

 [image: Mastering Windows PowerShell Scripting, Third Edition]

Mastering Windows PowerShell Scripting

Third Edition

Automate and manage your environment using PowerShell Core 6.0

Chris Dent

BIRMINGHAM - MUMBAI

 Mastering Windows PowerShell Scripting
Third Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha

Acquisition Editor: Meeta Rajani

Content Development Editor: Nithin George Varghese

Technical Editor: Rutuja Patade

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Jisha Chirayil

First published: April 2015

Second edition: October 2017

Third edition: February 2019

Production reference: 1280219

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-666-9

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Chris Dent is an automation specialist with a deep interest in the PowerShell language. Chris is often found lurking and answering questions about PowerShell in both the UK and virtual PowerShell user groups. Chris has been developing in PowerShell since 2007 and has released several modules over the years.

My thanks, first and foremost, must go to my wife and two children for their forbearance as I have written this book. I want to express my thanks to the technical reviewers, Paul Broadwith and Graham Beer, for their invaluable comments and feedback throughout this journey. Finally, I would like to thank the members of the Virtual PowerShell User Group for putting up with my weekend rambling and musing as I work through each of the chapters.

 About the reviewers

Paul Broadwith is a senior technology professional freelancing in Scotland, with over 25 years of experience in diverse sectors, from manufacturing and financial services to the public sector and managed IT services. He has been involved in the open source and PowerShell communities for several years. His love of not doing things twice motivates him to automate as much as possible with PowerShell, and you will find much of it on GitHub. You'll find him working between there and the Chocolatey community, where he works on several open source projects. In what's left of his spare time (which isn't much), you can find him blogging at pauby.com and tweeting from @pauby.

Graham Beer is an experienced IT professional with excellent PowerShell skills and a flair for automation with Microsoft and AWS products. He is a regular contributor to 4sysops articles and was named in SQLShack's top 50 PowerShell bloggers of 2018. He recently had a chapter published in The PowerShell Conference Book about extending type data. He co-founded a PowerShell user group in the South of England, which has been running for over a year.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Mastering Windows PowerShell Scripting
Third Edition

	
 About Packt

 	
 Why subscribe?

	
 Packt.com

	
 Contributors

 	
 About the author

	
 About the reviewers

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Download the color images

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Section 1: Exploring PowerShell Fundamentals

	
 Introduction to PowerShell

 	
 Technical requirements

	
 What is PowerShell?

	
 PowerShell editors

	
 Getting help

 	
 Updatable help

	
 The Get-Help command

 	
 Syntax

	
 Examples

	
 Parameter

	
 Detailed and full switches

	
 Save-Help

	
 Update-Help

	
 About help files

	
 Command naming and discovery

 	
 Verbs

	
 Nouns

	
 Finding commands

	
 Aliases

	
 Parameters and parameter sets

 	
 Parameters

 	
 Optional parameters

	
 Optional positional parameters

	
 Mandatory parameters

	
 Mandatory positional parameters

	
 Switch parameters

	
 Common parameters

	
 Parameter values

	
 Parameter sets

	
 Confirm, WhatIf, and Force

 	
 Confirm parameter

	
 ConfirmPreference

	
 WhatIf parameter

	
 WhatIfPreference

	
 Force parameter

	
 Introduction to providers

 	
 Drives using providers

	
 Using providers

	
 Introduction to splatting

 	
 Splatting to avoid escaped end-of-line

	
 Splatting to avoid repetition

	
 Splatting and positional parameters

	
 Summary

	
 Modules and Snap-ins

 	
 Introducing modules

 	
 What is the PowerShell Gallery?

	
 The Get-Module command

 	
 PSModulePath in Windows PowerShell

	
 PSModulePath in PowerShell Core

	
 Get-Module, PSCompatibility, and PSEdition

	
 The Import-Module command

	
 The Remove-Module command

	
 The Find-Module command

	
 The Install-Module command

	
 The Update-Module command

	
 The Save-Module command

	
 PowerShell Core and the WindowsCompatibility module

 	
 The compatibility session

	
 Add-WindowsPSModulePath

	
 Get-WinModule and Import-WinModule

	
 Copy-WinModule

	
 Invoke-WinCommand

	
 Introducing snap-ins

 	
 Using snap-ins

	
 Summary

	
 Working with Objects in PowerShell

 	
 Pipelines

 	
 Standard output

	
 Non-standard output

	
 The object pipeline

	
 Members

 	
 The Get-Member command

	
 Accessing properties

	
 Using methods

	
 Access modifiers

	
 The Add-Member command

	
 Enumerating and filtering

 	
 The ForEach-Object command

	
 Where-Object command

	
 Selecting and sorting

 	
 The Select-Object command

	
 The Sort-Object command

	
 Grouping and measuring

 	
 The Group-Object command

	
 The Measure-Object command

	
 Comparing

	
 Importing, exporting, and converting

 	
 The Export-Csv command

	
 The Import-Csv command

	
 Export-Clixml and Import-Clixml

	
 Summary

	
 Operators

 	
 Arithmetic operators

 	
 Operator precedence

	
 Addition and subtraction operators

 	
 Addition operators

	
 Subtraction operator

	
 Multiplication, division, and remainder operators

 	
 Multiplication operator

	
 Division operator

	
 Remainder operator

	
 Shift left and shift right operators

	
 Assignment operators

 	
 Assign, add and assign, and subtract and assign

	
 Multiply and assign, divide and assign, and modulus and assign

	
 Comparison operators

 	
 Case-sensitivity

	
 Comparison operators and arrays

	
 Equal to and not equal to

	
 Like and not like

	
 Greater than and less than

	
 Contains and in

	
 Regular expression-based operators

 	
 Match and not match

	
 Replace

	
 Split

	
 Binary operators

 	
 Binary and

	
 Binary or

	
 Binary exclusive or

	
 Binary not

	
 Logical operators

 	
 And

	
 Or

	
 Exclusive or

	
 Not

	
 Type operators

 	
 As

	
 is and isnot

	
 Redirection operators

 	
 Redirection to a file

	
 Redirecting streams to standard output

	
 Redirection to null

	
 Other operators

 	
 Call

	
 Comma

	
 Format

	
 Increment and decrement

	
 Join

	
 Summary

	
 Section 2: Working with Data

	
 Variables, Arrays, and Hashtables

 	
 Naming and creating variables

	
 Variable commands

 	
 Clear

	
 Get

	
 New

	
 Remove

	
 Set

	
 Variable provider

	
 Variable scope

 	
 Local and global scope

	
 Private scope

	
 Script scope

	
 Type and type conversion

	
 Objects assigned to variables

	
 Arrays

 	
 Creating an array

	
 Arrays with a type

	
 Adding elements to an array

	
 Selecting elements from an array

	
 Changing element values in an array

	
 Removing elements from an array

 	
 Removing elements by index

	
 Removing elements by value

	
 Clearing an array

	
 Filling variables from arrays

	
 Multi-dimensional and jagged arrays

	
 Hashtables

 	
 Creating a hashtable

	
 Adding and changing elements to a hashtable

	
 Selecting elements from a hashtable

	
 Enumerating a hashtable

	
 Removing elements from a hashtable

	
 Lists, dictionaries, queues, and stacks

 	
 Lists

 	
 Creating a list

	
 Adding elements to the list

	
 Selecting elements from the list

	
 Removing elements from the list

	
 Changing element values in a list

	
 Dictionaries

 	
 Creating a dictionary

	
 Adding and changing elements in a dictionary

	
 Selecting elements from a dictionary

	
 Enumerating a dictionary

	
 Removing elements from a dictionary

	
 Queues

 	
 Creating a queue

	
 Enumerating the queue

	
 Adding elements to the queue

	
 Removing elements from the queue

	
 Stacks

 	
 Creating a stack

	
 Enumerating the stack

	
 Adding elements to the stack

	
 Removing elements from the stack

	
 Summary

	
 Branching and Looping

 	
 Conditional statements

 	
 if, else, and elseif

 	
 Assignment within if statements

	
 switch

 	
 wildcard and regex

	
 Expressions

	
 Loops

 	
 foreach

	
 for

	
 do until and do while

	
 while

	
 break and continue

	
 Branching and assignment

	
 Summary

	
 Working with .NET

 	
 Assemblies

	
 Namespaces

	
 Types

	
 Classes

	
 Constructors

 	
 Calling constructors

	
 Calling constructors with lists of arguments

	
 Arguments as an array

	
 Creating objects from hashtables

	
 Properties and methods

	
 Static properties

	
 Static methods

	
 Non-public classes

	
 Type accelerators

	
 The using keyword

 	
 Using assemblies

	
 Using namespaces

	
 Summary

	
 Strings, Numbers, and Dates

 	
 Manipulating strings

 	
 Indexing into strings

	
 String methods and arrays

	
 Substring

	
 Split

	
 Replace

	
 Trim, TrimStart, and TrimEnd

	
 Insert and remove

	
 IndexOf and LastIndexOf

	
 PadLeft and PadRight

	
 ToUpper, ToLower, and ToTitleCase

	
 Contains, StartsWith, and EndsWith

	
 Chaining methods

	
 Converting strings

 	
 Working with Base64

	
 Working with comma-separated value strings

	
 Convert-String

	
 ConvertFrom-String

	
 Manipulating numbers

 	
 Large byte values

	
 Power of 10

	
 Hexadecimal

	
 Using System.Math

	
 Converting strings into numeric values

	
 Manipulating dates and times

 	
 DateTime parameters

	
 Parsing dates

	
 Changing dates

	
 Comparing dates

	
 Summary

	
 Regular Expressions

 	
 Regex basics

 	
 Debugging regular expressions

	
 Literal characters

	
 Any character (.)

	
 Repetition with * and +

	
 The escape character (\)

