area
. (Note: The area of a square is given by the square of its length).

Study the code above and make sure you fully understand it.

a) Next, we need to add two more subclasses, Triangle
 and Circle
, to shape.py
. Both subclasses have one method: __init__
.

You need to decide on the appropriate parameter(s) for these methods.

Both __init__
 methods should call the __init__
 method in the parent class and pass in appropriate values for the inherited instance variables type
 and area
.

In addition, they should have their own instance variables and contain a statement for updating the value of the inherited instance variable area
.

Try modifying the Square
 subclass yourself to code the Triangle
 and Circle
 subclasses.

Hint:

A triangle is defined by its base and height and its area is given by the mathematical formula 0.5*base*height.

A circle is defined by its radius and its area is given by the mathematical formula π*radius*radius.

π is a constant represented as math.pi
 in the math
 module. You need to import the math
 module to get the value of π.

b) After coding the subclasses, create another file on your desktop and name it shapemain.py
.

Within shapemain.py
, import the classes in shape.py
 and instantiate one instance of each subclass using the following information:

A Square
 instance called sq
 with a length of 5.

A Circle
 instance called c
 with a radius of 10.

A Triangle
 instance called t
 with a base of 12 and a height of 4.

c) Use the print()
 function to display information about each instance.

Question 2

In this question, we shall modify the Shape
 class in Question 1 by adding one more method to it - the __add__
 method.

This method has two parameters, self
 and other
, and overrides the +
 operator. Instead of performing basic addition, the +
 operator should return the sum of the areas of two Shape
 instances. In other words, if one instance has an area of 11.1 and another has an area of 7.15, the __add__
 method should return the value 18.25.

Add the __add__
 method to the Shape
 class in shape.py
.

Next, use the print()
 function in shapemain.py
 to verify that sq + c
 gives you the sum of the areas of sq
 and c
.

Question 3

In this question, we'll try to use the __add__
 method in Question 2 to find the sum of the areas of sq
, c
 and t
.

Try doing print(sq + c + t)
 in shapemain.py
. What happens? You get an error, right?

This is because the + operator is trying to do sq + c
 first, before adding the result to t
.

However, notice that sq + c
 gives us a numerical value, which is the result of sq.area + c.area
.

When we try to add sq + c
 to t
, we get an error because the +
 operator is unable to add sq + c
 (which is a float) to t
 (which is a Triangle
 instance).

If you study the __add__
 method, you'll see that the + operator expects both the arguments (for the self
 and other
 parameters) to be instances of the Shape
 class (or instances of subclasses of the Shape
 class).

To overcome this, we need to change the __add__
 method. Instead of returning a numerical result, we need it to return a Shape
 instance so that we can pass this result to the + operator again to do further additions.

To do that, we'll change the

return self.area + other.area

statement in the __add__
 method to

return Shape ('New Shape', self.area + other.area)

Next, in shapemain.py
, try doing print(sq + c + t)
 again and verify that you get a new Shape
 instance (type = 'New Shape'
) whose area is the sum of the areas of sq
, c
 and t
.

Question 4

In this question, we need to create a class called Student
.

This class has 4 instance variables: name
, id
, course_enrolled
 and annual_fees
.

Within the class, we need to have an __init__
 method to initialize the 4 instance variables. We also need to have a __str__
 method.

Try coding this class yourself.

Next, we'll inherit three subclasses from Student
.

The first subclass is ArtsStudent
. It has an additional instance variable called project_grade
.

The second subclass is CommerceStudent
. It has an additional instance variable called internship_company
.

The third subclass is TechStudent
. It has two additional instance variables called internship_company
 and project_grade
.

Try coding these three subclasses yourself. Each subclass should override the __init__
 and __str__
 methods in the parent class. They should also use the super()
 function to reuse code from the parent class.

Last but not least, we need to add the __lt__
 and __gt__
 methods to our parent class. These are special methods in Python that allow us to make comparisons.

lt
 stands for “less than” while gt
 stands for “greater than”. They override the <
 and >
 operators respectively.

Add these two methods to the Student
 class so that they allow us to compare the annual fees (stored in the instance variable annual_fees
) of two instances and return True
 or False
 accordingly. For instance, if we have the following code,

student1 = ArtsStudent('Jim', 'A19001', 'Psychology', 12000, 'In Progress')

student2 = CommerceStudent('Ben', 'C19011', 'Marketing', 15000, 'Cool Mart')

student1 > student2
 should give us False
 as the annual_fees
 of student1
 is lower than that of student2
.

In contrast, student1 < student2
 should give us True
.

Once that is done, save the file as student.py
 on your desktop. Next, create another file called ch10q4.py
 on your desktop and import the classes in student.py
.