	
 Optional characters

	
 Non-printable characters

	
 Anchors

	
 Repetition

 	
 Exploring the quantifiers

	
 Character classes

 	
 Ranges

	
 Negated character class

	
 Character class subtraction

	
 Shorthand character classes

	
 Alternation

	
 Grouping

 	
 Repeating groups

	
 Restricting alternation

	
 Capturing values

	
 Named capture groups

	
 Non-capturing groups

	
 Examples of regular expressions

 	
 MAC addresses

	
 IP addresses

	
 The netstat command

	
 Formatting certificates

	
 Summary

	
 Files, Folders, and the Registry

 	
 Working with providers

 	
 Navigating

	
 Getting items

	
 Drives

	
 Items

 	
 Testing for existing items

	
 Creating and deleting items

	
 Invoking items

	
 Item properties

 	
 Filesystem properties

	
 Adding and removing file attributes

	
 Registry values

	
 Windows permissions

 	
 Ownership

	
 Access and audit

	
 Rule protection

	
 Inheritance and propagation flags

	
 Removing access control entries

	
 Copying lists and entries

	
 Adding access control entries

 	
 Filesystem rights

	
 Registry rights

	
 Numeric values in the access control list

	
 Transactions

	
 File catalogs

 	
 New-FileCatalog

	
 Test-FileCatalog

	
 Summary

	
 Windows Management Instrumentation

 	
 Working with WMI

 	
 WMI classes

	
 WMI commands

	
 The WMI Query Language

 	
 Understanding SELECT, WHERE, and FROM

	
 Escape sequences and wildcard characters

	
 Logic operators

	
 Comparison operators

	
 Quoting values

	
 Associated classes

 	
 WMI object paths

	
 Using ASSOCIATORS OF

	
 CIM cmdlets

 	
 Getting instances

	
 Getting classes

	
 Calling methods

	
 Creating instances

	
 Working with CIM sessions

	
 Associated classes

	
 The WMI cmdlets

 	
 Getting instances

	
 Working with dates

	
 Getting classes

	
 Calling methods

	
 Creating instances

	
 Associated classes

	
 Permissions

 	
 Sharing permissions

 	
 Creating a shared directory

	
 Getting a security descriptor

	
 Adding an access control entry

	
 Setting the security descriptor

	
 WMI permissions

 	
 Getting a security descriptor

	
 The access mask

	
 WMI and SDDL

	
 Summary

	
 HTML, XML, and JSON

 	
 HTML

 	
 ConvertTo-Html

	
 Multiple tables

	
 Adding style

	
 HTML and special characters

	
 XML

 	
 Elements and attributes

	
 Namespaces

	
 Schemas

	
 System.Xml

 	
 ConvertTo-Xml

	
 XML type accelerator

	
 XPath and Select-Xml

	
 Working with namespaces

	
 Creating documents

	
 Modifying element and attribute values

	
 Adding elements

	
 Copying nodes between documents

	
 Removing elements and attributes

	
 Schema validation

	
 System.Xml.Linq

 	
 Opening documents

	
 Selecting nodes

	
 Creating documents

	
 Working with namespaces

	
 Modifying element and attribute values

	
 Adding nodes

	
 Removing nodes

	
 Schema validation

	
 JSON

 	
 ConvertTo-Json

	
 ConvertFrom-Json

	
 Summary

	
 Web Requests and Web Services

 	
 Technical requirements

	
 Web requests

 	
 HTTP methods

	
 HTTPS

	
 Bypassing SSL errors in Windows PowerShell

	
 Capturing SSL errors

	
 Working with REST

 	
 Invoke-RestMethod

	
 Simple requests

	
 Requests with arguments

	
 Working with paging

	
 Working with authentication

 	
 Using basic authentication

	
 OAuth

	
 Creating an application

	
 Getting an authorization code

	
 Requesting an access token

	
 Using a token

	
 Working with SOAP

 	
 Finding a SOAP service

	
 New-WebServiceProxy

	
 Methods

	
 Methods and enumerations

	
 Methods and SOAP objects

	
 Overlapping services

	
 Summary

	
 Section 3: Automating with PowerShell

	
 Remoting and Remote Management

 	
 Technical requirements

	
 WS-Management

 	
 Enabling remoting

	
 Get-WSManInstance

	
 The WSMan drive

	
 Remoting and SSL

 	
 Set-WSManQuickConfig

	
 Remoting and permissions

 	
 Remoting permissions GUI

	
 Remoting permissions by script

	
 User Account Control

	
 Trusted hosts

	
 PSSessions

 	
 New-PSSession

	
 Get-PSSession

	
 Invoke-Command

 	
 Local functions and remote sessions

	
 Using splatting with ArgumentList

	
 The AsJob parameter

	
 Disconnected sessions

	
 The using variable scope

	
 The Enter-PSSession command

	
 Import-PSSession

	
 Export-PSSession

	
 Copying items between sessions

	
 Remoting on Linux

	
 Remoting over SSH

 	
 Connecting from Windows to Linux

	
 Connecting from Linux to Windows

	
 The double-hop problem

 	
 CredSSP

	
 Passing credentials

	
 CIM sessions

 	
 New-CimSession

	
 Get-CimSession

	
 Using CIM sessions

	
 Summary

	
 Asynchronous Processing

 	
 Working with jobs

 	
 The Start-Job, Get-Job, and Remove-Job commands

	
 The Receive-Job command

	
 The Wait-Job command

	
 Reacting to events

 	
 The Register-ObjectEvent and *-Event commands

	
 The Get-EventSubscriber and Unregister-Event commands

	
 The Action, Event, EventArgs, and MessageData parameters

	
 Using Runspaces and Runspace pools

 	
 Creating a PowerShell instance

	
 The Invoke and BeginInvoke methods

	
 The EndInvoke method and the PSDataCollection object

	
 Running multiple instances

	
 Using the RunspacePool object

	
 About the InitialSessionState object

 	
 Adding modules and snap-ins

	
 Adding variables

	
 Adding functions

	
 Using the InitialSessionState and RunspacePool objects

	
 Using Runspace-synchronized objects

	
 Summary

	
 Section 4: Extending PowerShell

	
 Scripts, Functions, and Filters

 	
 Introducing scripts, functions, and filters

 	
 Scripts and Requires

	
 Scripts and using statements

	
 Nesting functions

	
 Comment-based help

 	
 Parameter help

	
 Examples

	
 Working with long lines

 	
 Line break after pipe

	
 Line break after an operator

	
 Using the array operator to break up lines

	
 Begin, process, and end

 	
 Begin

	
 Process

	
 End

	
 Named blocks and return

	
 Leaky functions

 	
 The Out-Null command

	
 Assigning to null

	
 Redirecting to null

	
 Casting to Void

	
 Param, parameters, and CmdletBinding

 	
 Parameter types

 	
 Nullable types

	
 Default values

	
 Cross-referencing parameters

	
 The CmdletBinding attribute

 	
 Common parameters

	
 CmdletBinding properties

	
 ShouldProcess and ShouldContinue

 	
 ShouldProcess

	
 ShouldContinue

	
 Summary

	
 Parameters, Validation, and Dynamic Parameters

 	
 The Parameter attribute

 	
 Position and positional binding

	
 The DontShow property

	
 The ValueFromRemainingArguments property

	
 The HelpMessage property

	
 Validating input

 	
 The PSTypeName attribute

	
 Validation attributes

 	
 The ValidateNotNull attribute

	
 The ValidateNotNullOrEmpty attribute

	
 The ValidateCount attribute

	
 The ValidateDrive attribute

	
 The ValidateLength attribute

	
 The ValidatePattern attribute

	
 The ValidateRange attribute

	
 The ValidateScript attribute

	
 The ValidateSet attribute

	
 The Allow attributes

 	
 The AllowNull attribute

	
 The AllowEmptyString attribute

	
 The AllowEmptyCollection attribute

	
 PSReference parameters

	
 Pipeline input

 	
 About ValueFromPipeline

 	
 Accepting null input

	
 Input object types

	
 Using ValueFromPipeline for multiple parameters

	
 Using PSTypeName

	
 About ValueFromPipelineByPropertyName

 	
 ValueFromPipelineByPropertyName and parameter aliases

	
 Defining parameter sets

	
 Argument-completers

 	
 The argument-completer attribute

	
 Using Register-ArgumentCompleter

	
 Listing registered argument-completers

	
 Dynamic parameters

 	
 Creating a RuntimeDefinedParameter object

	
 Using the RuntimeDefinedParameterDictionary

	
 Using dynamic parameters

	
 Conditional parameters

	
 Summary

	
 Classes and Enumerations

 	
 Defining an enumeration

 	
 Enum and underlying types

	
 Automatic value assignment

	
 Enum or ValidateSet

	
 The flags attribute

	
 Using enumerations to convert values

	
 Creating a class

 	
 Properties

	
 Constructors

	
 Methods

	
 Inheritance

 	
 Constructor inheritance

	
 Chaining constructors

	
 The Hidden modifier

	
 The Static modifier

	
 Argument-transformation attribute classes

	
 Validation attribute classes

 	
 ValidateArgumentsAttribute

	
 ValidateEnumeratedArgumentsAttribute

	
 Classes and DSC

 	
 Implementing Get

	
 Implementing Set

	
 Implementing Test

	
 Using the resource

	
 Summary

	
 Building Modules

 	
 Technical requirements

	
 Module layout

 	
 The root module

	
 The Export-ModuleMember command

	
 Module manifest

	
 Export-ModuleMember or FunctionsToExport

	
 Side-by-side versioning

	
 Dependencies

	
 Multi-file module layout

 	
 Dot-sourcing module content

	
 Merging module content

	
 Module scope

 	
 Accessing module scope

	
 Initializing and removing modules

 	
 The ScriptsToProcess key

	
 The OnRemove event

	
 Summary

	
 Testing

 	
 Technical requirement

	
 Static analysis

 	
 AST

	
 Tokenizer

	
 PSScriptAnalyzer

	
 Suppressing rules

	
 Custom script analyzer rules

 	
 Creating a custom rule

	
 AST-based rules

	
 Token-based rules

	
 Using custom rules

	
 Testing with Pester

 	
 Why write tests?

	
 What to test

	
 Describe and It

	
 Test cases

	
 Independent verification

	
 Assertions

 	
 Testing for errors

	
 Context

	
 Before and after

	
 TestDrive

	
 Mock

 	
 Assert-MockCalled

	
 Parameter filtering

	
 Mocking non-local commands

	
 Mocking objects

 	
 Fabricating objects

	
 Mocking existing members

	
 Using New-MockObject

	
 Mocking CIM objects

	
 Pester in practice

	
 Summary

	
 Error Handling

 	
 Error types

 	
 Terminating errors

	
 Non-terminating errors

	
 Error actions

	
 Raising errors

 	
 Error records

	
 Write-Error

	
 throw and ThrowTerminatingError

	
 Error and ErrorVariable

	
 Catching errors

 	
 try, catch, and finally

 	
 try

	
 catch

	
 finally

	
 Re-throwing errors

	
 Inconsistent error behavior

	
 throw and ErrorAction

	
 Nesting try-catch-finally

	
 Terminating or non-terminating

	
 trap

 	
 Using trap

	
 trap, scope, and continue

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Windows PowerShell is an established language. Over the years, it has become increasingly important to Microsoft Windows-based services, and of course, cloud services such as Azure.

PowerShell Core represents a significant step forward; PowerShell Core expands out to Linux and macOS, opening up more opportunities to use the language.

The move to open source with PowerShell Core has opened the floodgates for new features, tweaks, and fixes. This is clearly where the future of PowerShell lies. Fortunately, the lessons learned using Windows PowerShell are transferable.

PowerShell Core is great but, perhaps, not quite ready to completely replace Windows PowerShell. Module developers need to test, update, and in some cases rewrite modules to make them compatible with PowerShell Core to complete the move. Much of this work must be undertaken by Microsoft themselves. A large number of modules have been written for Windows PowerShell over the years.

This book favors a PowerShell is PowerShell stance. There are differences between Windows PowerShell and PowerShell Core, but these details sit on the edge. Knowing how to use the help system, and how to explore objects, how to use PowerShell to meet an objective, is vital in either case.

 Who this book is for

If you are a system administrator who wants to become an expert in controlling and automating your Windows environment, then Mastering Windows PowerShell Scripting is for you. It is also ideal for those new to the PowerShell language.

 What this book covers

Chapter 1, Introduction to PowerShell, offers a brief introduction to some of the most important parts of PowerShell. Including the help subsystem, command naming, providers, and splatting.

Chapter 2, Modules and Snap-Ins, explores the use of modules in PowerShell and PowerShell Core, followed by a brief look at snap-ins in Windows PowerShell.

Chapter 3, Working with Objects in PowerShell, explores the different commands available to interact with objects. These utility commands are used again and again.

Chapter 4, Operators, takes a look at the different operators available in PowerShell. Operators are a fundamental part of life in PowerShell.

Chapter 5, Variables, Arrays, and Hashtables, takes a deep dive into the use of variables within PowerShell, including concepts such as variable scope.

Chapter 6, Branching and Looping, explores different loop operators, such as foreach, for, while, and do.

Chapter 7, Working with .NET, focuses on what .NET means to PowerShell and takes a look at type accelerators and the new using keyword.

Chapter 8, Strings, Numbers, and Dates, explores working with some of the most common datatypes in PowerShell.

Chapter 9, Regular Expressions, takes a look at the use of regular expressions in PowerShell with a number of detailed examples.

Chapter 10, Files, Folders, and the Registry, explains that working with the filesystem is an important part of any scripting language. The registry has long been a core part of the Microsoft operating system. This chapter takes a look at the commands used to interact with both the filesystem and the registry.

Chapter 11, Windows Management Instrumentation, explains that when there are no specific commands, WMI is often the first stop. This chapter explores the commands used to interact with WMI.

Chapter 12, HTML, XML, and JSON, are common text-based formats that must be either generated or interrogated using PowerShell. This chapter looks at some of the methods available and a number of the common pitfalls.

Chapter 13, Web Requests and Web Services, explains that the last 5 years has seen the use of web services, particularly REST, soar. This chapter takes a good look at working with REST, using GitHub as a reference site. SOAP is explored in Windows PowerShell using a custom-built site.

Chapter 14, Remoting and Remote Management, covers PowerShell remoting, which is an import tool stretching PowerShell out from a local machine. The introduction of PowerShell Core adds the ability to use PowerShell remoting to Mac and Linux machines.

Chapter 15, Asynchronous Processing, starts off with a brief exploration of jobs before taking a look at events and, finally, Runspace Pools.

Chapter 16, Scripts, Functions, and Filters, covers the building blocks of larger scripts and modules. This chapter explores the structure of scripts and functions and the use of named blocks in relation to the pipeline.

Chapter 17, Parameters, Validation, and Dynamic Parameters, explores the param block in PowerShell. The param block is incredibly versatile, allowing immediately input validation, and offering features such as argument completion.

Chapter 18, Classes and Enumerations, explores classes in PowerShell and showcases a few possible uses of classes, including parameter validation, argument transformation, and class-based DSC resources.

Chapter 19, Building Modules, explains that a module draws together groups of functions into a single unit. This chapter also explores differences in structure and requirements between development and runtime.

Chapter 20, Testing, explores static analysis and unit testing using Pester. Testing requires a great deal of practice but can be used to offer confidence that a script or function behaves they way it was intended to.

Chapter 21, Error Handling, explores the different types of errors in PowerShell and how they might be handled. This chapter includes the use of try, catch, finally, and trap.

 To get the most out of this book

Some familiarity with the technologies the scripts interact with is required. A general familiarity with the Windows operating system, the filesystem, web services, and so on is required.

This book is based around PowerShell 5.1, PowerShell Core 6.1, and it includes small references to PowerShell Core 6.2.

The examples are predominantly Windows-based, as it is the most mature.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf.

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "As seen while looking at syntax in Get-Help, commands accept a mixture of parameters."

A block of code is set as follows:

Get-Command -CommandType Cmdlet, Function | Where-Object
{
$metadata = New-Object
System.Management.Automation.CommandMetadata($_)
$metadata.ConfirmImpact -eq 'High'
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

Get-Command -CommandType Cmdlet, Function | Where-Object
{
$metadata = New-Object
System.Management.Automation.CommandMetadata($_)
$metadata.ConfirmImpact -eq 'High'
}

Any command-line input or output is written as follows:

 PS> Get-Help Out-Null

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an example: "Extensible Markup Language (XML) is a plain text format that's used to store structured data."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Section 1: Exploring PowerShell Fundamentals

In this section, we will explore the basics of the PowerShell language.

The following chapters are included in this section:

	Chapter 1, Introduction to PowerShell

	Chapter 2, Modules and Snap-ins

	Chapter 3, Working with Objects in PowerShell

	Chapter 4, Operators

 Introduction to PowerShell

PowerShell has reached a point where it has split into Windows PowerShell and PowerShell Core. Windows PowerShell accounts for versions up to, and including, PowerShell 5.1. Windows PowerShell is based on the .NET full framework. PowerShell Core accounts for version 6 and over and is based on the .NET core framework.

The future of PowerShell is in PowerShell Core; it opens up cross-platform scripting with PowerShell, that is, support for Linux and macOS.

As well as the change to .NET, there are an increasing number of differences between Windows PowerShell and PowerShell Core that must be accounted for.

The differences between Windows PowerShell and PowerShell Core will be highlighted throughout this book.

This book is split into a number of sections. Much of this book is intended to act as a reference. We will cover the following topics in this book:

	Exploring PowerShell fundamentals

	Working with data

	Automating with PowerShell

	Extending PowerShell

In the first section of this book, while exploring the PowerShell fundamentals, we will look at the use of language and cover as many building blocks as possible.

In this chapter, we will briefly look at a number of short, diverse topics:

	What is PowerShell?

	PowerShell editors

	Getting help

	Command naming

	Command discovery

	Parameters and parameter sets

	Introduction to providers

	Introduction to splatting

 Technical requirements

This chapter makes use of the following on the Windows platform:

	Windows PowerShell 5

	PowerShell Core 6.1

 What is PowerShell?

PowerShell is a mixture of a command line, a functional programming language, and an object-oriented programming language. PowerShell is based on Microsoft .NET, which gives it a level of open flexibility that was not available in Microsoft's scripting languages (such as VBScript or batch) before this.

PowerShell is an explorer's scripting language. With built-in help, command discovery, and with access to much of the .NET framework, it is possible to dig down through the layers.

This book is based on PowerShell Core 6.1 with references to PowerShell 5.1; some of the features that are discussed in this book may not be available in the earlier versions of PowerShell.

PowerShell Core may be installed side by side with Windows PowerShell. Preview versions of PowerShell Core can often be installed side by side with full releases of PowerShell Core.

 PowerShell editors

While it is possible to write for PowerShell using the notepad application alone, it is rarely desirable. Using an editor that was designed to work with PowerShell can save a lot of time.

Specialized PowerShell editors such as Visual Studio Code (VS Code), PowerShell Studio, and PowerShell ISE offer automatic completion (IntelliSense), which reduces the amount of cross-referencing required while writing code. Finding a comfortable editor early on is a good way to ease into PowerShell; memorizing commands and parameters is not necessary.

PowerShell ISE is not planned to be released to support PowerShell 6 at this time. VS Code is the most commonly recommended editor for PowerShell. VS Code is a free open source editor that was published by Microsoft VS Code and may be downloaded from http://code.visualstudio.com.

The PowerShell extension should be installed, and other extensions may be found on the marketplace: https://marketplace.visualstudio.com/VSCode.

VS Code provides support for PowerShell Core; the following screenshot shows how to change the version of PowerShell that's used when editing a script:

 Getting help

Gaining confidence using the built-in help system is an important part of working with PowerShell. In PowerShell, help is extensive; authors can easily write their own help content when working with functions, scripts, and script modules.

A number of commands are available to interact with the help system, as follows:

	Get-Help

	Save-Help

	Update-Help

Before exploring these commands, the concept of Updatable help should be discussed, as help may not be present on a system after installation.

 Updatable help

Updatable help was introduced with PowerShell 3. It gives authors the option to store the most recent versions of their help documentation outside of PowerShell on web servers.

Which modules support updatable help?

A list of modules that support updatable help may be viewed by running the following command: Get-Module -ListAvailable | Where-Object HelpInfoURI -like *.

Help for the core components of PowerShell is no longer a part of the Windows Management Framework package and must be downloaded before it can be viewed. The first time Get-Help is run, you will be prompted to update help.

If the previous prompt is accepted, PowerShell will attempt to download content for any module that supports updatable help.

Computers with no internet access or computers behind a restrictive proxy server may not be able to download the help content directly. The Save-Help command, which will be discussed later in this section, may be used to work around this problem. If PowerShell is unable to download help, it can only show a small amount of information about a command; for example, without downloading help, the content for the Out-Null command is minimal, as shown here:

PS> Get-Help Out-Null

NAME
 Out-Null

SYNTAX
 Out-Null [-InputObject <psobject>] [<CommonParameters>]

ALIASES
 None

REMARKS
 Get-Help cannot find the Help files for this cmdlet on this computer.
 It is displaying only partial help.
 -- To download and install Help files for the module that
 includes this cmdlet, use Update-Help.
 -- To view the Help topic for this cmdlet online, type:
 "Get-Help Out-Null -Online" or go to
 http://go.microsoft.com/fwlink/?LinkID=113366.

Updatable help as a help file may be viewed using the following command:

Get-Help about_Updatable_Help

 The Get-Help command

Without any arguments or parameters, Get-Help will show introductory help about the help system. This content is taken from the default help file (Get-Help default); a snippet of this is as follows:

PS> Get-Help

TOPIC
 Windows PowerShell Help System

SHORT DESCRIPTION
 Displays help about Windows PowerShell cmdlets and concepts.

LONG DESCRIPTION
 Windows PowerShell Help describes Windows PowerShell cmdlets,

The help content can be long

 The help content, in most cases, will not fit on a single screen. The help command differs from Get-Help in that it pauses (waiting for a key to be pressed) after each page, for example: help default.

The previous command is equivalent to running Get-Help and piping it into the more command:

Get-Help default | more

Alternatively, in Windows PowerShell, but not PowerShell Core, Get-Help can be asked to show a window:

Get-Help default -ShowWindow

The available help content may be listed using either of the following two commands:

Get-Help *
Get-Help -Category All

Help for a command may be viewed as follows:

Get-Help <CommandName>

Let's look at an example:

Get-Help Get-Variable

If a help document includes an online version link, it may be opened in a browser by using this:

Get-Help Get-Command -Online

The help content is broken down into a number of visible sections: name, synopsis, syntax, description, related links, and remarks. Syntax is covered in the following section in more detail as it is the most complex.

 Syntax

The syntax section lists each of the possible combinations of parameters a command will accept; each of these is known as a parameter set.

A command that has more than one parameter set is displayed as follows:

SYNTAX
 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>]
 [-FileVersionInfo] [-Module] [<CommonParameters>]

 Get-Process [-ComputerName [<String[]>]] [-FileVersionInfo]
 [-Module] -InputObject <Process[]> [<CommonParameters>]

The syntax elements written in square brackets are optional; for example, syntax help for Get-Process shows that all of its parameters are optional, as shown in the following code:

SYNTAX
 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>] [-FileVersionInfo] [-Module] [<CommonParameters>]

Get-Process may be run without any parameters at all, or it may be run with a value only and no parameter name, or it may include the parameter name as well as the value. Each of the following examples is a valid use of Get-Process:

Get-Process
Get-Process powershell
Get-Process -Name powershell

Get-Command can show syntax

 Get-Command may be used to quickly view the syntax for a command, for example, by running the following code: Get-Command Get-Variable -Syntax.

Later in this chapter, we will take a more detailed look at the different parameters and how they might be used.

 Examples

The examples section of help is often invaluable. In some cases, a command is sufficiently complex to require a detailed example to accompany parameter descriptions; in others, the command is simple, and a good example may serve in lieu of reading the help documentation.

Examples for a command may be requested using Get-Help, as shown in the following example:

Get-Help Get-Process -Examples

It is common for a command to list several examples of its use, especially if the command has more than one parameter set.

 Parameter

Help for specific parameters may be requested as follows:

Get-Help Get-Command -Parameter <ParameterName>

This option allows for the quick retrieval of specific help for a single parameter; for example, help for the Path parameter of the Import-Csv command may be quickly viewed:

PS> Get-Help Import-Csv -Parameter Path

-Path [<String[]>]
 Specifies the path to the CSV file to import. You can also pipe
 a path to Import-Csv.

 Required? false
 Position? 1
 Default value None
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? false

 Detailed and full switches

The Detailed switch parameter asks Get-Help to return the most help content. This adds information about each parameter and the set of examples to name, synopsis, syntax, and description. Related links are excluded when using this parameter.

The Detailed parameter is used as follows:

Get-Help Get-Process -Detailed

Using a Full switch adds more technical details (compared to using the Detailed parameter). Inputs, outputs, notes, and related links are added to those that are seen using Detailed. For example, the sections detailing input and output types from Get-Process may be extracted from the full help document:

PS> Get-Help Get-Process –Full
...
INPUTS
 System.Diagnostics.Process

 You can pipe a process object to Get-Process.

OUTPUTS
 System.Diagnostics.Process, System.Diagnotics.FileVersionInfo, System.Diagnostics.ProcessModule

 By default, Get-Process returns a System.Diagnostics.Process
 object. If you use the FileVersionInfo parameter, it returns a
 System.Diagnotics.FileVersionInfo object. If you use the Module
 parameter (without the FileVersionInfo parameter), it returns a

 Save-Help

The Save-Help command can be used with modules that support updatable help. It saves help content for modules to a folder; for example, the help content for the DnsClient module can be saved to C:\PSHelp (the directory must already exist):

Save-Help -DestinationPath C:\PSHelp -Module DnsClient

Alternatively, the help content for all modules may be saved as follows:

Save-Help -DestinationPath C:\PSHelp

The process creates an XML formatted HelpInfo file that holds the source of the help content and a CAB (cabinet) file that's named after the module and culture.

Opening the CAB file shows that it contains a number of XML formatted help files, as shown in the following screenshot:

Saved help content can be copied over to another computer and imported using Update-Help. This technique is very useful for computers that do not have internet access as it means help content can be made available.

 Update-Help

The Update-Help command can perform two tasks:

	Update help files from the internet

	Import previously saved help files

To update help from the internet, Update-Help may be run without any parameters:

Update-Help

Administrator rights are required

 Updating help for some modules will require administrative rights (run as administrator). This applies to modules that are stored in protected areas of the filesystem, such as those in $PSHost (%SystemRoot%\System32\WindowsPowerShell\v1.0) or under program files.

When updating help information from the internet, by default, Update-Help will not download help content more than once every 24 hours. This restriction is documented in the help command and may be seen in action when using the Verbose switch:

PS> Update-Help -Module DnsClient -Verbose
VERBOSE: Help was not updated for the module DnsClient, because the Update-Help command was run on this computer within the last 24 hours.
To update help again, add the Force parameter to your command.

As described in the preceding message, using the Force switch parameter will ignore the time restriction. Importing help from a set of saved files uses the SourcePath parameter:

Update-Help -SourcePath C:\temp

The following error message may be generated when attempting to import help from another culture:

PS> Update-Help -SourcePath C:\Temp -Module DnsClient
Update-Help : Failed to update Help for the module(s) 'DnsClient' with UIculture(s) {en-GB} :
Unable to retrieve the HelpInfo XML file for UI culture en-GB. Make sure the HelpInfoUri property in the module manifest is valid or check your network connection and then try the command again.
At line:1 char:1
+ Update-Help -SourcePath C:\Temp -Module DnsClient -Verbose -Force
+ ~~~
 + CategoryInfo : ResourceUnavailable: (:) [Update-Help], Exception
 + FullyQualifiedErrorId : UnableToRetrieveHelpInfoXml,Microsoft.PowerShell.Commands.UpdateHelpCommand

The culture of the computer in question is set to en-GB (Get-UICulture), but the help files are for en-US.

It is possible to work around this problem with the UICulture parameter for Update-Help, as follows:

Update-Help -SourcePath C:\Temp -Module DnsClient -UICulture en-US

 About help files

About documents describe features of a language or concepts that apply to more than one command. These items do not fit into help for individual commands.

PowerShell Core: Where is About?

 The PowerShell Core help files are not available as I write this at the time of writing. The examples that are shown here can only be applied to PowerShell 5.1 or lower.

The list of help files may be viewed by running Get-Help with the category as HelpFile, as demonstrated in the following code:

Get-Help -Category HelpFile

These files cover a huge variety of topics from aliases, to modules, to WMI:

Name Category Synopsis
---- -------- --------
about_Aliases HelpFile SHORT DESCRIPTION
about_Arithmetic_Operators HelpFile SHORT DESCRIPTION
about_Arrays HelpFile SHORT DESCRIPTION
about_Assignment_Operators HelpFile SHORT DESCRIPTION
about_Automatic_Variables HelpFile SHORT DESCRIPTION
about_Break HelpFile SHORT DESCRIPTION
about_Classes HelpFile SHORT DESCRIPTION
about_Command_Precedence HelpFile SHORT DESCRIPTION
about_Command_Syntax HelpFile SHORT DESCRIPTION
about_Comment_Based_Help HelpFile SHORT DESCRIPTION
about_CommonParameters HelpFile SHORT DESCRIPTION
about_Comparison_Operators HelpFile SHORT DESCRIPTION
about_Continue HelpFile SHORT DESCRIPTION
about_Core_Commands HelpFile SHORT DESCRIPTION
about_Data_Sections HelpFile SHORT DESCRIPTION
...

 Command naming and discovery

Commands in PowerShell are formed around verb and noun pairs in the form verb-noun.

This feature is useful when finding commands; it allows you to make educated guesses so that there is little need to memorize long lists of commands.

 Verbs

The list of verbs is maintained by Microsoft. This formal approach to naming commands greatly assists in discovery.

Verbs are words such as Add, Get, Set, and New. In addition to these, we have ConvertFrom and ConvertTo.

The list of verbs that are available in PowerShell can be accessed as follows:

Get-Verb

Each verb has a group, such as data, life cycle, or security. Complementary actions such as encryption and decryption tend to use verbs in the same group; for example, the verb Protect may be used to encrypt something and the verb Unprotect may be used to decrypt something.

Verb descriptions

A detailed list of verbs, along with use cases, is available on MSDN: https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands.

It is possible to use verbs other than the approved list. However, if a command using an unapproved verb is part of a module, a warning will be shown every time the module is imported.

 Nouns

A noun provides a very short description of the object the command is expecting to act on. The noun part may be a single word, as is the case with Get-Process, New-Item, or Get-Help, or more than one word, as seen with Get-ChildItem, Invoke-WebRequest, or Send-MailMessage.

 Finding commands

The verb-noun pairing can make it a lot easier to find commands (without resorting to search engines).

For example, if we want to list firewall rules and we already know of the NetSecurity module that's available in Windows PowerShell, we can run the following command, which shows the Get commands in that module:

PS> Get-Command Get-*Firewall* -Module NetSecurity

CommandType Name Version Source
----------- ---- ------- ------
Function Get-NetFirewallAddressFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallApplicationFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallInterfaceFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallInterfaceTypeFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallPortFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallProfile 2.0.0.0 NetSecurity
Function Get-NetFirewallRule 2.0.0.0 NetSecurity
Function Get-NetFirewallSecurityFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallServiceFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallSetting 2.0.0.0 NetSecurity

From the previous list, Get-NetFirewallRule closely matches the requirement (to see a list of firewall rules) and should be explored.

Taking a broader approach, if the module was not known, we might still be able to guess by searching for commands containing specific nouns, for example, commands to get existing items that mention a firewall:

Get-Command Get-*Firewall*

Once a potential command has been found, Get-Help can be used to assess whether or not the command is suitable.

NetSecurity and PowerShell Core

 The NetSecurity module is not available using PowerShell Core by default. Using modules such as NetSecurity in PowerShell Core is discussed in Chapter 2, Modules and Snap-ins.

 Aliases

An alias in PowerShell is an alternate name for a command. A command may have more than one alias.

The list of aliases may be viewed by using Get-Alias, as shown in the following example:

PS> Get-Alias

CommandType Name
----------- ----
Alias % -> ForEach-Object
Alias ? -> Where-Object
Alias ac -> Add-Content
Alias asnp -> Add-PSSnapin
Alias cat -> Get-Content
Alias cd -> Set-Location

Get-Alias may be used to find the command behind an alias:

Get-Alias dir

It can also be used to find the aliases for a command name:

Get-Alias -Definition Get-ChildItem

Examples of aliases that are frequently used in examples on the internet include the following:

	% for ForEach-Object

	? for Where-Object

	cd for Set-Location

	gc or cat for Get-Content

	ls or dir for Get-ChildItem

	man for help (and then Get-Help)

An alias does not change how a command is used. There is no practical difference between the following two commands:

cd $env:TEMP
Set-Location $env:TEMP

New aliases are created with the New-Alias command; for example, we might choose to create an alias named grep for Select-String:

New-Alias grep -Value Select-String

Each alias exists until the PowerShell session is closed.

More information is available about aliases in the help file, which may be viewed using the following command: Get-Help about_Aliases.

 Parameters and parameter sets

As we saw while looking at syntax in Get-Help, commands accept a mixture of parameters. The following sections show how these parameters are described in help and how to use them.

 Parameters

When viewing help for a command, we can see many different approaches to different parameters.

 Optional parameters

Optional parameters are surrounded by square brackets. This denotes an optional parameter that requires a value when used:

SYNTAX
 Get-Process [-ComputerName <String[]>] ...

In this case, if a value for a parameter is to be specified, the name of the parameter must also be specified, as shown in the following example:

Get-Process -ComputerName somecomputer

 Optional positional parameters

It is not uncommon to see an optional positional parameter as the first parameter:

SYNTAX
 Get-Process [[-Name] <String[]>] ...

In this example, we may use either of the following:

Get-Process -Name powershell
Get-Process powershell

 Mandatory parameters

A mandatory parameter must always be supplied and is written as follows:

SYNTAX
 Get-ADUser -Filter <string> ...

In this case, the Filter parameter name must be written and it must be given a value. For example, to supply a Filter for the command, the Filter parameter must be explicitly written:

Get-ADUser -Filter 'sAMAccountName -eq "SomeName"'

 Mandatory positional parameters

Parameters that are mandatory and accept values based on position are written as follows:

SYNTAX
 Get-ADUser [-Identity] <ADUser> ...

In this case, the Identity parameter name is optional but the value is not. This command may be used as described by either of the following examples:

Get-ADUser -Identity useridentity
Get-ADUser useridentity

In both cases, the supplied value fills the Identity parameter. A command with more than one mandatory positional parameter may appear as follows:

SYNTAX
 Add-Member [-NotePropertyName] <String> [-NotePropertyValue] <Object> ...

In this case, the command may be called as follows:

Add-Member -NotePropertyName Name -NotePropertyValue "value"
Add-Member -NotePropertyValue "value" -NotePropertyName Name
Add-Member Name -NotePropertyValue "value"
Add-Member Name "value"

 Switch parameters

Switch parameters have no arguments (values); the presence of a switch parameter is sufficient. For example, Recurse is a switch parameter for Get-ChildItem:

SYNTAX
 Get-ChildItem ... [-Recurse] ...

As with the other types of parameters, optional use is denoted by square brackets. Switch parameters, by default, are false (not set). If a switch parameter is true (set) by default, it is possible to set the value to false using the notation, as shown in the following code:

Get-ChildItem -Recurse:$false

In the case of Get-ChildItem, this does nothing; this technique is most widely used with the Confirm switch parameter, which we will discuss later in this chapter.

 Common parameters

When looking at the syntax, you will see that most commands end with a CommonParameters item:

SYNTAX
 Get-Process ... [<CommonParameters>]

These common parameters are documented inside PowerShell:

Get-Help about_CommonParameters

These parameters let you control some of the standardized functionality PowerShell provides, such as verbose output and actions to take when errors occur.

For example, Stop-Process does not explicitly state that it has a Verbose parameter, but as Verbose is a common parameter it may be used. This can be seen if notepad is started and immediately stopped:

PS> Start-Process notepad -Verbose -PassThru | Stop-Process -Verbose
VERBOSE: Performing the operation "Stop-Process" on target "notepad (5592)".

Not so verbose

Just because a command supports a set of common parameters does not mean it must use them; for example, Get-Process supports the Verbose parameter, yet it does not write any verbose output.

 Parameter values

Value types of arguments (the type of value expected by a parameter) are enclosed in angular brackets, as shown in the following example:

<string>
<string[]>

If a value is in the <string> form, a single value is expected. If the value is in the <string[]> form, an array (or list) of values is expected.

For example, Get-CimInstance accepts a single value only for the ClassName parameter:

SYNTAX
 Get-CimInstance [-ClassName] <String> ...

The command may be called as follows:

Get-CimInstance -ClassName Win32_OperatingSystem

In comparison, Get-Process accepts multiple values for the Name parameter:

SYNTAX
 Get-Process [[-Name] <String[]>] ...

Get-Process may be called as follows:

Get-Process -Name powershell, explorer, smss

 Parameter sets

Many of the commands in PowerShell have more than one parameter set. This was seen while looking at the syntax section of help; for example, Stop-Process has three parameter sets:

SYNTAX
 Stop-Process [-Id] <Int32[]> [-Confirm] [-Force] [-PassThru] [-WhatIf] [<CommonParameters>]

 Stop-Process [-InputObject] <Process[]> [-Confirm] [-Force] [-PassThru] [-WhatIf] [<CommonParameters>]

 Stop-Process [-Confirm] [-Force] -Name <String[]> [-PassThru] [-WhatIf] [<CommonParameters>]

Each parameter set must have one or more parameters unique to that set. This allows each set to be distinguished from the other. In the previous example, Id, InputObject, and Name are used as differentiators.

The first parameter set expects a process ID, and this ID may be supplied with the parameter name or based on position; for example, both of these commands close the current PowerShell console:

Stop-Process -Id $PID
Stop-Process $PID

The second parameter set needs a value for InputObject. Again, this may be supplied as a positional parameter. In this case, it will be distinguished based on its type:

$process = Start-Process notepad -PassThru
Stop-Process -InputObject $process
Stop-Process $process
$process | Stop-Process

Pipeline input

Get-Help should help show which parameters accept pipeline input, and examples are likely to show how.

If Get-Help is incomplete, Get-Command can be used to explore parameters:

(Get-Command Stop-Process).Parameters.InputObject.Attributes.

 Confirm, WhatIf, and Force

The Confirm, WhatIf, and Force parameters are used with commands that make changes (to files, variables, data, and so on). These parameters are often used with commands that use the verbs Set or Remove, but the parameters are not limited to specific verbs.

Confirm and WhatIf have associated preference variables. Preference variables have an about file, which may be viewed using the following command:

Get-Help about_Preference_Variables

The Force parameter is not one of PowerShell's common parameters, that is, parameters that are automatically added by PowerShell itself.

Force is often seen in commands that might otherwise prompt for confirmation. There is no fixed use of the Force parameter. The effect of using Force is a choice a command developer must make. The Help documentation should state the effect of using Force, as is the case with the Remove-Item command in the following example:

Get-Help Remove-Item -Parameter Force

 Confirm parameter

The Confirm parameter causes a command to prompt before an action is taken; for example, the Confirm parameter forces Remove-Item to prompt when a file is to be removed:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Remove-Item .\IMadeThisUp.txt -Confirm

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove File" on target "C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

We have seen that a confirmation prompt may be forcefully requested in the previous example. In a similar manner, confirmation prompts may be suppressed; for example, the value of the Confirm parameter may be explicitly set to false, as shown in the following code:

Remove-Item .\IMadeThisUp.txt -Confirm:$false

There is more than one way of prompting

 There are two ways of requesting confirmation in PowerShell: Confirm and the associated ConfirmPreference; the variable only acts against one of these.

Using the parameter or changing the variable will not suppress all prompts. For example, Remove-Item will always prompt if you attempt to delete a directory that is not empty without supplying the Recurse parameter.

This technique is useful for commands that prompt by default; for example, Clear-RecycleBin will prompt by default:

PS> Clear-RecycleBin

Confirm
Are you sure you want to perform this action?
Performing the operation "Clear-RecycleBin" on target " All of the contents of the Recycle Bin".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

Setting the Confirm parameter to false for Clear-RecycleBin will bypass the prompt and immediately empty the recycle bin:

Clear-RecycleBin -Confirm:$false

Finding commands with a specific impact

 The following snippet will return a list of all commands that state they have a high impact:

Get-Command -CommandType Cmdlet, Function | Where-Object {

 $metadata = New-Object System.Management.Automation.CommandMetadata($_)

 $metadata.ConfirmImpact -eq 'High'

}

 ConfirmPreference

If the Confirm parameter is not set, whether or not a prompt is shown is determined by PowerShell. The value of the ConfirmPreference variable is compared with the stated impact of a command.

By default, the value of ConfirmPreference is High, as shown in the following code:

PS> $ConfirmPreference
High

By default, commands have a medium impact.

Finding ConfirmImpact

 In scripts and functions, the ConfirmImpact setting is part of the CmdletBinding attribute: [CmdletBinding(ConfirmImpact = 'High')].

If CmdletBinding or ConfirmImpact are not present, the impact is medium.

The impact of a function or cmdlet may be viewed using the ConfirmImpact property of a command's metadata:

New-Object System.Management.Automation.CommandMetadata(Get-Command Remove-Item).

ConfirmPreference has four possible values:

	High: Prompts when command impact is High (default)

	Medium: Prompts when command impact is Medium or High

	Low: Prompts when command impact is Low, Medium, or High

	None: Never prompts

A new value may be set by assigning it in the console; for example, it can be set to Low:

$ConfirmPreference = 'Low'

ConfirmPreference and the Confirm parameter

 While ConfirmPreference may be set to None to suppress confirmation prompts, confirmation may still be explicitly requested. Let's look at an example:

$ConfirmPreference = 'None'

New-Item NewFile.txt -Confirm

Since the Confirm parameter is supplied, the ConfirmPreference value within the scope of the command (New-Item) is Low, and therefore the prompt displays.

 WhatIf parameter

The WhatIf parameter replaces the confirmation prompt with a simple statement that should state what would have been done, using Remove-Item as an example again:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Remove-Item .\IMadeThisUp.txt -WhatIf

Confirm
Are you sure you want to perform this action?
What If: Performing the operation "Remove File" on target "C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt".

If both Confirm and WhatIf are used with a command, WhatIf takes precedence.

WhatIf may be unset on a per-command basis by supplying a value of false in the same manner as the Confirm parameter. Let's look at the following example:

'Some message' | Out-File $env:TEMP\test.txt -WhatIf:$false

The previous technique can be useful if a file (such as a log file) should be written to, irrespective of whether WhatIf is being used or not.

 WhatIfPreference

The WhatIfPreference variable holds a Boolean value (true or false) and has a default value of false.

If the preference variable is set to true, all commands that support WhatIf will act as if the parameter is explicitly set. A new value may be set for the variable, as shown in the following code:

$WhatIfPreference = $true

The WhatIf preference variable takes precedence over the Confirm parameter. For example, the WhatIf dialog will be shown when running the following New-Item, but the Confirm prompt will not:

$WhatIfPreference = $true
New-Item NewFile.txt -Confirm

 Force parameter

The Force parameter has a different purpose. With the Force parameter, New-Item will overwrite any existing file with the same path. When used with Remove-Item, the Force parameter allows the removal of files with Hidden or System attributes. The error that's generated when attempting to delete a Hidden file is shown in the following code:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Set-ItemProperty .\IMadeThisUp.txt –Name Attributes –Value Hidden
PS> Remove-Item IMadeThisUp.txt

Remove-Item : Cannot remove item C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt: You do not have sufficient access rights to perform this operation.
At line:1 char:1
+ Remove-Item .\IMadeThisUp.txt
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : PermissionDenied: (C:\Users\uktpcd...IMadeThisUp.txt:FileInfo) [Remove-Item], IOException
 + FullyQualifiedErrorId : RemoveFileSystemItemUnAuthorizedAccess,Microsoft.PowerShell.Commands.RemoveItemCommand

Adding the Force parameter allows the operation to continue without the error message:

Set-Location $env:TEMP
New-Item IMadeThisUp.txt -Force
Set-ItemProperty .\IMadeThisUp.txt –Name Attributes –Value Hidden
Remove-Item IMadeThisUp.txt -Force

 Introduction to providers

Providers in PowerShell present access to data that is not normally easily accessible. There are providers for the filesystem, registry, certificate store, and so on. Each provider arranges data so that it resembles a filesystem.

PowerShell Core: What happened to provider help?

PowerShell Core does not include Provider help files. Help may be viewed either online or in Windows PowerShell.

A longer description of Providers may be seen by viewing the about file:

Get-Help about_Providers

The list of providers available in the current PowerShell session may be viewed by running Get-PSProvider, as shown in the following example:

PS> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Registry ShouldProcess, Transactions {HKLM, HKCU}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Credentials {C, D}
Function ShouldProcess {Function}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {Cert}
WSMan Credentials {WSMan}

Each of the previous providers has a help file associated with it. These can be accessed using the following code:

Get-Help -Name <ProviderName> -Category Provider

For example, the help file for the certificate provider may be viewed by running the following code:

Get-Help -Name Certificate -Category Provider

A list of all help files for providers may be seen by running the following code:

Get-Help -Category Provider

 Drives using providers

The output from Get-PSProvider shows that each provider has one or more drives associated with it.

Alternatively, you can see the list of drives (and the associated provider) using Get-PSDrive, as shown in the following code:

PS> Get-PSDrive

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
Alias Alias
C 89.13 89.13 111.64 FileSystem C:\
Cert Certificate \
D 0.45 21.86 FileSystem D:\
Env Environment
Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
Variable Variable
WSMan WSMan

As providers are presented as a filesystem, accessing a provider is similar to working with a drive. This example shows how Get-ChildItem changes when exploring the Cert drive:

PS C:\> Set-Location Cert:\LocalMachine\Root
PS Cert:\LocalMachine\Root> Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::LocalMachine\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certif...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping C...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Author...

A similar approach may be taken to access the registry. By default, drives are available for the current user HKCU and local machine HKLM hives. Accessing HKEY_USERS is possible by adding a new drive with the following command:

New-PSDrive HKU -PSProvider Registry -Root HKEY_USERS

After running the preceding command, a new drive may be used:

PS C:\> Get-ChildItem HKU:

 Hive: HKEY_USERS

Name Property
---- --------
.DEFAULT
S-1-5-19
S-1-5-20

Running HKCU or Cert: does not change the drive

 Running C: or D: in the PowerShell console changes to a new drive letter. This is possible because C: is a function that calls Set-Location: (Get-Command C:).Definition.

Every letter of the alphabet (A to Z) has a predefined function (Get-Command*:) but the other drives (for example, Cert, HKCU, and so on) do not. Set-Location (or its alias cd) must be used to switch into these drives.

 Using providers

As we saw previously, providers may be accessed in the same way as the filesystem. Commands we might traditionally think of as filesystem commands (such as Get-ChildItem, New and Remove-Item, Get and Set-Acl, and Get and Set-ItemProperty) can work with data presented by a provider.

The list of parameters for the filesystem commands changes depending on the provider. The affected parameters are detailed in the help files for individual providers.

If we look at the FileSystem provider help file (Get-Help FileSystem), we can see that Get-ChildItem has a file switch parameter that can be used to filter files only:

 -File <System.Management.Automation.SwitchParameter>
 Gets files.

 The File parameter was introduced in Windows PowerShell 3.0.

 To get only files, use the File parameter and omit the
 Directory parameter. To exclude files, use the Directory
 parameter and omit the File parameter, or use the
 Attributes parameter.

 Cmdlets Supported: Get-ChildItem

Let's look at the following example:

Set-Location C:
Get-ChildItem -File

Looking at the Certificate provider help file (Get-Help Certificate), a different set of parameters is available.