Instantiate three instances with the following information and print a string representation of each instance:

ArtsStudent
 instance named
 as1

name = 'Peter Johnson'

id = 'A19012'

course_enrolled = 'History'

annual_fees = 11000

project_grade = 'A'

CommerceStudent
 instance named
 cs1

name = 'Alan Goh'

id = 'C19111'

course_enrolled = 'Digital Marketing'

annual_fees = 13400

internship_company = 'Digital Consultancy'

TechStudent
 instance named
 ts1

name = 'Larry Faith'

id = 'T19126'

course_enrolled = 'Computer Science'

annual_fees = 21000

project_grade = 'A'

internship_company = 'Kyla Tech'

Finally, use the >
 or <
 operator to compare the annual fees of ts1
 vs cs1
.

Use an if
-else
 statement to display the message

The annual fees of a technical student is higher than that of a commerce student.

if the annual fees of ts1
 is greater than that of cs1
.

Else, display the message

The annual fees of a technical student is lower than that of a commerce student.

Chapter 10: Answers

Question 1

(a)

shape.py

import math

Shape class

class Shape:

def __init__(self, pType, pArea):

self.type = pType

self.area = pArea

def __str__(self):

return '%s of area %4.2f units square' %(self.type, self.area)

Square subclass

class Square(Shape):

def __init__(self, pLength):

super().__init__('Square', 0)

self.length = pLength

self.area = self.length*self.length

Triangle subclass

class Triangle(Shape):

def __init__(self, pBase, pHeight):

super().__init__('Triangle', 0)

self.base = pBase

self.height = pHeight

self.area = 0.5*self.base*self.height

Circle subclass

class Circle(Shape):

def __init__(self, pRadius):

super().__init__('Circle', 0)

self.radius = pRadius

self.area = math.pi*self.radius*self.radius

(b)

shapemain.py

from shape import Square, Circle, Triangle

sq = Square(5)

c = Circle(10)

t = Triangle(12, 4)

(c)

print(sq)

print(c)

print(t)

Output

Square of area 25.00 units square

Circle of area 314.16 units square

Triangle of area 24.00 units square

Question 2

shape.py
 (added to the
 Shape
 class)

def __add__(self, other):

return self.area + other.area

shapemain.py

print(sq + c)

Output

339.1592653589793

Question 3

shape.py
 (the modified
 __add__
 method)

def __add__(self, other):

return Shape ('New Shape', self.area + other.area)

shapemain.py

print(sq + c + t)

Output

New Shape of area 363.16 units square

Question 4

student.py

Student Class

class Student:

def __init__(self, pName, pID, pCourseEnrolled, pAnnualFees):

self.name = pName

self.id = pID

self.course_enrolled = pCourseEnrolled

self.annual_fees = pAnnualFees

def __str__(self):

return 'Name = %s\nID = %s\nCourse Enrolled = %s\nAnnual Fees = %s' %(self.name, self.id, self.course_enrolled, self.annual_fees)

def __lt__(self, other):

return self.annual_fees < other.annual_fees

def __gt__(self, other):

return self.annual_fees > other.annual_fees

ArtsStudent subclass

class ArtsStudent(Student):

def __init__(self, pName, pID, pCourseEnrolled, pAnnualFees, pProjectGrade):

super().__init__(pName, pID, pCourseEnrolled, pAnnualFees)

self.project_grade = pProjectGrade

def __str__(self):

return super().__str__() + '\nProject Grade = %s' %(self.project_grade)

CommerceStudent subclass

class CommerceStudent(Student):

def __init__(self, pName, pID, pCourseEnrolled, pAnnualFees, pInternshipCompany):

super().__init__(pName, pID, pCourseEnrolled, pAnnualFees)

self.internship_company = pInternshipCompany

def __str__(self):

return super().__str__() + '\nInternship Company = %s' %(self.internship_company)

TechStudent subclass

class TechStudent(Student):

def __init__(self, pName, pID, pCourseEnrolled, pAnnualFees, pProjectGrade, pInternshipCompany):

super().__init__(pName, pID, pCourseEnrolled, pAnnualFees)

self.project_grade = pProjectGrade

self.internship_company = pInternshipCompany

def __str__(self):

return super().__str__() + '\nProject Grade = %s\nInternship Company = %s' %(self.project_grade, self.internship_company)

ch10q4.py

import student

as1 = student.ArtsStudent('Peter Johnson', 'A19012', 'History', 11000, 'A')

cs1 = student.CommerceStudent('Alan Goh', 'C19111', 'Digital Marketing', 13400, 'Digital Consultancy')

ts1 = student.TechStudent('Larry Faith', 'T19126', 'Computer Science', 21000, 'A', 'Kyla Tech')

print(as1)

print()

print(cs1)

print()

print(ts1)

print()

if ts1 > cs1:

print('The annual fees of a technical student is higher than that of a commerce student.')

else:

print('The annual fees of a technical student is lower than that of a commerce student.')