PowerShell Core: The certificate provider

 The parameters shown next have been removed from PowerShell Core but may return in time. In the meantime, the examples here are valid for Windows PowerShell.

For example, this excerpt shows the ExpiringInDays parameter for Get-ChildItem:

 -ExpiringInDays <System.Int32>
 Gets certificates that are expiring in or before
 the specified number of days. Enter an integer. A
 value of 0 (zero) gets certificates that have
 expired.

 This parameter is valid in all subdirectories of
 the Certificate provider, but it is effective only
 on certificates.

 This parameter was introduced in Windows
 PowerShell 3.0.

 Cmdlets Supported: Get-ChildItem

The previous parameter may be used to find the Root certificates expiring in the next two years, as shown in the following example:

Get-ChildItem Cert:\LocalMachine\Root -ExpiringInDays 730

 Introduction to splatting

Splatting is a technique that was introduced all the way back in PowerShell 2. Splatting is a way of defining the parameters of a command before calling the command. This is an important and often underrated technique.

Individual parameters are written in a hashtable (@{}), and then the @ symbol is used to tell PowerShell that the content of the hashtable should be read as parameters.

This example supplies the Name parameter for the Get-Process command, and is normally written as Get-Process -Name explorer:

$getProcess = @{
 Name = 'explorer'
}
Get-Process @getProcess

In this example, getProcess is used as the name of the variable for the hashtable. The name is arbitrary; any variable name can be used.

Splatting may be used with cmdlets, functions, and scripts. Splatting may be used when the call operator is present, for example:

$getProcess = @{
 Name = 'explorer'
}
& 'Get-Process' @getProcess

 Splatting to avoid escaped end-of-line

The benefit of splatting is most obvious when working with commands that expect a larger number of parameters.

This first example uses the Windows PowerShell module ScheduledTasks to create a fairly basic task that runs once a day at midnight:

$taskAction = New-ScheduledTaskAction -Execute pwsh.exe -Argument 'Write-Host "hello world"'
$taskTrigger = New-ScheduledTaskTrigger -Daily -At '00:00:00'
Register-ScheduledTask -TaskName 'TaskName' -Action $taskAction -Trigger $taskTrigger -RunLevel 'Limited' -Description 'This line is too long to read'

It is possible to spread the command out, in an attempt to make it easier to read, by escaping the end-of-line character, for example:

$taskAction = New-ScheduledTaskAction -Execute pwsh.exe `
 -Argument 'Write-Host "hello world"'
$taskTrigger = New-ScheduledTaskTrigger -Daily `
 -At '00:00:00'
Register-ScheduledTask -TaskName 'TaskName' `
 -Action $taskAction `
 -Trigger $taskTrigger `
 -RunLevel 'Limited' `
 -Description 'This line is too long to read'

The approach that's used here is relatively common, but it is fragile. It is easy to miss a tick from the end-of-line, or to accidentally add a space after a tick character. Both will break continuation, and the command will still execute but with an incomplete set of parameters; afterwards, an error may be displayed, or a prompt may be shown, depending on the parameter (or parameters) it missed.

This problem is shown in the following screenshot, where a space character has been accidentally included after the Daily switch parameter:

Splatting provides a neater, generally easier to read and more robust alternative. The following example shows one possible way to tackle these commands when using splatting:

$newTaskAction = @{
 Execute = 'pwsh.exe'
 Argument = 'Write-Host "hello world"'
}
$newTaskTrigger = @{
 Daily = $true
 At = '00:00:00'
}
$registerTask = @{
 TaskName = 'TaskName'
 Action = New-ScheduledTaskAction @newTaskAction
 Trigger = New-ScheduledTaskTrigger @newTaskTrigger
 RunLevel = 'Limited'
 Description = 'Splatting is easy to read'
}
Register-ScheduledTask @registerTask

What about switch parameters?

 Switch parameters may be treated as if they are Boolean when splatting.

The Daily parameter that was defined in the previous example is a switch parameter.

The same approach will apply to Confirm, Force, WhatIf, Verbose, and so on.

 Splatting to avoid repetition

Splatting may be used to avoid repetition when a parameter must be optionally passed on to a number of different commands. It is possible to splat more than one set of parameters.

In this example, the ComputerName and Credential parameters are used by two different commands:

Parameters used to authenticate remote connections
$remoteParams = @{
 Credential = Get-Credential
 ComputerName = $env:COMPUTERNAME
}
Parameters which are specific to Test-WSMan
$testWSMan = @{
 Authentication = 'Default'
 ErrorAction = 'SilentlyContinue'
}
By default, do not pass any extra parameters to New-CimSession
$newCimSession = @{}
if (-not (Test-WSMan @testWSMan @remoteParams)) {
 # If WSMan fails, use DCOM (RPC over TCP) to connect
 $newCimSession.Add('SessionOption', (New-CimSessionOption -Protocol Dcom))
}
Parameters to pass to Get-CimInstance
$getCimInstance = @{
 ClassName = 'Win32_Service'
 CimSession = New-CimSession @newCimSession @remoteParams
}
Get-CimInstance @getCimInstance

This example takes advantage of a number of features:

	It is possible to splat no parameters using an empty hashtable (@{})

	It is possible to test conditions and dynamically add parameters at run time (if needed)

	It is possible to splat more than one set of parameters into a command

As the preceding example shows, it is possible to dynamically choose the parameters that are passed to a command without having to write the command in full more than once in a script.

 Splatting and positional parameters

So far, all of the parameters that have been used were given were names. It is possible, although rare, to splat positional parameters. This will be demonstrated using the Rename-Item command, which has two positional parameters: path and new name. It is possible to run Rename-Item as follows:

Rename-Item oldname.txt newname.txt

An array may be used to splat these positional parameters:

$renameItem = 'oldname.txt', 'newname.txt'
Rename-Item @renameItem

 Summary

In this chapter, we explored the help system that's built into PowerShell. We took a brief look at syntax, examples, and parameters. We also looked at how help content may be moved between computers.

Command naming and discovery introduced how we might use the verb-noun pairing to discover commands that can be used. Aliases were introduced briefly.

Parameters and parameter sets were explored, as well as different types of parameters.

We took a basic look at providers and how they are used before taking a look at handling long command lines using splatting.

In Chapter 2, Modules and Snap-ins, we will explore the commands that are used to find, install, and load modules in PowerShell.

 Modules and Snap-ins

Modules and snap-ins are packaged collections of commands that may be loaded inside PowerShell. Both modules and snap-ins may be used to extend the set of commands available in PowerShell. Modules are more flexible and are simpler to work with and this will be clear with the several commands that we will be covering in this chapter. We will also look at PowerShell Gallery which is a valuable source of modules published by Microsoft and others. In a nutshell, this chapter will explore the use and discovery of modules within Windows PowerShell and PowerShell Core.

The chapter will cover the following topics:

	Introducing modules

	PowerShell Core and the WindowsCompatibility module

	Introducing snap-ins

 Introducing modules

Modules were introduced with the release of PowerShell version 2.0. Modules represented a significant step forward over snap-ins. Unlike snap-ins, modules do not have to be formally installed or registered for use with PowerShell.

It is most common to find a module that targets a specific system or focuses on a small set of related operations. For example, the Microsoft.PowerShell.LocalAccounts module contains commands for interacting with the local account database (users and groups).

A module may be binary, script, dynamic, or manifest:

	Binary modules: These are written in a language such as C# or VB.NET, and then compiled into a dynamic-link library (DLL).

	Script modules: These are a collection of functions written in the PowerShell language. The commands typically reside in a script module file (PSM1).

	Dynamic modules: These are created using the New-Module command and exists in memory only. The following command creates a very simple dynamic module that adds the Get-Number command:

New-Module -Name TestModule -ScriptBlock {
 function Get-Number { return 1 }
}

	Manifest modules: These combines different items to make a single consistent module. For example, a manifest may be used to create a single module out of a DLL containing cmdlets and a script containing functions, and Microsoft.PowerShell.Utility is a manifest module that combines a binary and script module.

A manifest module may also be used to build commands based on WMI classes. The cmdlets-over-objects feature was added with PowerShell 3, an XML file with a cdxml extension (cmdlet definition XML). For example, the Defender module creates commands based on WMI classes in the ROOT/Microsoft/Windows/Defender namespace.

The cmdlets-over-objects feature is explored by Richard Siddaway in a series of blog posts on the Scripting Guy site. The first of these is found here: https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/.

The module manifest file serves a number of purposes, including the following:

	Describing the files that should be loaded (such as a script module file, a binary library, and a cmdlet definition XML file)

	Listing any dependencies the module may have (such as other modules, .NET libraries, or other DLL files)

	Listing the commands that should be exported (as in, made available to the end user)

	Recording information about the author or the project

When loading a module with a manifest, PowerShell will try and load any listed dependencies. If a module fails to load because of a dependency, the commands written as part of the module will not be imported.

 What is the PowerShell Gallery?

The PowerShell Gallery is a repository and distribution platform for scripts, modules, and Desired State Configuration (DSC) resources that have been written by Microsoft or other users of PowerShell.

In February 2016, Microsoft made the PowerShell Gallery public.

The PowerShell Gallery has parallels in other scripting languages, as shown in the following examples:

	Perl has cpan.org

	Python has PyPI

	Ruby has RubyGems

Support for the gallery is included by default in PowerShell 5. For PowerShell 3 and 4, PowerShellGet (via the PackageManagement PowerShell modules preview package) must be installed: https://www.microsoft.com/en-us/download/details.aspx?id=51451.

The PowerShell Gallery may be searched using https://www.powershellgallery.com as shown in the following screenshot:

 The Get-Module command

The Microsoft Windows operating system, especially the most recent versions, comes with a wide variety of modules installed. These, as well as any other modules that have been installed, can be viewed using the Get-Module command.

By default, Get-Module shows modules that have been imported (either automatically or using Import-Module); for example, if the command is run from PowerShell ISE, it will show that the ISE module has been loaded:

PS> Get-Module

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Script 1.0.0.0 ISE {Get-IseSnippet...}
Manifest 3.1.0.0 Microsoft.PowerShell.Management {Add-Computer...}
Manifest 3.1.0.0 Microsoft.PowerShell.Utility {Add-Member...}

The ListAvailable parameter shows the list of modules that have been loaded, as well as those PowerShell discovers:

Get-Module -ListAvailable

Modules may exist in more than one location. Get-Module and Import-Module will consider each path in order. If a matching module is found, the search stops, even if a newer version exists in a different directory.

Get-Module can show each instance of a module regardless of the path, using the All parameter:

Get-Module <ModuleName> -All -ListAvailable

$env:PSMODULEPATH determines where both Windows PowerShell and PowerShell Core find modules when running Get-Module and Import-Module. The source of this variable is different for each version, and is explored here.

 PSModulePath in Windows PowerShell

Windows PowerShell allows the value of $env:PSModulePath to be set using user and machine environment variables. If the environment variables are not set, Windows PowerShell uses the default values shown here:

PS> $env:PSModulePath -split ';'
C:\Users\whoami\Documents\WindowsPowerShell\Modules
C:\Program Files\WindowsPowerShell\Modules
c:\windows\system32\windowspowershell\v1.0\Modules

When environment variables are set, the default values are completely replaced, as follows:

	The user path, starting C:\users, is replaced with the content of the user PSModulePath environment variable

	The system path, which starts with C:\windows, is replaced with the machine PSModulePath environment variable

Windows PowerShell merges both instances of the environment variable. C:\Program Files\WindowsPowerShell\Modules is added immediately after the user paths by Windows PowerShell; it will always be present.

The next example sets the user PSModulePath environment variable, adding a new path to the end of the default list. The list is semicolon-delimited. The change will not be visible until Windows PowerShell is restarted:

Get the value of the environment variable
$environmentVariable = [Environment]::GetEnvironmentVariable('PSMODULEPATH', 'User')
If it is not set, use the User default path
if (-not $environmentVariable) {
 $environmentVariable = "$home\Documents\WindowsPowerShell\Modules"
}
Add a new path
$paths = "$environmentVariable;C:\SomeNewModulePath"
Set the environment variable
[Environment]::SetEnvironmentVariable('PSMODULEPATH', $paths, 'User')

 PSModulePath in PowerShell Core

In PowerShell Core, PSModulePath is hardcoded and has the following values:

PS> $env:PSModulePath -split ';'
C:\Users\whoami\Documents\PowerShell\Modules
C:\Program Files\PowerShell\Modules
c:\program files\powershell\6\Modules
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

PowerShell Core disregards the environment variables set for the user or machine. The value may only be overridden by making changes after PowerShell Core has started, for example, by implementing a profile script that explicitly sets a new value for $env:PSModulePath.

The C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules path is included in the list shown in the previous snippet. PowerShell Core performs additional filtering on the content of this directory.

 Get-Module, PSCompatibility, and PSEdition

The PSEdition and PSCompatibleEditions fields were added to the module manifest (a .psd1 file that accompanies a module) with PowerShell 5.1. This allows module authors to state whether a module is PowerShell Core (Core), Windows PowerShell (Desk), or both.

By default, PowerShell Core will not find or use modules from C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules when running the Get-Module -ListAvailable command or when using Import-Module.

Modules in this one location are subject to additional checks as they have not been tested with PowerShell Core and may not load. Modules in this location may be viewed or loaded in the following circumstances:

	The module manifest (.psd1 file) accompanying the module has PSEdition set to Core

	The module manifest uses the PSCompatibleEditions field and includes Core

	The switch parameter SkipEditionCheck is used with Get-Module or Import-Module

For example, the NetSecurity module may be loaded in PowerShell Core directly using this command:

Import-Module NetSecurity -SkipEditionCheck

Modules loaded from the remaining locations in $env:PSModulePath are not filtered.

 The Import-Module command

PowerShell 3 and later will attempt to automatically load modules if a command from that module is used and the module is under one of the paths in the $env:PSModulePath environment variable. The Import-Module command is less important than it was in Windows PowerShell 2.

For example, if PowerShell is started and the PSDesiredStateConfiguration module is not imported, running the Get-DscResource command will cause the module to be imported. This is shown in the following example:

PS> Get-Module PSDesiredStateConfiguration
PS> Get-DscResource | Out-Null
PS> Get-Module PSDesiredStateConfiguration

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Manifest 1.1 PSDesiredStateConfiguration ...

In the previous example, the first time Get-Module is executed, the PSDesiredStateConfiguration module has not yet been loaded. After running Get-DscResource, a command from the PSDesiredStateConfiguration module, the module is loaded and the command is immediately executed. Once loaded, the module is visible when running Get-Module.

Modules in PowerShell may be explicitly imported using the Import-Module command. Modules may be imported using a name or with a full path, as shown in the following example:

Import-Module -Name PSWorkflow
Import-Module -Name C:\Windows\System32\WindowsPowerShell\v1.0\Modules\PSWorkflow\PSWorkflow.psd1

Once a module has been imported, the commands within the module may be listed using Get-Command as follows:

Get-Command -Module PSWorkflow

Modules, Get-Command, and auto-loading

 As the commands exported by a module can only be identified by importing the module, the previous command will trigger automatic import.

Modules installed in Windows PowerShell 5 and PowerShell Core are placed in a folder named after the module version. This allows multiple versions of the same module to coexist, as shown in the following example:

Version 1.8.1 of PSScriptAnalyzer will be imported by default, as it is the highest version number. It is possible to import a specific version of a module using the MinimumVersion and MaximumVersion parameters:

Import-Module PSScriptAnalyzer -MaxmimumVersion 1.7.0

 The Remove-Module command

The Remove-Module command attempts to remove a previously imported module from the current session.

For binary modules or manifest modules that incorporate a DLL, commands are removed from PowerShell but DLLs are not unloaded.

Remove-Module does not remove or delete the files that make up a module from a computer.

 The Find-Module command

The Find-Module command allows you to search the PowerShell Gallery or any other registered repository for modules.

Modules can be identified by name, as shown in the following example:

Find-Module Carbon
Find-Module -Name Carbon
Find-Module -Name Azure*

If the name is not sufficient for the search, the Filter parameter may be used. Supplying a value for the Filter parameter is equivalent to using the search field in the PowerShell Gallery that expands the search to include tags:

Find-Module -Filter IIS

 The Install-Module command

The Install-Module command installs or updates modules from the PowerShell Gallery or any other configured repository. By default, Install-Module adds modules to the path for AllUsers, at C:\Program Files\WindowsPowerShell\Modules.

Access rights

 Installing a module under the AllUsers scope requires an administrator account.

For example, the posh-git module may be installed using either of the following two commands:

Find-Module posh-git | Install-Module
Install-Module posh-git

Modules may be installed under a user-specific path ($home\Documents\WindowsPowerShell\Modules) using the Scope parameter:

Install-Module carbon -Scope CurrentUser

If the most recent version of a module is already installed, the command ends without providing feedback.

In Windows PowerShell, if a newer version is available, it will be automatically installed alongside the original.

In PowerShell Core, a warning is displayed, indicating that the Force parameter must be used to install a newer version, such as in the following example:

Install-Module carbon -Scope CurrentUser -Force

Force may be used to re-install a module in both Windows PowerShell and PowerShell Core:

Install-Module posh-git -Force

The Install-Module command does not provide an option to install modules under the $PSHOME ($env:SYSTEMROOT\System32\WindowsPowerShell\v1.0) directory. The $PSHOME path is reserved for modules created by Microsoft that are deployed with the Windows Management Framework (WMF) or the Windows operating system.

 The Update-Module command

The Update-Module command may only be used after a module has been installed using Install-Module. In both Windows PowerShell and PowerShell Core, it will attempt to update the module to the latest, or specified, version.

 The Save-Module command

The Save-Module command downloads the module from the PowerShell Gallery to a given path without installing it. For example, the following command downloads the Carbon module into a Modules directory in the root of the C: drive:

Save-Module -Name Carbon -Path C:\Modules

Save-Module will do the following:

	Always download the module and overwrite any previously saved version in the specified path.

	Ignore installed or other saved versions.

 PowerShell Core and the WindowsCompatibility module

The WindowsCompatibility module has been created for PowerShell Core to allow or simplify the use of Windows PowerShell modules and commands in PowerShell Core.

The module may be installed in PowerShell Core by running the command:

Install-Module WindowsCompatibility -Scope CurrentUser

The module is required for the following sections in which we'll explore its functionality.

 The compatibility session

The WindowsCompatibility module uses a technique known as implicit remoting to make commands from Windows PowerShell available in PowerShell Core.

A compatibility session is automatically created when any of the commands from the module are run.

By default, the compatibility session is created to use the local computer. To support this, Windows Remoting must be enabled and configured in Windows PowerShell.

Enabling remoting

 Remoting is discussed in greater detail in Chapter 14, Remoting and Remote Management. Until then, Windows Remoting may be enabled and configured using the wirm command with the quick config argument: winrm qc.

The WindowsCompatibility module can use a session on a remote computer. This may be useful when Windows PowerShell is not available locally, as is the case when running PowerShell Core on Linux or macOS. The Initialize-WinSession command is used to to explicitly create a compatibility session.

Remote commands do not run locally

 If a remote computer is used for the compatibility session any imported commands will execute on that remote computer. For example, importing the NetSecurity module and running Get-NetFirewallRule will display the rules on that remote computer.

Each of the remaining commands in the WindowsCompatibility module implements the ComputerName, Credential, and ConfigurationName parameters to support different command sources if necessary.

 Add-WindowsPSModulePath

The Add-WindowsPSModulePath command adds the default Windows PowerShell module paths and the content of the machine level PSModulePath variable, to the end of the $env:PSModulePath variable.

For example, before the command is run, $env:PSModulePath may be set to the following:

C:\Users\whoami\Documents\PowerShell\Modules
C:\Program Files\PowerShell\Modules
c:\program files\powershell\6-preview\Modules
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

After the command has run, $env:PSModulePath will have the following added. These values are hardcoded:

${env:userprofile}\Documents\WindowsPowerShell\Module
${env:programfiles}\WindowsPowerShell\Modules

In addition to these, any paths present in the environment variable are added. This process may result in some duplication. The outcome is shown in this screenshot:

 Get-WinModule and Import-WinModule

The Get-WinModule command lists the modules available to the compatibility session. This may be considered similar to running Get-Module -ListAvailable.

Import-WinModule attempts to load the requested module (by name) in the compatibility session. For example, Import-WinModule Pester will attempt to load the latest version of the Pester module within the compatibility session.