Output

Name = Peter Johnson

ID = A19012

Course Enrolled = History

Annual Fees = 11000

Project Grade = A

Name = Alan Goh

ID = C19111

Course Enrolled = Digital Marketing

Annual Fees = 13400

Internship Company = Digital Consultancy

Name = Larry Faith

ID = T19126

Course Enrolled = Computer Science

Annual Fees = 21000

Project Grade = A

Internship Company = Kyla Tech

The annual fees of a technical student is higher than that of a commerce student.

Project 1

Now that you have completed the exercises for all the chapters, let's work on two projects.

Spelling Out Numbers Part 1

The first project is easy to explain; we need to write a program that spells out any integer up to 3 digits (i..e any integer less than 1000). For instance, if the user keys in 729, the program should display

Seven Hundred and Twenty Nine

You can use any of the concepts you've learned in the previous chapters. Try coding it yourself. If you are stuck, you can refer to the suggested solution for help.

Suggested Solution

Defining the printText() function

def printText(userInput):

unitsMapping = {'0':'', '1':' One', '2':' Two', '3':' Three', '4':' Four', '5':' Five', '6':' Six', '7':' Seven', '8':' Eight', '9':' Nine'}

tensMapping = {'0':'', '2':' Twenty', '3':' Thirty', '4':' Forty', '5':' Fifty', '6':' Sixty', '7':' Seventy', '8':' Eighty', '9':' Ninety'}

teensMapping = {'10':' Ten', '11':' Eleven', '12':' Twelve', '13':' Thirteen', '14':' Fourteen', '15':' Fifteen', '16':' Sixteen', '17':' Seventeen', '18':' Eighteen', '19':' Nineteen'}

Getting the length of number

numLength = len(userInput)

numText = ''

Getting the digits for each place value

units = userInput[numLength - 1] if numLength >= 1 else '0'

tens = userInput[numLength - 2] if numLength >= 2 else '0'

hundreds = userInput[numLength - 3] if numLength >= 3 else '0'

'''

This comment block is to be replaced

with code in Part 2

Leave it as it is now

'''

#Printing the hundreds

if (hundreds != '0'):

numText = numText + unitsMapping[hundreds] + ' Hundred'

#Adding "and" where necessary

if (int(userInput) > 99 and int(userInput)%100 != 0):

numText = numText + ' and'

#Printing the tens

if (tens == '1'):

numText = numText + teensMapping[tens+units]

elif (tens == '0'):

numText = numText + unitsMapping[units]

else:

numText = numText + tensMapping[tens] + unitsMapping[units]

#Returning the resulting string

return numText

Getting user's input

userInput = input('Enter an integer smaller than 1000: ')

while True:

try:

userNum = int(userInput)

if userNum > 999:

userInput = input('Number is too big. Enter an integer smaller than 1000: ')

else:

break

except ValueError:

userInput = input('You did not enter an integer. Enter an integer smaller than 1000: ')

Calling the printText() function

print(printText(userInput).strip())

Run Through

In the code above, we start by defining a function called printText()
 that has one parameter - userInput
.

Within this function, we initialize three dictionaries: unitsMapping
, tensMapping
 and teensMapping
.

The unitsMapping
 dictionary maps digits to their English equivalents. For instance, '3'
 is mapped to ' Three'
. The only exception is '0'
, which is mapped to an empty string. A space is added before the English spelling of each digit as we always add a space to separate words in our English sentences.

Next, let's look at the tensMapping
 dictionary. This dictionary maps the tens digits (except when the tens digit is 0 or 1) to their English spelling.

For instance, if the number is 24, the tens digit is 2.

The tensMapping
 dictionary maps the string '2'
 to ' Twenty'
.

Finally, the last dictionary is the teensMapping
 dictionary. This dictionary maps numbers between 10 to 19 (inclusive) to their English equivalents (with space added).

After we finish creating the dictionaries, we use the len()
 function to get the length of userInput
. This length will tell us whether userInput
 is a one digit, two digits or three digits number.

We also initialize a variable called numText
 as an empty string. numText
 will be used to store the English spelling of our number.

Next, we use three inline if
 statements to extract the digits in userInput
.

Note that userInput
 is a string. In Python, we can treat strings as lists of characters when assessing them.

For instance, if userInput
 = '327'
, we can access the individual characters in userInput
 as follows:

userInput[0] = '3'

userInput[1] = '2'

userInput[2] = '7'

As numLength
 equals 3 in the example above,

userInput[numLength - 1] = userInput[2] = '7'

In other words, userInput[numLength – 1]
 gives us the units digit.

Similarly, userInput[numLength – 2]
 gives us the tens digit and userInput[numLength – 3]
 gives us the hundreds digit.

After extracting the digits, we are ready to use the dictionaries to map them to their respective English spellings.

The mapping for the digit in the hundreds place is quite straightforward.

The '3'
 in '327'
 is mapped to ' Three'
 and concatenated with ' Hundred'
 to give us ' Three Hundred'
.

Next, we determine if we need to add the string ' and'
 to numText
. We need to do that if the number is greater than 99 and not a multiple of 100 (userInput%100 != 0
).

For instance, if the number is 482, we need to add ' and'
 as the number is read as “Four Hundred and
 Eighty Two”.

On the other hand, if the number is 82, we do not need ' and'
 as the number is read as “Eighty Two”. Similarly, if the number is 300, we do not need ' and'
 as it'll just be “Three Hundred”.

After deciding if we need to add ' and'
, we move on to map the digits in the tens and units places. This is more tricky.

If the digit in the tens place is '1'
 (e.g. '315'
) , we need to concatenate the tens digit with the units digit (tens + units
) to get '15'
 and use the teensMapping
 dictionary to get the English spelling (teensMapping[tens+units]
).

We then concatenate this with numText
 (which currently has the English spelling of the hundreds digit) and assign it back to numText
.

On the other hand, if the digit in the tens place is '0'
 (e.g. '305'
), we only need to map the units digit (unitsMapping[units]
) and concatenate it with numText
.

Last but not least, if the tens digit is not '0'
 or '1'
, we need to map the tens digit and the units digit using the tensMapping
 and unitsMapping
 dictionaries separately and concatenate them with numText
.

With that, the function is almost complete, we simply need to return the value of numText
.

Now we are ready to call the function and print out the result.

We first prompt the user to enter an integer smaller than one thousand.

We then use a while True
 loop to try casting the user's input into an integer.

A while True
 loop is basically a loop that runs indefinitely. This is because writing while True
 is equivalent to writing something like while 1==1
. Since 1 always equals 1, the while
 condition will never evaluate to False
. Hence, the loop will run indefinitely.

If we are unable to cast the user's input into an integer, the except ValueError
 block will be executed and the user will be prompted to enter an integer again. This is done repeatedly until we get an integer.

Once we get an integer, the try
 block checks if the integer is greater than 999. If it is, we prompt the user to enter an integer again. If it is not, we have gotten a valid input and can exit the while True
 loop. To exit the loop, we use the break
 statement.

Once we break out of the while True
 loop, we simply call the printText()
 function.

However, as the string returned by the printText()
 function (printText(userInput)
) has a space before the first word, we need to use the built-in string method strip()
 to strip this space first (printText(userInput).strip()
).

Once that is done, we pass the result to the print()
 function to print it out.

Clear? Try running the code yourself to see how it works before moving on to Part 2.

Spelling out Numbers Part 2

In Part 1 of this project, we learned to spell numbers that are smaller than 1000.

In this second part, we are going to spell numbers up to 999,999 (i.e. any integer smaller than 1,000,000).

Try modifying your solution for Part 1 to allow the program to spell up to 999,999. For instance, if the user keys in 123456, the program should display

One Hundred and Twenty Three Thousand Four Hundred and Fifty Six

Suggested Solution

In the solution presented below, we’ll modify our program in Part 1 using a concept known as recursion. This allows us to solve the new problem by adding only a few more lines of code to the previous solution.

Before we present our solution, let's look at what recursion means.

Simply stated, recursion refers to a function calling itself during its execution. Let's look at an example.

1 def factorial(n):

2 if (n == 1):

3 return 1

4 else:

5 return n*factorial(n-1)

This example shows a function that is used to calculate the factorial of a number (line numbers are not part of the code and are added for reference purpose only).

Recall that we wrote a function to calculate factorial in Chapter 6 Question 26? This is an alternative and much shorter method to achieve the same result.

You can see that this function is calling itself on line 5 with the argument n-1
.

Let's look at a concrete example of how this works. Suppose we want to find the value of 4!.

To do that, we call the factorial()
 function as follows:

result = factorial(4)

Here, we pass in 4
 as the argument.

As 4 does not equal 1, the function skips lines 2 and 3 and goes on to execute lines 4 and 5.

When it reaches line 5, it has to return 4*factorial(3)
.