The version number of the loaded module will display as 1.0 when running Get-Module in PowerShell Core this version is not derived from the source module:

It is not possible at this time to import a specific version of a module in the compatibility session.

 Copy-WinModule

The Copy-WinModule command copies module content from the current location to either $pshome\Modules or a user-specified destination.

 Copy-WinModule may only be used when the compatibility session is local (the default behavior).

This command is useful where a module has been tested and found working under Core. At this point, it may be desirable to load the module directly rather than through a compatibility session, or from a path that is not listed in PSModulePath.

 Invoke-WinCommand

Invoke-WinCommand allows the execution of a script block in the compatibility session. This may be useful when the commands or command output do not work well through Windows Remoting.

 Introducing snap-ins

Snap-ins are only available in Windows PowerShell; they are not present in PowerShell Core. A snap-in was the precursor to a module. It was the mechanism available to extend the set of commands in PowerShell 1.0. The cmdlet implementation inside a snap-in is similar to a binary module (written in a language such as C#). A snap-in contains a specialized class that holds the fields that were moved into the module manifest with PowerShell 2.0.

Snap-ins must be installed or registered before they can be used. This can be done using installutil, which is part of the .NET framework package. Many vendors (including Microsoft) took to releasing Microsoft Installer (MSI) packages to simplify the snap-in installation.

Modules have, for the most part, made snap-ins obsolete. Manifest modules, accompanied by a binary module, offer the same performance benefits, without the installation or registration overheads.

The list of snap-ins may be viewed using the following command:

Get-PSSnapIn -Registered

If the Registered parameter is excluded, Get-PSSnapIn will show the snap-ins that have been imported into the current PowerShell session.

Windows PowerShell and the Microsoft.PowerShell.Core snap-in

 The core commands loaded for Windows PowerShell are a part of the snap-in written into the System.Management.Automation library. This snap-in does not appear in the list of registered snap-ins.

Registered snap-ins are read from HKLM:\Software\Microsoft\PowerShell\1\PowerShellSnapIns.

If a computer does not have any registered snap-ins, the registry path may not exist. The snap-in list is generated by looping through all commands and reading the PSSnapIn property in a manner similar to the following command: (Get-Command).PSSnapIn.Name | Select-Object -Unique.

 Using snap-ins

PowerShell will not automatically load commands from a snap-in. All snap-ins, except Microsoft.PowerShell.Core, must be explicitly imported using the Add-PSSnapIn command:

Add-PSSnapIn WDeploySnapin3.0

Once a snap-in has been installed (registered) and added, Get-Command may be used to list the commands:

Get-Command -Module WDeploySnapin3.0

 Summary

In this chapter, we primarily looked at modules and snap-ins. We explored that Unlike snap-ins, modules do not have to be formally installed or registered for use with PowerShell. Different commands were covered under the modules section and we saw the various functionalities it handles. In addition to this, PowerShell Core and the WindowsCompatibility module was introduced. Moreover, we saw that Snap-ins are rarely used these days, and support has been removed from PowerShell Core.

With this pre-requisites, we move on to the next challenge, Chapter 3, Working with Objects in PowerShell, where we will dive into the commands available to work with objects in PowerShell, including Where-Object, and ForEach-Object.

 Working with Objects in PowerShell

Everything we do in PowerShell revolves around working with objects. Objects, in PowerShell, may have properties or methods (or both). It is difficult to describe an object without resorting to this; an object is a representation of a thing or item of data. We might use an analogy to attempt to give meaning to the term.

A book is an object and has properties that describe physical characteristics, such as the number of pages, the weight, or size. It has metadata (information about data) properties that describe the author, the publisher, the table of contents, and so on.

The book might also have methods. A method affects the change on the state of an object. For example, there might be methods to open or close the book or methods to jump to different chapters. A method might also convert an object into a different format. For example, there might be a method to copy a page, or even destructive methods such as one to split the book.

PowerShell has a variety of commands that allow us to work with sets (or collections) of objects in a pipeline.

In this chapter, we are going to cover the following topics:

	Pipelines

	Members

	Enumerating and filtering

	Selecting and sorting

	Grouping and measuring

	Comparing

	Importing, exporting, and converting

 Pipelines

The pipeline is one of the most prominent features of PowerShell. The pipeline is used to send output from one command (standard out or Stdout) into another command (standard in or Stdin).

 Standard output

The term standard output is used because there are different kinds of output. Each of these different forms of output is referred to as a stream.

When assigning the output of a command to a variable, the values are taken from the standard output (the output stream) of a command. For example, the following command assigns the data from the standard output to a variable:

$stdout = Get-CimInstance -ClassName Win32_ComputerSystem

 Non-standard output

In PowerShell there are other output streams; these include error (Write-Error), information (Write-Information, introduced in PowerShell 5), warning (Write-Warning), and verbose (Write-Verbose). Each of these has a stream of its own.

In PowerShell 5 and later, the Write-Host command sends output to the information stream.

Prior to PowerShell 5, Write-Host did not have a dedicated stream; the output could only be captured via a transcript, that is, using the Start-Transcript command to log console output to a file.

For example, if the Verbose switch is added to the preceding command, more information is shown. This extra information is not held in the variable, it is sent to a different stream:

PS> $stdout = Get-CimInstance Win32_ComputerSystem -Verbose
VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters, ''namespaceName' = root\cimv2,'className' = Win32_ComputerSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.

PS> $stdout

Name PrimaryOwnerName Domain TotalPhysicalMemory Model
---- ---------------- ------ ------------------- -----
TITAN Chris WORKGROUP 17076875264 All Series

 The object pipeline

Languages such as Batch scripting (on Windows) or Bash scripting (ordinarily on Linux or Unix) use a pipeline to pass text between commands. It is up to the next command to figure out what the text means.

PowerShell, on the other hand, sends objects from one command to another.

The pipe (|) symbol is used to send the standard output between commands.

In the following example, the output of Get-Process is sent to the Where-Object command, which applies a filter. The filter restricts the list of processes to those that are using more than 50MB of memory:

Get-Process | Where-Object WorkingSet -gt 50MB

 Members

At the beginning of this chapter, the idea of properties and methods was introduced. These are part of a set of items collectively known as members. These members are used to interact with an object. A few of the more frequently used members are NoteProperty, ScriptProperty, ScriptMethod, and Event.

What are the member types?

The list of possible member types can be viewed on MSDN, which includes a short description of each member type: https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx.

This chapter focuses on the different property members: Property, NoteProperty, and ScriptProperty. They are the most relevant to the commands in this chapter.

 The Get-Member command

The Get-Member command is used to view the different members of an object. For example, it can be used to list all of the members of a process object (returned by Get-Process):

Get-Process -Id $PID | Get-Member

Get-Member offers filters using its parameters (MemberType, Static, and View). For example, if we wished to view only the properties of the PowerShell process, we might run the following:

Get-Process -Id $PID | Get-Member -MemberType Property

The Static parameter will be covered in Chapter 7, Working with .NET.

The View parameter is set to all by default. It has three additional values:

	Base: It shows properties that are derived from a .NET object

	Adapted: It shows members handled by PowerShell's Adapted Type System (ATS)

	Extended: It shows members added by PowerShell's Extended Type System (ETS)

Adapted and Extended Type Systems (ATS and ETS)

 ATS and ETS systems make it easy to work with object frameworks other than .NET in PowerShell, for example, objects returned by ADSI, COM, WMI, or XML. Each of these frameworks is discussed later in this book.

Microsoft published an article on ATS and ETS in 2011, which is still relevant today: https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/.

 Accessing properties

Properties of an object in PowerShell may be accessed by writing the property name after a period. For example, the Name property of the current PowerShell process may be accessed by using the following code:

$process = Get-Process -Id $PID
$process.Name

PowerShell also allows us to access these properties by enclosing a command in parentheses:

(Get-Process -Id $PID).Name

Properties of an object are objects themselves. For example, the StartTime property of a process is a DateTime object. We may access the DayOfWeek property by using the following code:

$process = Get-Process -Id $PID
$process.StartTime.DayOfWeek

The variable assignment step may be skipped if parentheses are used:

(Get-Process -Id $PID).StartTime.DayOfWeek

If a property name has a space, it may be accessed using a number of different notation styles. For example, a property named 'Some Name' may be accessed by quoting the name or enclosing the name in curly braces:

$object = [PSCustomObject]@{ 'Some Name' = 'Value' }
$object."Some Name"
$object.'Some Name'
$object.{Some Name}

A variable may also be used to describe a property name:

PS> $object = [PSCustomObject]@{ 'Some Name' = 'Value' }
PS> $propertyName = 'Some Name'
PS> $object.$propertyName
Value

 Using methods

As we mentioned previously, methods effect a change in state. That may be a change to the object associated with the method, or it may take the object and convert it into something else.

Methods are called using the following notation in PowerShell:

<Object>.Method()

If a method expects to have arguments (or parameters), the notation becomes the following:

<Object>.Method(Argument1, Argument2)

When the method is called without parentheses, PowerShell will show the overload definitions. The overload definitions are a list of the different sets of arguments that can be used with a method. For example, the Substring method of System.String has two definitions:

PS> 'thisString'.Substring

OverloadDefinitions

string Substring(int startIndex)
string Substring(int startIndex, int length)

An example of a method that takes an object and converts it into something else is shown here. In this case, a date is converted into a string:

PS> $date = Get-Date "01/01/2010"
PS> $date.ToLongDateString()
01 January 2010

An example of a method that changes a state might be a TCP socket. TCP connections must be opened before data can be sent over a network:

$tcpClient = New-Object System.Net.Sockets.TcpClient
$tcpClient.Connect("127.0.0.1", 135)

A TCP client is created, then an attempt is made to connect to the RPC endpoint mapper port (TCP/135) on the localhost.

The Connect method does not return anything (although it will throw an error if the connection fails). It affects the state of the object and is reflected by the Connected property:

PS> $tcpClient.Connected
True

The state of the object may be changed again by calling the Close method to disconnect:

$tcpClient.Close()

An example of a method that takes arguments might be the ToString method on a DateTime object. Get-Date can be used to create a DateTime object:

PS> (Get-Date).ToString('u')
2016-12-08 21:18:49Z

In the preceding example, the letter u is one of the standard date and time format strings (https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx) and represents a universal sortable date/time pattern. The same result may be achieved by using the Format parameter of Get-Date:

PS> Get-Date -Format u
2016-12-08 21:19:31Z

The advantage this method has over the parameter is that the date can be adjusted before conversion by using some of the other properties and methods:

(Get-Date).Date.AddDays(-1).ToString('u')

The result of this command will be the start of yesterday (midnight, one day before today).

 Access modifiers

Depending on the type of object, properties may be read-only or read/write. These may be identified using Get-Member and by inspecting the access modifiers.

In the following example, the value in curly braces at the end of each line is the access modifier:

PS> $File = New-Item NewFile.txt -Force
PS> $File | Get-Member -MemberType Property

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property datetime CreationTime {get;set;}
CreationTimeUtc Property datetime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property string DirectoryName {get;}
Exists Property bool Exists {get;}

When the modifier is {get;}, the property value is read-only; attempting to change the value will result in an error:

PS> $File = New-Item NewFile.txt -Force
PS> $File.Name = 'NewName'
'Name' is a ReadOnly property.
At line:1 char:1
+ $File.Name = 'NewName'
+ ~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : PropertyAssignmentException

When the modifier is {get;set;}, the property value may be read and changed. In the preceding example, CreationTime has the set access modifier. The value can be changed; in this case, it may be set to any date after January 1, 1601:

$File = New-Item NewFile.txt -Force
$File.CreationTime = Get-Date -Day 1 -Month 2 -Year 1692

The result of the preceding command can be seen by reviewing the properties for the file in PowerShell:

Get-Item NewFile.txt | Select-Object -ExpandProperty CreationTime

Alternatively, you can use explorer, as shown in the following screenshot:

In the preceding example, the change made to CreationTime is passed from the object representing the file to the file itself. The object used here, based on the .NET class System.IO.FileInfo, is written in such a way that it supports the change. A property may indicate that it can be changed (by supporting the set access modifier in Get-Member) and still not pass the change back to whatever the object represents.

 The Add-Member command

Add-Member allows new members to be added to existing objects.

Starting with an empty object, it is possible to add new properties:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType NoteProperty
PS> $empty

New

Hello world

Add-Member may also add a ScriptProperty or a ScriptMethod. When writing script-based properties and methods, the reserved variable $this is used to refer to itself.

To add calculated properties, which are evaluated when viewed, use the following code:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType NoteProperty
PS> $empty | Add-Member -Name Calculated -Value { $this.New.Length } -MemberType ScriptProperty
PS> $empty

New Calculated
--- ----------
Hello world 11

Methods may be added as well, for example, a method to replace the word world in the new property:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType NoteProperty
PS> $params = @{
>> Name = 'Replace'
>> MemberType = 'ScriptMethod'
>> Value = { $this.New -replace 'world', 'everyone' }
>> }
PS> $empty | Add-Member @params
PS> $empty.Replace()
Hello everyone

 Enumerating and filtering

Enumerating, or listing, the objects in a collection in PowerShell does not need a specialized command. For example, if the results of Get-PSDrive were assigned to a variable, enumerating the content of the variable is as simple as writing the variable name and pressing Enter:

PS> $drives = Get-PSDrive
PS> $drives

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
Alias Alias
C 319.37 611.60 FileSystem C:\
Cert Certificate \
Env Environment
...

ForEach-Object may be used where something complex needs to be done to each object.

Where-Object may be used to filter results.

 The ForEach-Object command

ForEach-Object is most often used as a loop (of sorts). For example, the following command works on each of the results from Get-Process in turn:

Get-Process | ForEach-Object {
 Write-Host $_.Name -ForegroundColor Green
}

In the preceding example, a special variable, $_, is used to access each of the objects from the input pipeline. In the previous example, it is used to access each of the objects returned by the Get-Process command.

ForEach-Object may also be used to get a single property, or execute a single method on each of the objects.

For example, ForEach-Object may be used to return only the Path property when using Get-Process:

Get-Process | ForEach-Object Path

Or, ForEach-Object may be used to run the ToString method on a set of dates:

PS> (Get-Date '01/01/2019'), (Get-Date '01/01/2020') | ForEach-Object ToString('yyyyMMdd')
20190101
20200101

 Where-Object command

Filtering the output from commands may be performed using Where-Object. For example, we might filter processes that started after 5 pm today:

Get-Process | Where-Object StartTime -gt (Get-Date 17:00:00)

The syntax shown in help for Where-Object does not quite match the syntax used here. The help text is as follows:

Where-Object [-Property] <String> [[-Value] <Object>] -GT ...

In the preceding example, we see the following:

	StartTime is the argument for the Property parameter (first argument by position

	The comparison is greater than, as signified by the gt switch parameter

	The date (using the Get-Date command) is the argument for the Value parameter (second argument by position)

Based on that, the example might be written as follows:

Get-Process | Where-Object -Property StartTime -Value (Get-Date 17:00:00) -gt

However, it is far easier to read StartTime is greater than <some date>, so most examples tend to follow that pattern.

Where-Object will also accept filters using the FilterScript parameter. FilterScript is often used to describe more complex filters, filters where more than one term is used:

Get-Service | Where-Object { $_.StartType -eq 'Manual' -and $_.Status -eq 'Running' }

When a filter like this is used, the conditions are evaluated in the order they are written. This can be used to avoid conditions that may otherwise cause errors.

In the following example, Test-Path is used before Get-Item, which is used to test the last time a file was written on a remote computer (via the administrative share):

'Computer1', 'Computer2' | Where-Object {
 (Test-Path "\\$_\c$\temp\file.txt") -and
 (Get-Item "\\$_\c$\temp\file.txt").LastWriteTime -lt (Get-Date).AddDays(-90)
}

If Test-Path is removed, the snippet will throw an error if either the computer or the file does not exist.

 Selecting and sorting

Select-Object allows a subset of data to be returned when executing a command. This may be a more restrictive number of elements, or a smaller number of properties.

Sort-Object can be used to perform both simple and complex sorting.

 The Select-Object command

Select-Object is most frequently used to limit the properties returned by a command. The command is extremely versatile as it enables you to do the following:

	Limit the properties returned by a command by name:

Get-Process | Select-Object -Property Name, Id

	Limit the properties returned from a command using wildcards:

Get-Process | Select-Object -Property Name, *Memory

	List everything but a few properties:

Get-Process | Select-Object -Property * -Exclude *Memory*

	Get the first few objects:

Get-ChildItem C:\ -Recurse | Select-Object -First 2

	Get the last few objects:

Get-ChildItem C:\ | Select-Object -Last 3

	Skip items at the beginning. In this example, this returns the fifth item:

Get-ChildItem C:\ | Select-Object -Skip 4 -First 1

	Skip items at the end. This example returns the third from the end:

Get-ChildItem C:\ | Select-Object -Skip 2 -Last 1

	Expand properties:

Get-ChildItem C:\ | Select-Object -ExpandProperty FullName
Get-ChildItem $env:SYSTEMROOT*.dll | Select-Object Name, Length -ExpandProperty VersionInfo

	Select-Object can return -Unique values from arrays of simple values:

1, 1, 1, 3, 5, 2, 2, 4 | Select-Object -Unique

About Get-Unique

Get-Unique may also be used to create a list of unique elements. When using Get-Unique, a list must be sorted first, for example: 1, 1, 1, 3, 5, 2, 2, 4 | Sort-Object | Get-Unique.

Select-Object can also return unique values from arrays of objects, but only if a list of properties is specified or a wildcard is used for the list of properties.

In the following example, we create an object with one property called Number. The value for the property is 1, 2, or 3. There are two objects with a value of 1, two with a value of 2, and two with a value of 3:

PS> (1..3 + 1..3) | ForEach-Object { [PSCustomObject]@{ Number = $_ } }

Number

 1
 2
 3
 1
 2
 3

Select-Object can remove the duplicates from the set in this example using the -Unique parameter if a list of properties (or a wildcard for the properties) is set:

PS> (1..3 + 1..3) |
>> ForEach-Object { [PSCustomObject]@{ Number = $_ } } |
>> Select-Object -Property * -Unique

Number

 1
 2
 3

When using Get-Member, you may have noticed the PropertySet member type. Select-Object can display the properties within the set. In the following example, Get-Member is used to view property sets, and Select-Object is used to display the first property set (PSConfiguration):

PS> Get-Process -Id $PID | Get-Member -MemberType PropertySet

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
PSConfiguration PropertySet PSConfiguration {Name, Id, ...
PSResources PropertySet PSResources {Name, Id, Hand...

PS> Get-Process -Id $PID | Select-Object PSConfiguration

Name Id PriorityClass FileVersion
---- -- ------------- -----------
powershell_ise 5568 Normal 10.0.14393.103 (rs1_release_inmarket.160819-1924)

Select-Object is also able to make new properties. It will build a property if given a name and a means of calculating it (an expression):

Get-Process | Select-Object -Property Name, Id,
 @{Name='FileOwner'; Expression={ (Get-Acl $_.Path).Owner }}

In the preceding example, @{} is a hashtable. Hashtables are discussed in Chapter 5, Variables, Arrays, and Hashtables.

Select-Object can change objects

When Select-Object is used with the Property parameter, a new object is created (based on the value Select-Object is working with). For example, the first process may be selected as shown here. The resulting object type is Process: (Get-Process | Select-Object -First 1).GetType().

If Select-Object also requests a list of properties, the object type changes to PSCustomObject: (Get-Process | Select-Object -Property Path, Company -First 1).GetType().

This is important if something else is expected to use the process. For example, Stop-Process will throw an error because the object being passed is not a process, nor is there sufficient information available to determine which process must stop (either the Id or Name properties): Get-Process | Select-Object -Property Path, Company -First 1 | Stop-Process -WhatIf.

 The Sort-Object command

The Sort-Object command allows objects to be sorted on one or more properties.

By default, Sort-Object will sort numbers in ascending order:

PS> 5, 4, 3, 2, 1 | Sort-Object
1
2
3
4
5

Strings are sorted in ascending order, irrespective of uppercase or lowercase:

PS> 'ccc', 'BBB', 'aaa' | Sort-Object
aaa
BBB
ccc

When dealing with complex objects, Sort-Object may be used to sort based on a named property. For example, processes may be sorted based on the Id property:

Get-Process | Sort-Object -Property Id

Objects may be sorted on multiple properties; for example, a list of files may be sorted on LastWriteTime and then on Name:

Get-ChildItem C:\Windows\System32 |
 Sort-Object LastWriteTime, Name

In the preceding example, items are first sorted on LastWriteTime. Items that have the same value for LastWriteTime are then sorted based on Name.

Sort-Object is not limited to sorting on existing properties. A script block (a fragment of script, enclosed in curly braces) can be used to create a calculated value for sorting. For example, it is possible to order items based on a word, as shown in this example:

PS> $examResults = @(
>> [PSCustomObject]@{ Exam = 'Music'; Result = 'N/A'; Mark = 0 }
>> [PSCustomObject]@{ Exam = 'History'; Result = 'Fail'; Mark = 23 }
>> [PSCustomObject]@{ Exam = 'Biology'; Result = 'Pass'; Mark = 78 }
>> [PSCustomObject]@{ Exam = 'Physics'; Result = 'Pass'; Mark = 86 }
>> [PSCustomObject]@{ Exam = 'Maths'; Result = 'Pass'; Mark = 92 }
>>)
PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }

Exam Result Mark
---- ------ ----
Maths Pass 92
Physics Pass 86
Biology Pass 78
History Fail 23
Music N/A 0

In the preceding example, when Sort-Object encounters a pass result, it is given the lowest numeric value (1). As Sort-Object defaults to ascending ordering, this means exams with a result of pass appear first in the list. This process is repeated to give a numeric value to each of the other possible results.

Sorting within the set varies depending on the version of PowerShell. Windows PowerShell will change the order of the elements within each set. PowerShell Core on the other hand maintains the original order, listing Biology, then Physics, then Maths within the pass set.

As Sort-Object is capable of sorting on more than one property, the preceding example can be taken further to sort on mark next. This makes the output order entirely predictable, regardless of the version of PowerShell:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, Mark

Exam Result Mark
---- ------ ----
Biology Pass 78
Physics Pass 86
Maths Pass 92
History Fail 23
Music N/A 0

Adding the Descending parameter to Sort-Object will reverse the order of both fields:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, Mark -Descending

Exam Result Mark
---- ------ ----
Music N/A 0
History Fail 23
Maths Pass 92
Physics Pass 86
Biology Pass 78

The ordering behavior can be made property-specific using the notation that's shown in the following example:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, @{ Expression = { $_.Mark }; Descending = $true }

Exam Result Mark
---- ------ ----
Maths Pass 92
Physics Pass 86
Biology Pass 78
History Fail 23
Music N/A 0

The hashtable, @{}, is used to describe an expression (a calculated property; in this case, the value for mark) and the sorting order, which is either ascending or descending.

In the preceding example, the first sorting property, based on the result property, is sorted in ascending order as this is the default. The second property, mark, is sorted in descending order.

 Grouping and measuring

Group-Object is a powerful command that allows you to group objects together based on similar values.

Measure-Object supports a number of simple mathematical operations, such as counting the number of objects, calculating an average, calculating a sum, and so on. It also allows characters, words, or lines to be counted in text fields.

 The Group-Object command

The Group-Object command shows a group and count for each occurrence of a value in a collection of objects.

Given the sequence of numbers shown, Group-Object creates a Name that holds the value it is grouping, a Count as the number of occurrences of that value, and a Group as the set of similar values:

PS> 6, 7, 7, 8, 8, 8 | Group-Object

Count Name Group
----- ---- -----
 1 6 {6}
 2 7 {7, 7}
 3 8 {8, 8, 8}

The Group property may be removed using the NoElement parameter, which simplifies the output from the command:

PS> 6, 7, 7, 8, 8, 8 | Group-Object -NoElement

Count Name
----- ----
 1 6
 2 7
 3 8

Group-Object can group based on a specific property. For example, it might be desirable to list the number of occurrences of particular files in an extensive folder structure. In the following example, the C:\Windows\Assembly folder contains different versions of DLLs for different versions of packages, including the .NET Framework:

Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
 Group-Object Name

Combining Group-Object with commands such as Where-Object and Sort-Object allows reports about the content of a set of data to be generated extremely quickly, for example, the top five files that appear more than once in a file tree:

PS> Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
>> Group-Object Name -NoElement |
>> Where-Object Count -gt 1 |
>> Sort-Object Count, Name -Descending |
>> Select-Object Name, Count -First 5

Name Count
---- -----
Microsoft.Web.Diagnostics.resources.dll 14
Microsoft.Web.Deployment.resources.dll 14
Microsoft.Web.Deployment.PowerShell.resources.dll 14
Microsoft.Web.Delegation.resources.dll 14
Microsoft.Web.PlatformInstaller.resources.dll 13

As was seen with Sort-Object, Group-Object can group on more than one property. For example, we might group on both a filename and the size of a file (the Length property of a file):

PS> Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
>> Group-Object Name, Length -NoElement |
>> Where-Object Count -gt 1 |
>> Sort-Object Name -Descending |
>> Select-Object Name, Count -First 6

Name Count
---- -----
WindowsBase.ni.dll, 4970496 2
System.Xml.ni.dll, 6968320 2
System.Windows.Interactivity.ni.dll, 121856 2
System.Windows.Forms.ni.dll, 17390080 2
System.Web.ni.dll, 16481792 2
System.Web.ni.dll, 13605888 2

In the preceding example, we can see that System.Web.ni.dll appears four times (a count of 2, twice) in the folder structure, and that each pair of files has the same size.

Like Sort-Object, Group-Object is not limited to properties that already exist. It can create calculated properties in much the same way. For example, grouping on an email domain in a list of email addresses might be useful:

PS> 'one@one.example', 'two@one.example', 'three@two.example' |
>> Group-Object { ($_ -split '@')[1] }

Count Name Group
----- ---- -----
 2 one.example {one@one.example, two@one.example}
 1 two.example {three@two.example}

In this example, the split operator is used to split on the @ character; everything to the left is stored in index 0, while everything to the right is stored in index 1.

By default, Group-Object returns the collection of objects shown in each of the preceding examples. Group-Object is also able to return a hashtable using the AsHashtable parameter.

When using the AsHashTable parameter, the AsString parameter is normally used. The AsString parameter forces the key for each entry in the hashtable to be a string, for example:

PS> $hashtable = 'one', 'two', 'two' | Group-Object -AsHashtable -AsString
PS> $hashtable['one']

one

By default, Group-Object is case insensitive. The strings one, ONE, and One are all considered equal. The -CaseSensitive parameter forces Group-Object to differentiate between items where cases differ:

PS> 'one', 'ONE', 'One' | Group-Object -CaseSensitive

Count Name Group
----- ---- -----
 1 one {one}
 1 ONE {ONE}
 1 One {One}

 The Measure-Object command

When used without any parameters, Measure-Object will return a value for Count, which is the number of items passed in using the pipeline, for example:

PS> 1, 5, 9, 79 | Measure-Object

Count : 4
Average :
Sum :
Maximum :
Minimum :
Property :

Each of the remaining properties is empty, unless requested using their respective parameters. For example, -Sum may be requested:

PS> 1, 5, 9, 79 | Measure-Object -Sum

Count : 4
Average :
Sum : 94
Maximum :
Minimum :
Property :

Adding the remaining parameters will fill in the rest of the fields (except Property):

PS> 1, 5, 9, 79 | Measure-Object -Average -Maximum -Minimum -Sum

Count : 4
Average : 23.5
Sum : 94
Maximum : 79
Minimum : 1
Property :

The value for Property is filled in when Measure-Object is asked to work against a particular property (instead of a set of numbers), for example:

PS> Get-Process | Measure-Object WorkingSet -Average

Count : 135
Average : 39449395.2
Sum :
Maximum :
Minimum :
Property : WorkingSet

When working with text, Measure-Object can count characters, words, or lines. For example, it can be used to count the number of lines, words, and characters in a text file:

PS> Get-Content C:\Windows\WindowsUpdate.log | Measure-Object -Line -Word -Character

Lines Words Characters Property
----- ----- ---------- --------
 3 32 268

 Comparing

The Compare-Object command allows collections of objects to be compared to one another.

Compare-Object must be supplied with a value for the ReferenceObject and DifferenceObject parameters, which are normally collections or arrays of objects. If both values are equal, Compare-Object does not return anything by default. For example, both the Reference and Difference object in the following example are identical:

Compare-Object -ReferenceObject 1, 2 -DifferenceObject 1, 2

If there are differences, Compare-Object will display the results, as shown here:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2

InputObject SideIndicator
----------- -------------
 3 <=
 4 <=

This shows that the ReferenceObject (the collection on the left) has the values, but the DifferenceObject (the collection on the right) does not.

Compare-Object has a number of other parameters that may be used to change the output. The IncludeEqual parameter adds values that are present in both collections to the output:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2 -IncludeEqual

InputObject SideIndicator
----------- -------------
 1 ==
 2 ==
 3 <=
 4 <=

ExcludeDifferent will omit the results that differ. This parameter makes sense if IncludeEqual is also set; without this, the command will always return nothing.

The PassThru parameter is used to return the original object instead of the representation showing the differences. In the following example, it is used to select values that are common to both the reference and difference objects:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2 -ExcludeDifferent -IncludeEqual -PassThru
1
2

Compare-Object is able to compare based on properties of objects, as well as the simpler values in the preceding examples. This can be a single property, or a list of properties. For example, the following command compares the content of C:\Windows\System32 with C:\Windows\SysWOW64, returning files that have the same name and are the same size in both:

$reference = Get-ChildItem C:\Windows\System32 -File
$difference = Get-ChildItem C:\Windows\SysWOW64 -File
Compare-Object $reference $difference -Property Name, Length -IncludeEqual -ExcludeDifferent

By default, Compare-Object will write an error if either the reference or difference objects are null. If Compare-Object is used when there is a chance of either being empty, the following technique can be used to avoid an error being generated provided neither contains an explicit null value:

$reference = Get-ChildItem C:\Windows\System32\tcpmon*.ini
$difference = Get-ChildItem C:\Windows\SysWOW64\tcpmon*.ini
Compare-Object @($reference) @($difference) -Property Name

The array, (@()), wrapping each parameter value will be discarded by PowerShell. If $difference is empty, it will be treated as an empty array instead of it being a null value.

 Importing, exporting, and converting

Getting data in and out of PowerShell is a critical part of using the language. There are a number of commands dedicated to this task by default.

 The Export-Csv command

The Export-Csv command writes data from objects to a text file, for example:

Get-Process | Export-Csv processes.csv

By default, Export-Csv will write a comma-delimited file using ASCII encoding and will completely overwrite any file using the same name.

Export-Csv may be used to add lines to an existing file using the Append parameter. When the Append parameter is used, the input object must have each of the fields listed in the CSV header or an error will be thrown unless the Force parameter is used:

PS> Get-Process powershell | Select-Object Name, Id | Export-Csv .\Processes.csv
PS> Get-Process explorer | Select-Object Name | Export-Csv .\Processes.csv -Append
Export-Csv : Cannot append CSV content to the following file: .\Processes.csv.
The appended object does not have a property that corresponds to the following column: Id. To continue with mismatched properties, add the -Force parameter, and then retry the command.
At line:2 char:51
 + ... ershell_ise | Select-Object Name | Export-Csv .\Processes.csv -Append
 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidData: (Id:String) [Export-Csv], InvalidOperationException
 + FullyQualifiedErrorId : CannotAppendCsvWithMismatchedPropertyNames,Microsoft.PowerShell.Commands.ExportCsvCommand

If the Append parameter is used and the input object has more fields than the CSV, the extra fields will be silently dropped when writing the CSV file. For example, the value held in Id will be ignored when writing the results to the existing CSV file:

Get-Process powershell | Select-Object Name | Export-Csv .\Processes.csv
Get-Process explorer | Select-Object Name, Id | Export-Csv .\Processes.csv -Append

Export-Csv in Windows PowerShell will write a header line to each file, which details the .NET type it has just exported. If the preceding example is used, that will be the following:

#TYPE Selected.System.Diagnostics.Process

Export-Csv can be instructed to exclude this header using the NoTypeInformation parameter:

Get-Process | Export-Csv processes.csv -NoTypeInformation

ConvertTo-Csv in Windows PowerShell is similar to Export-Csv, except that instead of writing content to a file, content is written as command output:

PS> Get-Process powershell | Select-Object Name, Id | ConvertTo-Csv
#TYPE Selected.System.Diagnostics.Process
"Name","Id"
"powershell","404"

PowerShell Core: No more type information

In PowerShell Core, this behavior has changed. The NoTypeInformation parameter for Export-Csv and ConvertTo-Csv is present, but it now has a default value of true. The IncludeTypeInformation parameter has been added to request this value in the output.

Both Export-Csv and ConvertTo-Csv are limited in what they can do with arrays of objects. For example, ConvertTo-Csv is unable to display the values that are in an array:

PS> [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5
>> } | ConvertTo-Csv -NoTypeInformation
"Name","Value"
"Numbers","System.Object[]"

The value it writes is taken from the ToString method, which is called on the property called Value, for example:

PS> $object = [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5
>> }
PS> $object.Value.ToString()

System.Object[]

If a CSV file is expected to hold the content of an array, code must be written to convert it into a suitable format. For example, the content of the array can be written after converting it in to a string:

PS> [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5
>> } | ForEach-Object {
>> $_.Value = $_.Value -join ', '
>> $_
>> } | ConvertTo-Csv -NoTypeInformation

"Name","Value"
"Numbers","1, 2, 3, 4, 5"

In the preceding example, the value of the property is joined using a comma followed by a space. The modified object (held in $_) is passed on to the ConvertTo-Csv command.

 The Import-Csv command

Comma-Separated Value (CSV) files are plain text. Applications such as Microsoft Excel can work with CSV files without changing the file format, although the advanced features Excel has cannot be saved to a CSV file.

By default, Import-Csv expects input to have a header row, to be comma delimited, and to use ASCII file encoding. If any of these items are different, the command parameters may be used. For example, a tab may be set as the delimiter:

Import-Csv TabDelimitedFile.tsv -Delimiter `t

A tick followed by t (`t) is used to represent the tab character in PowerShell.

Data that's imported using Import-Csv will always be formatted as a string. If Import-Csv is used to read a file containing the following text, each of the numbers will be treated as a string:

Name,Position
Jim,35
Matt,3
Dave,5

Attempting to use Sort-Object on the imported CSV file will result in values being sorted as if they were strings, not numbers:

PS> Import-Csv .\positions.csv | Sort-Object Position

Name Position
---- --------
Matt 3
Jim 35
Dave 5

Sort-Object can be used to consider the value for Position as an integer by using a script block expression:

PS> Import-Csv .\positions.csv | Sort-Object { [Int]$_.Position }

Name Position
---- --------
Matt 3
Dave 5
Jim 35

This conversion problem exists regardless of whether the data in a CSV file is a number, or a date, or any type other than string.

ConvertFrom-Csv is similar to Import-Csv, except that content is read from PowerShell instead of a file:

PS> "powershell,404" | ConvertFrom-Csv -Header Name, Id

Name Id
---- --
powershell 404

 Export-Clixml and Import-Clixml

Export-Clixml creates representations of objects in XML files. Export-Clixml is extremely useful where type information about each property must be preserved.

For example, the following object may be exported using Export-Clixml:

[PSCustomObject]@{
 Number = 1
 Decimal = 2.3
 String = 'Hello world'
} | Export-Clixml .\object.xml

The resulting XML file shows the type for each of the properties it has just exported:

PS> Get-Content object.xml
<Objs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="0">
 <TN RefId="0">
 <T>System.Management.Automation.PSCustomObject</T>
 <T>System.Object</T>
 </TN>
 <MS>
 <I32 N="Number">1</I32>
 <Db N="Decimal">2.3</Db>
 <S N="String">Hello world</S>
 </MS>
 </Obj>
</Objs>

I32 is a 32-bit integer (Int32). Db is a double-precision floating-point number (double). S is a string.

With this extra information in the file, PowerShell can rebuild the object, including the different types, using Import-Clixml, as follows:

$object = Import-Clixml .\object.xml

Once imported, the value types can be inspected using the GetType method:

PS> $object.Decimal.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
 True True Double System.ValueType

 Summary

In this chapter, we have explored the object pipeline, as well as objects themselves.

Many of the commands for working with objects in a pipeline were introduced. This includes the ability to filter and select from sets of objects to sort, group, and measure.

Finally, we explored exporting, importing, and converting objects. In Chapter 4, Operators, we will explore PowerShell's operators.

 Operators

In programming, an operator is an object that is used to manipulate an item of data. Operators have a wide variety of uses, from comparing two values and replacing values, to allowing command names to be expressed as string. An operator is truly a fundamental part of any programming language and PowerShell is not exception.

PowerShell has a wide variety of operators; most of these will be briefly explored within this chapter.

In this chapter, we are going to cover the following topics:

	Arithmetic operators

	Assignment operators

	Comparison operators

	Regular expression-based operators

	Binary operators

	Logical operators

	Type operators

	Redirection operators

	Other operators

 Arithmetic operators

Arithmetic operators are used to perform numeric calculations. The operators that are available are available to us in PowerShell are as follows:

	Addition: +

	Subtraction: -

	Multiplication: *

	Division: /

	Remainder: %

	Shift left: -shl

	Shift right: -shr

As well as its use in numeric calculations, the addition operator may also be used with strings, arrays, and hashtables, and the multiplication operator may also be used with strings and arrays.

The sections below explore each of the operators listed above.

 Operator precedence

Mathematical operations are executed in a specific order. For example, consider the following two simple calculations:

3 + 2 * 2
2 * 2 + 3

The result of both of the preceding expressions is 7 (2 multiplied by 2, then add 3).

PowerShell, and most other programming languages, will calculate elements of an expression using multiplication (*), division (/), and remainder (%) first. Addition (+) and subtraction (-) are calculated next.

PowerShell has two additional operators in this category, -shl and -shr. These two have the lowest precedence and are only executed after other operations. For example, the result of the following calculation will be 128:

2 * 4 -shl 2 + 2

First, 2 * 4 is calculated, followed by 2 + 2, and then -shl is used. The -shl operator is discussed in detail in Shift left and shift right operators.

Consider the following example:

(3 + 2) * 2

Expressions in parentheses are always calculated first to cater for more advanced situations. For example, the result of the above calculation is 10.

 Addition and subtraction operators

The addition and subtraction operators, + and -, are most easily recognisable as arithmetic operators. The addition operator also serves as a concatenation operator.

 Addition operators

The addition operator may be used to add numeric values. For example, the simple addition operation below will result in the value 5.14159:

2.71828 + 3.14159

The addition operator may also be used to concatenate strings:

'hello' + ' ' + 'world'

If an attempt is made to concatenate a string with a number, the number will be converted into a string:

'hello number ' + 1

This style of operation will fail if the number is used first. PowerShell expects the entire expression to be numeric if that is how it begins:

PS> 1 + ' is the number I like to use'
Cannot convert value "is the number I like to use" to type "System.Int32". Error: "Input string was not in a correct format."
At line:1 char:1
+ 1 + ' is the number I like to use'
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The addition operator may be used to add single elements to an existing array. As arrays are of fixed size, PowerShell will create a new array containing 1, 2, and 3:

@(1, 2) + 3

Joining arrays with the addition operator is simple. Each of the following three examples creates an array and each array contains the values 1, 2, 3, and 4:

@(1, 2) + @(3, 4)
(1, 2) + (3, 4)
1, 2 + 3, 4

Hashtables may be joined in a similar manner:

@{key1 = 1} + @{key2 = 2}

The addition operation will fail if keys are duplicated as part of the addition operation:

PS> @{key1 = 1} + @{key1 = 2}
Item has already been added. Key in dictionary: 'key1' Key being added: 'key1'
At line:1 char:1
+ @{key1 = 1} + @{key1 = 2}
+ ~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

 Subtraction operator

The subtraction operator may only be used for numeric expressions. The results of the following expressions are 3 and -18, respectively:

5 - 2
2 - 20

Subtraction is a simple but important operation. The sections below explore multiplication, division, and remainder.

 Multiplication, division, and remainder operators

Like the addition operator, the multiplication operator is capable of acting on strings. The division and remainder operators perform mathematical operations only.

 Multiplication operator

The multiplication operator is able to perform simple numeric operations. For example, the result of the following expression is 5:

2.5 * 2

The multiplication operator may also be used to duplicate strings, resulting in hellohellohello:

'hello' * 3

As with the addition operator, the multiplication operator will throw an error if a number is on the left of the expression:

PS> 3 * 'hello'
Cannot convert value "hello" to type "System.Int32". Error: "Input string was not in a correct format."
At line:1 char:2
+ 3 * 'hello'
+ ~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The multiplication operator may also be used to duplicate arrays. Each of the following examples creates an array containing one, two, one, and two:

@('one', 'two') * 2
('one', 'two') * 2
'one', 'two' * 2

 Division operator

The division operator performs numeric division:

20 / 5

An error will be thrown if an attempt to divide by 0 is made:

PS> 1 / 0
Attempted to divide by zero.
At line:1 char:1
+ 1 / 0
+ ~~~~~
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