In other words, it has to execute the factorial()
 function again, with 3
 as the argument this time.

When it does that (i.e. when it evaluates factorial(3)
), the function skips lines 2 and 3 again (as 3 does not equal 1) and goes on to execute lines 4 and 5.

When it reaches line 5, it has to return 3*factorial(2)
. This means that it has to execute the factorial()
 function yet again, with 2
 as the argument this time.

This keeps repeating as shown in the manner below:

factorial(4)

= 4*factorial(3)

= 4*3*factorial(2)

= 4*3*2*factorial(1)

When it finally reaches 4*3*2*factorial(1)
, something different happens. As the argument to the factorial()
 function is now 1
, the function no longer executes line 5.

In other words, it stops calling itself. Instead, it executes lines 2 and 3 and returns the number 1.

Hence, 4*3*2*factorial(1)
 becomes 4*3*2*1
, which is the answer that we want.

As you can see, a recursive function will keep calling itself until a certain condition is met. In our example, the condition is when the argument is 1
 (n == 1
). This is known as the base case of the function. A base case is a case that ends the recursion.

Clear? Good!

Now that we understand recursion, let's go back to our project.

Let's analyze how we spell a number greater than 999. Suppose we want to spell 123456.

We spell it as “One Hundred and Twenty Three Thousand Four Hundred and Fifty Six”.

Notice that the first three digits (123) can be spelled using the printText()
 function we wrote in Part 1?

This makes it a perfect case for us to use recursion.

We can call the printText()
 function within the printText()
 function itself to help us spell the digits in the thousands place.

Let's look at how we implement this.

We need to make some modifications to the previous printText()
 function.

Replace the comment block

'''

This comment block is to be replaced

with code in Part 2

Leave it as it is now

'''

in the printText()
 function with the code below:

thousands = userInput[:numLength - 3] if numLength > 3 else '0'

#Printing the thousands

if (thousands != '0'):

numText = printText(thousands) + ' Thousand'

Here, we first use a slice ([:numLength - 3]
) to get the digits in the thousands place.

Suppose the number is '123456'
. The slice [:numLength – 3]
 becomes [:3]
 as numLength
 equals 6.

This gives us the 1st
, 2nd
 and 3rd
 elements of the list. In other words, we get '123'
, which are the digits in the thousands place.

After we get the digits that we want, we add an if
 statement to execute the recursion.

This if
 statement runs only if we have digits in the thousands place.

In our example, as thousands
 = '123'
, the if
 statement will run.

This statement evaluates printText('123')
 and concatenates the result with ' Thousand'
.

With that, the modification to the printText()
 function is complete.

Next, we need to modify the while True
 loop to allow users to input numbers greater than 999.

To do that, change

if userNum > 999:

to

if userNum > 999999:

Next, modify the instructions for the input()
 function to prompt users to enter an integer smaller than 1000000 (instead of 1000). We need to modify the instructions thrice as we called the input()
 function thrice.

That's it! You can now try running the function and enter numbers greater than 999. Everything will work as expected.

Project 2

Finding nth term of sequences

For this project, we are going to write a program to help us generate formulas for finding the nth
 term of linear and quadratic number sequences.

Linear Sequences

A linear sequence is one where the difference between successive terms is always the same. This difference is known as the common difference.

For instance, consider the sequence 3, 7, 11, 15...

The difference between successive terms is constant:

7 – 3 = 4

11 – 7 = 4

15 – 11 = 4

Our job is to generate the formula for getting the nth
 term of any given linear sequence so that we do not have to keep adding the common difference to get the term that we want.

For instance, for the sequence above, the nth
 term (denoted by Tn
) is given by the formula

Tn
 = 4n – 1

To get the 6th
 term (denoted by T6
), we simply substitute n = 6 into the formula (T6
 = 4*6 – 1) to get 23 instead of having to add 4 twice from the 4th
 term (15 + 4 + 4 = 23).

So how did we get the formula above?

The nth
 term of any linear sequence is given by the formula Tn
 = an + b, where n refers to the term number (e.g. for the 5th
 term, n = 5). We need to figure out the values of a and b, which is different for each linear sequence.

To get the value of a, we subtract the first term from the second term. In other words,

a = Second Term – First Term

To get b, we subtract a from the first term. In other words,

b = First Term – a

I'll skip the math behind these formulas as we do not need to know the math for our coding purpose.

Clear about linear sequences?

Quadratic Sequences

Good! Let's move on to quadratic sequences.

A quadratic sequence is a sequence where the difference between successive differences is constant.

Confused? Let's consider the sequence 2, 9, 18, 29, 42...

The difference between successive terms is not constant:

9 - 2 = 7

18 - 9 = 9

29 - 18 = 11

42 - 29 = 13

However, the difference between successive differences is constant:

9 - 7 = 2

11 - 9 = 2

13 - 11 = 2

This difference is known as the second difference. A quadratic sequence is one that has a constant second difference.

The formula for the nth
 term of a quadratic sequence is given by Tn
 = an2
 + bn + c, where n refers to the term number.

The formulas for finding a, b and c are

a = (First term + Third term - 2*Second term)/2

b = (8*Second term - 5*First term - 3*Third term)/2

c = 3*First term - 3*Second term + Third term

Our task for this project is to write a program that does the following:

	Read from a .txt
 file (sequences.txt
) and convert each line in the file into a list of integers. If the line cannot be converted, display an appropriate message to inform the user.

	If the line can be converted, check if the list is a linear or quadratic sequence.

	If it is either a linear or quadratic sequence, derive the formula for the nth
 term and print out the formula.

	If it is not a linear or quadratic sequence, display an appropriate message to inform the user.

Clear?

The sequences.txt
 file contains the following content:

1, 3, 5, 7

1, 3, 6, 10

1, a, c, d

1, 4

5, 8, 1.2, 4.1

2, 9, 18, 29, 42

3, 6, 8, 10, 12

You can do it using any approach you like.

The suggested solution below uses object oriented programming to illustrate how to use classes in our programs. It'll also demonstrate how to use abstract methods in our classes. Note that the code uses Python 3.4 and above. Hence, it will not work properly if you try to run it on a version older than Python 3.4.

Suggested Solution

sequencesolver.py

from abc import ABC, abstractmethod

class Sequence(ABC):

def __init__(self):

self._numberList = []

def __str__(self):

return '\nSequence = %s' %(self._numberList)

@abstractmethod

def findFormula(self):

pass

@property

def numberList(self):

return self._numberList

@numberList.setter

def numberList(self, value):

if all(isinstance(x, int) for x in value):

self._numberList = value

else:

print('\n%s is not a linear/quadratic sequence'%(value))

class Quadratic(Sequence):

def __init__(self):

super().__init__()

def __str__(self):

return super().__str__() + '\nThis is a quadratic sequence'

def findFormula(self):

a = (self.numberList[0] + self.numberList[2] - 2*self.numberList[1])/2

b = (8*self.numberList[1] - 5*self.numberList[0] - 3*self.numberList[2])/2

c = 3*self.numberList[0] - 3*self.numberList[1] + self.numberList[2]

return ('T(n) = %sn^2 + %sn + %s' %(a, b, c)).replace('+ -', '- ')

class Linear(Sequence):

def __init__(self):

super().__init__()

def __str__(self):

return super().__str__() + '\nThis is a linear sequence'

def findFormula(self):

a = (self.numberList[1] - self.numberList[0])

b = (self.numberList[0] - a)

return ('T(n) = %sn + %s' %(a, b)).replace('+ -', '- ')

main.py

import sequencesolver

def getList(sequence):

try:

list1 = sequence.split(',')

sequenceList = list(map(int, list1))

return sequenceList

except:

return -1

def isQuad(numberList):

if len(numberList)>=4:

diff = numberList[2]-2*numberList[1]+numberList[0]

for i in range(1, len(numberList)-2):

if (numberList[i+2]-2*numberList[i+1]+numberList[i] != diff):

return False

return True

else:

return False

def isLinear(numberList):

if len(numberList)>=3:

diff = numberList[1]-numberList[0]

for i in range(1, len(numberList)-1):

if (numberList[i+1]-numberList[i] != diff):

return False

return True

else:

return False

quad = sequencesolver.Quadratic()

linear = sequencesolver.Linear()

f = open ('sequences.txt', 'r')

for line in f:

myList = getList(line)

if (myList == -1):

print('\n[%s] is not a linear/quadratic sequence' %(line.strip()))

else:

if isLinear(myList):

linear.numberList = myList

print(linear)

print(linear.findFormula())

elif isQuad(myList):

quad.numberList = myList

print(quad)

print(quad.findFormula())

else:

print('\n[%s] is not a linear/quadratic sequence' %(line.strip()))

f.close()

Run Through

The sequencesolver.py
 file starts by importing ABC
 and abstractmethod
 from the abc
 module.

abc
 stands for “abstract base classes” and is a built-in module that provides the infrastructure for defining abstract classes in Python.

Don't worry about what abstract classes are at the moment. We'll come back to them very soon.

After importing the module, we declare a class called Sequence
 that inherits from the ABC
 class. The ABC
 class is included in the abc
 module and is used to create an abstract class.

So what is an abstract class?

Simply put, an abstract class is a parent class that contains an abstract method. An abstract method is a method that has no body and must be implemented in the derived class. Abstract classes cannot be instantiated.

Confused? Let's start with a simple example of an abstract class.

Suppose we have a class called Pets
 and intend to derive three subclasses – Dogs
, Cats
 and Rabbits
 – from this class.

We want all three subclasses to have a method for displaying the vaccination requirements of the pet. How can we enforce that?

We can declare an abstract method called displayVaccination()
 in the parent class (Pets
).

When we do that, we are indicating that we want any subclass derived from the Pets
 class to implement this method. If the subclass does not implement the method, it cannot be instantiated.

Clear?

Note that we do not need to implement the abstract method in the parent class (Pets
) itself. This makes sense as “pets” is an abstract concept and different types of pets have different vaccination requirements. Hence, we cannot display the requirements of a “pet” per se.

In order to indicate that a parent class is an abstract class, it has to inherit the ABC
 class. In our code, the Sequence
 class inherits the ABC
 class.

It has one abstract method called findFormula()
. To indicate that findFormula()
 is an abstract method, we have to add the @abstractmethod
 decorator before it.

Within the method, we did not add any code to it except for the pass
 statement. This statement is kind of like a dummy statement. It does nothing other than to satisfy a syntax requirement.

This is because Python expects us to add an indented block after we declare a method. If we do not do that, Python will give us an error that says “expected an indented block”.

To prevent that, we just have to add the pass
 statement.

Alternatively, we can also add an indented comment as shown below:

@abstractmethod

def findFormula(self):

'Implement in subclasses'

Besides declaring the findFormula()
 method, we also coded the __init__
 and __str__
 methods for the Sequence
 class.

The __init__
 method initializes the instance variable _numberList
 to an empty list and the __str__
 method returns a string representation of the class.

Next, we added a property for the instance variable _numberList
.

The setter method uses the all()
 function to check if value
 is a list of integers.

The argument

isinstance(x, int) for x in value

loops through value
 (using for x in value
) and uses the built-in Python function isinstance()
 to check if x
 is an integer.

We pass this argument to the all()
 function.

The all()
 function is another built-in Python function that returns True
 if isinstance()
 returns True
 for all
 values of x
.

This is the easiest way to check if all elements in a list are integers.

Alternatively, we can loop through and check the list ourselves using the code below:

allIntegers = True

for x in value:

if (isinstance(x, int) == False):

allIntegers = False

break

if (allIntegers):

#Do something

This achieves the same result but is a longer way to do it.

After we verify that all elements in value
 are integers, we assign value
 to the instance variable _numberList
 using the statement

self._numberList = value

On the other hand, if value
 is not a list of integers, we print a message to notify the user that the input is not a sequence.

With that, our Sequence
 class is complete.

Next, we declare two subclasses – Linear
 and Quadratic
 – that derive from the Sequence
 class. These two subclasses implement the findFormula()
 method according to the formulas given in the project description above.

Once that is done, the sequencesolver.py
 file is complete.

Now we need to create another file called main.py
 and import the three classes (Sequence
, Linear
 and Quadratic
) using the statement

import sequencesolver

We then declare three functions – getList()
, isQuad()
 and isLinear()
.

The getList()
 function has one parameter – sequence
.

Inside the function, we use a try
-except
 statement to perform the following tasks.

First, we use the built-in Python method split()
 to split sequence
 into a list of substrings, using ','
 as a delimiter. We assign the resulting list to list1
.

Next, we use the map()
 function to convert list1
 (which is a list of strings) into a list of integers.

The map()
 function is a built-in Python function that applies a function to all the elements of an iterable (such as a list). It accepts the names of the function and the iterable as arguments and returns the result as a map object.

Here, we use the map()
 function (map(int, list1))
) to apply the int()
 function to all elements in list1
.

As the map()
 function returns a map object, we use the built-in list()
 function to convert it into a list.

As you can see, the map()
 function is a convenient way to cast all the elements of a list into integers.

Alternatively, if we do not use the map()
 function, we can also do it as follows:

sequenceList = []

for x in list1:

sequenceList.append(int(x))

This is a slightly longer way to achieve the same result.

After we get the input as a list of integers, we return the list. If any of the steps above fails, our try
 block generates an error and we return -1 as the result. With that, the getList()
 function is complete.

The next function is the isQuad()
 function. This function has one parameter numberList
 and checks if numberList
 contains a quadratic sequence.

In order to do that, let's consider the following quadratic sequence: 2, 9, 18, 29, 42...

A sequence is quadratic if the second difference is constant.

In other words, we need to check the second differences for all the numbers in the sequence.

For the first three numbers in the sequence above, we can calculate the second difference as follows:

9 – 2 = 7

18 – 9 = 9

Second Difference = 9 – 7 = 2

For the 2nd to 4th number, we calculate it as follows:

18 – 9 = 9

29 – 18 = 11

Second Difference = 11 – 9 = 2

From these two examples, we can derive a formula for getting all the second differences in the sequence.

Suppose we have a list called num
. We can get the 1st
 second difference by subtracting

num[1] – num[0]

from

num[2] – num[1]

In other words,

The 1st
 second difference

= (num[2] – num[1]) - (num[1] – num[0])

= num[2] – 2*num[1] + num[0]

For any element at index i
, we can generalize the equation as:

Second difference

= num[i+2] – 2*num[i+1] + num[i]

Let's consider the isQuad()
 function shown below (line numbers are added for reference):

1 def isQuad(numberList):

2 if len(numberList)>=4:

3 diff = numberList[2]-2*numberList[1] + numberList[0]

4 for i in range(1, len(numberList)-2):

5 if (numberList[i+2] - 2* numberList[i+1] + numberList[i] != diff):

6 return False

7 return True

8 else:

9 return False

In our isQuad()
 function, we first check if numberList
 has at least 4 elements (line 2). Without 4 elements, we will not be able to determine if the second difference is constant.

If numberList
 has less than 4 elements, we return False
 (lines 8 and 9). Else, we do the following (lines 3 to 7):

We first use the first three elements to get the 1st
 second difference and assign this to a variable called diff
 (line 3).

Next, we loop through the list (line 4) to check if any of the subsequent second differences differ from diff
 (line 5).

If any of them does, the sequence is not a quadratic sequence and we return False
 (line 6).

After looping through the entire list, if we do not find any second difference that differs from diff
, we return True
 (line 7).

With that, the isQuad()
 function is complete and we move on to the isLinear()
 function.

The isLinear()
 function is much easier to code because the difference can be calculated by subtracting any number from the next number in the sequence.

For instance, if the sequence is 4, 7, 10, 13...

We calculate the difference by subtracting 4 from 7 (7 - 4 = 3) or 7 from 10 or 10 from 13.

Other than that, the isLinear()
 function follows the same logic as the isQuad()
 function.

Once we finish coding the three functions, we can start generating our formulas.

We first instantiate a Quadratic
 object called quad
 and a Linear
 object called linear
.

Next, we open the sequences.txt
 file and loop through it line by line. Each line is read in as a string.

We then use the getList()
 function to convert the string into a list of integers.

If we are unable to convert the string into a list of integers (myList == -1
), we inform the user that the string is not a sequence.

Else, we use the isLinear()
 and isQuad()
 functions to check if myList
 is a linear or quadratic sequence.

If it is a linear sequence, we assign myList
 to the numberList
 variable of linear
 and use the print()
 function to print a string representation of the instance.

Next, we use the instance to call the findFormula()
 method. This gives us the nth
 term formula as a string. We pass the resulting string to the print()
 function to print the formula.

On the other hand, if myList
 is a quadratic sequence, we do the same as above using the Quadratic
 object quad
.

Finally, if myList
 is neither linear nor quadratic, we inform the user.

With that, the program is almost done. Once we finish looping through the file, we simply close it using the close()
 function.

If you run the program, you'll get the following output:

Sequence = [1, 3, 5, 7]

This is a linear sequence

T(n) = 2n - 1

Sequence = [1, 3, 6, 10]

This is a quadratic sequence

T(n) = 0.5n^2 + 0.5n + 0

[1, a, c, d] is not a linear/quadratic sequence

[1, 4] is not a linear/quadratic sequence

[5, 8, 1.2, 4.1] is not a linear/quadratic sequence

Sequence = [2, 9, 18, 29, 42]

This is a quadratic sequence

T(n) = 1.0n^2 + 4.0n - 3

[3, 6, 8, 10, 12] is not a linear/quadratic sequence

OEBPS/image90.jpg
LEARN
Python

in‘one day
and LEARN IT WELL

OEBPS/image104.jpg
LEARN
Java

in one day
and LEARN IT WELL

OEBPS/image108.jpg

OEBPS/image96.jpg
LEARN N\
Python
in‘one day
and LEARN IT WELL

OEBPS/image100.jpg
LEARN

and LEARN IT WELL

OEBPS/image8.jpg
Python%

In one day

Workbook

Includes Practice Questions, Solutions and Projects

LEARN CODING FAST

JAMIE CHAN

OEBPS/image112.jpg
LEARN
WhsoL
SQL sz
in one day
and LEARN ITWELL.