Division using negative numbers is permitted in PowerShell. When a positive number is divided by a negative number, the result will be negative.

 Remainder operator

The remainder operator returns the remainder of the whole-number (integer) division. For example, the result of the following operation is 1:

3 % 2

The remainder operator can also be used for alternation. That is, performing an action on every second, third, fourth, and so on iteration of a loop.

1..100 | Where-Object { $_ % 5 -eq 0 } | ForEach-Object {
 Write-Host $_
}

The value will show 5, 10, 15, 20, and so on. Each of those values will have a remainder of when divided by 5.

 Shift left and shift right operators

The -shl and -shr operators were introduced with PowerShell 3.0. These operators perform bit-shifting.

The possible bit values for a byte can be represented as a table:

	
Bit position

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
Bit value

	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

For a numeric value of 78, the following bits must be set:

	
Bit value

	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
On or off

	
0

	
1

	
0

	
0

	
1

	
1

	
1

	
0

When a left shift operation is performed, every bit is moved one to the left. Say we run this expression:

78 -shl 1

The result is 156, which is expressed in this bit table:

	
Bit value

	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
Before shift

	
0

	
1

	
0

	
0

	
1

	
1

	
1

	
0

	
After shift

	
1

	
0

	
0

	
1

	
1

	
1

	
0

	
0

Shifting one bit to the right will reverse the operation:

PS> 156 -shr 1
78

When converting values using left or right shifting, bits that are set and right-shifted past the rightmost bit (bit value 1) become 0, for example:

PS> 3 -shr 1
1

This is expressed in the following table. Bits that end up in the rightmost column are discarded:

	
Bit value

	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
Out of range

	
Before shift

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
1

	

	
After shift

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
 1

If the numeric value is of a specific numeric type, the resulting number cannot exceed the maximum value for the type. For example, a Byte has a maximum value of 255; if the value of 255 is shifted one bit to the left, the resulting value will be 254:

PS> ([Byte]255) -shl 1
254

Shifting out of range is shown in this table:

	
Bit value

	
Out of range

	
128

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
Before shift

	
	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
After shift

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
0

If the value were capable of being larger, such as a 16 or 32-bit integer, the value would be allowed to increase as it no longer falls out of range:

PS> ([Int16]255) -shl 1
510

Bit shifting like this is easiest to demonstrate with unsigned types such as Byte, UInt16, UInt32, and UInt64. Unsigned types cannot support values lower than 0 (negative numbers).

Signed types, such as SByte, Int16, Int32, and Int64, sacrifice their highest-order bit to indicate whether the value is positive or negative. For example, this table shows the bit positions for a signed byte (SByte):

	
Bit position

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
Bit value

	
Signing

	
64

	
32

	
16

	
8

	
4

	
2

	
1

The preceding bit values may be used to express numbers between 127 and -128. The binary forms of 1 and -1 are shown as an example in the following table:

	
Bit value

	
Signing

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
1

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
-1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

For a signed type, each bit (except for signing) adds to a minimum value:

	When the signing bit is not set, add each value to 0

	When the signing bit is set, add each value to -128

When applying this to left shift, if the value of 64 is shifted one bit to the left, it becomes -128:

PS> ([SByte]64) -shl 1
-128

The shift into the signing bit is expressed in the following table:

	
Bit value

	
Signing

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
Before shift

	
0

	
1

	
0

	
0

	
0

	
0

	
0

	
0

	
After shift

	
1

	
0

	
0

	
0

	
0

	
0

	
0

	
0

Shift operations such as these are common in the networking world. For example, the IP address 192.168.4.32 may be represented in a number of different ways:

	In hexadecimal: C0A80420

	As an unsigned 32-bit integer: 3232236576

	As a signed 32-bit integer: -1062730720

The signed and unsigned versions of an IP address are calculated using left shift. For example, the IP address 192.168.4.32 may be written as a signed 32-bit integer (Int32):

(192 -shl 24) + (168 -shl 16) + (4 -shl 8) + 32

Shift operations such as these can be useful but are not common. The next section explores assignment the assignment operator.

 Assignment operators

Assignment operators are used to give values to variables. The assignment operators that are available are as follows:

	Assign: =

	Add and assign: +=

	Subtract and assign: -=

	Multiply and assign: *=

	Divide and assign: /=

	Modulus and assign: %=

As with the arithmetic operators, add and assign may be used with strings, arrays, and hashtables. Multiply and assign may be used with strings and arrays.

 Assign, add and assign, and subtract and assign

The assignment operator (=) is used to assign values to variables and properties, for example, let's look at assigning a value to a variable:

$variable = 'some value'

Or, we might change the PowerShell window title by assigning a new value to its property:

$host.UI.RawUI.WindowTitle = 'PowerShell window'

The add and assign operator (+=) operates in a similar manner to the addition operator. The following example assigns the value 1 to a variable, then += is used to add 20 to that value:

$i = 1
$i += 20

The preceding example is equivalent to writing the following:

$i = 1
$i = $i + 20

The += operator may be used to concatenate strings:

$string = 'one'
$string += 'one'

As we saw with the addition operator, attempting to add a numeric value to an existing string is acceptable. Attempting to add a string to a variable containing a numeric value is not:

PS> $variable = 1
PS> $variable += 'one'
Cannot convert value "one" to type "System.Int32". Error: "Input string was not in a correct format."
At line:2 char:1
+ $variable += 'one'
+ ~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

It is possible to work around this by assigning a type to the variable:

[String]$string = 1
$string += 'one'

The += operator may be used to add single elements to an existing array:

$array = 1, 2
$array += 3

You can also use it to add another array:

$array = 1, 2
$array += 3, 4

The += operator may be used to join together two hashtables:

$hashtable = @{key1 = 1}
$hashtable += @{key2 = 2}

As we saw using the addition operator, the operation will fail if one of the keys already exists.

The subtract and assign operator (-=) is intended for numeric operations, as shown in the following examples:

$i = 20
$i -= 2

After this operation has completed, $i will be assigned a value of 18.

 Multiply and assign, divide and assign, and modulus and assign

Numeric assignments using the multiply and assign operator may be performed using *=. The value held by the variable i will be 4:

$i = 2 $i *= 2

The multiply and assign operator may be used to duplicate a string held in a variable:

$string = 'one'
$string *= 2

The value on the right-hand side of the *= operator must be numeric or must be able to convert to a number. For example, a string containing the number 2 is acceptable:

$string = 'one'
$string *= '2'

Using a string that is unable to convert to a number results in an error, as follows:

PS> $variable = 'one'
PS> $variable *= 'one'

Cannot convert value "one" to type "System.Int32". Error: "Input string was not in a correct format."
At line:2 char:1
+ $variable *= 'one'
+ ~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The multiply and assign operator may be used to duplicate an array held in a variable. In the following example, the variable will hold the values 1, 2 , 1, and 2 after this operation:

$variable = 1, 2
$variable *= 2

The assign and divide operator is used to perform numeric operations. The variable will hold a value of 1 after the following operation:

$variable = 2
$variable /= 2

The remainder and assign operator assigns the result of the remainder operation to a variable:

$variable = 10
$variable %= 3

After the preceding operation, the variable will hold a value of 1, which is the remainder when dividing 10 by 3.

 Comparison operators

Comparison operators are used for comparing two mathematical expressions which results in true, false or unknown.

PowerShell has a wide variety of comparison operators which are as follows:

	Equal to and not equal to: -eq and -ne

	Like and not like: -like and -notlike

	Greater than and greater than or equal to: -gt and -ge

	Less than and less than or equal to: -lt and -le

	Contains and not contains: -contains and -notcontains

	In and not in: -in and -notin

 Case-sensitivity

None of the comparison operators are case-sensitive by default. Each of the comparison operators has two additional variants, one which explicitly states it is case-sensitive, and another which explicitly states it is case insensitive.

For example, the following statement returns true:

'Trees' -eq 'trees'

Adding a c modifier in front of the operator name forces PowerShell to make a case-sensitive comparison. The following statement will return false:

'Trees' -ceq 'trees'

In addition to the case-sensitive modifier, PowerShell also has an explicit case insensitive modifier. In the following example, the statement returns True:

'Trees' -ieq 'trees'

However, as case insensitive comparison is the default, it is extremely rare to see examples of the i modifier.

These behaviour modifiers can be applied to all of the comparison operators.

 Comparison operators and arrays

When comparison operators are used with scalar values (a single item as opposed to an array), the comparison will result in true or false.

When used with an array or collection, the result of the comparison is all matching elements, for example:

1, $null -ne $null # Returns 1
1, 2, 3, 4 -ge 3 # Returns 3, 4
'one', 'two', 'three' -like '*e*' # Returns one and three

This behaviour may be problematic if a comparison is used to test whether or not a variable holding an array exists. In the following example, -eq is used to test that a value has been assigned to a variable called array:

$array = 1, 2
if ($array -eq $null) { Write-Host 'Variable not set' }

This test is apparently valid as long as the array does not hold two or more null values. When two or more values are present, the condition unexpectedly returns true:

PS> $array = 1, 2, $null, $null
PS> if ($array -eq $null) { Write-Host 'No values in array' }

No values in array

This happens because the result of the comparison is an array with two null values. If it were a single null value, PowerShell would flatten the array. With two values, it cannot:

[Boolean]@($null) # Returns false
[Boolean]@($null, $null) # Returns true

To avoid this problem, null must be on the left-hand side of the expression. For example, the following Write-Host statement will not execute:

$array = 1, 2, $null, $null
if ($null -eq $array) { Write-Host 'Variable not set' }

In this case, the array is not expanded, null is compared with the entire array. The result will be false, the array variable is set.

 Equal to and not equal to

The -eq (equal to) and -ne (not equal to) operators perform exact (and, by default, case insensitive) comparisons. In the example below, the following returns true:

1 -eq 1
'string' -eq 'string'
[char]'a' -eq 'A'
$true -eq 1
$false -eq 0

Similarly, -ne (not equal) will return true for each of the following:

20 -ne 100
'this' -ne 'that'
$false -ne 'false'

The last example compares $false, the Boolean, with a string containing the word false. PowerShell will attempt to convert the word, but as the word is not an empty string, the result will be true.

 Like and not like

The -like and -notlike operators support simple wildcards. * matches a string of any length (zero or more) and ? matches a single character. Each of the following examples returns true:

'The cow jumped over the moon' -like '*moon*'
'Hello world' -like '??llo w*'
'' -like '*'
'' -notlike '?*'

Behind the scenes, PowerShell turns expressions used with -like and -notlike into regular expressions.

 Greater than and less than

When comparing numbers, each of the operators -ge (greater than or equal to), -gt (greater than), -le (less than or equal to), and -lt (less than) are simple to use:

1 -ge 1 # Returns true
2 -gt 1 # Returns true
1.4 -lt 1.9 # Returns true
1.1 -le 1.1 # Returns true

String comparison with operators follows the generalised pattern of 0123456789aAbBcCdD..., rather than basing it on a character table (such as ASCII):

	Cultural variants of characters, for example, the character å, fall between A and b in the list.

	Other alphabets, for example Cyrillic or Greek, come after the Roman alphabet (after Z).

Comparison can be culture sensitive when using commands such as Sort-Object with the culture parameter, but comparisons are always based on en-US when using the operators:

'apples' -lt 'pears' # Returns true
'Apples' -lt 'pears' # Returns true
'bears' -gt 'Apples' # Returns true

This also occurs when using a case-sensitive comparison:

'bears' -gt 'Bears' # False, they are equal to one another
'bears' -clt 'Bears' # True, b before B

The use of greater than and less than with strings may often be difficult to apply. Careful testing is recommended.

 Contains and in

The -contains, -notcontains, -in, and -notin operators are used to test the content of arrays.

When using -contains or -notcontains, the array is expected to be on the left-hand side of the operator:

1, 2 -contains 2 # Returns true
1, 2, 3 -contains 4 # Returns false

When using -in or -notin, the array is expected to be on the right-hand side of the operator:

1 -in 1, 2, 3 # Returns true
4 -in 1, 2, 3 # Returns false

Contains or in?

 When using comparison operators, I tend to write the subject on the left and the object on the right. Comparisons to null are an exception to this rule. The subject is the variable or property I am testing; the object is the thing I am testing against. For example, I might set the subject to a user in Active Directory:

$subject = Get-ADUser -Identity $env:USERNAME -Properties department, memberOf.

I use contains, where the subject is an array, and the object is a single value:

$subject.MemberOf -contains 'CN=Group,DC=domain,DC=example'.

I use in, where the subject is a single value, and the object is an array:

$subject.Department -in 'Department1', 'Department2'.

 Regular expression-based operators

Regular expressions are an advanced form of pattern matching. In PowerShell, a number of operators have direct support for regular expressions. Regular expressions themselves are covered in greater detail in Chapter 9, Regular Expressions.

The following operators use regular expressions:

	Match: -match

	Not match: -notmatch

	Replace: -replace

	Split: -split

 Match and not match

The -match and -notmatch operators return true or false when testing strings:

'The cow jumped over the moon' -match 'cow' # Returns true
'The cow' -match 'The +cow' # Returns true

In the preceding example, the + symbol is reserved; it indicates that The is followed by one or more spaces before cow.

Match is a comparison operator

 Like the other comparison operators, if match is used against an array, it returns each matching element instead of true or false. The following comparison will return the values one and three:

"one", "two", "three" -match 'e'

In addition to returning a true or false value about the state of the match, a successful match will add values to a reserved variable, $matches. For example, the following regular expression uses a character class to indicate that it should match any character from 0 to 4, repeated 0 or more times:

'1234567689' -match '[0-4]*'

Once the match has been executed, the matches variable (a hashtable) will be populated with the part of the string that matched the expression:

PS> $matches

Name Value
---- -----
0 1234

Regular expressions use parentheses to denote groups. Groups may be used to capture interesting elements of a string:

PS> 'Group one, Group two' -match 'Group (.*), Group (.*)'
True

PS> $matches

Name Value
---- -----
2 two
1 one
0 Group one, Group two

In the preceding example, the match operator is run first, then the matches variable is displayed. The captured value one is held in the first group, and is accessible using either of the following statements:

$matches[1]
$matches.1

Matches is a hashtable, in the example above 1 is being used as a key to access the capture group.

 Replace

The -replace operator performs replacement based on a regular expression. For example, it can be used to replace several instances of the same thing:

PS> 'abababab' -replace 'a', 'c'
cbcbcbcb

In the example, a is the regular expression that dictates what must be replaced. 'c' is the value any matching values should be replaced with.

This syntax can be generalised, as follows:

<Value> -replace <Match>, <Replace-With>

If the Replace-With value is omitted, the matches will be replaced with nothing (that is, they are removed):

PS> 'abababab' -replace 'a'
bbbb

Regular expressions use parentheses to capture groups. The replace operator can use those groups. Each group may be used in the Replace-With argument. For example, a set of values can be reversed:

'value1,value2,value3' -replace '(.*),(.*),(.*)', '$3,$2,$1'

The tokens $1, $2, and $3 are references to each of the groups denoted by the parentheses.When performing this operation, the Replace-With argument must use single quotes to prevent PowerShell from evaluating the group references as if they were variables. This problem is shown in the following example. The first attempt works as expected; the second shows an expanded PowerShell variable instead:

PS> $1 = $2 = $3 = 'Oops'
PS> Write-Host ('value1,value2,value3' -replace '(.*),(.*),(.*)', '$3,$2,$1') -ForegroundColor Green
PS> Write-Host ('value1,value2,value3' -replace '(.*),(.*),(.*)', "$3,$2,$1") -ForegroundColor Red

value3,value2,value1
Oops,Oops,Oops

The -replace operator is a incredibly useful and widely used operator in PowerShell.

 Split

The -split operator splits a string into an array based on a regular expression.

The following example splits the string into an array containing a, b, c, and d by matching each of the numbers:

PS> 'a1b2c3d4' -split '[0-9]'
a
b
c
d

The results of as split can be assigned to one or more variables. The split operator also supports a maximum number of split operations, and options for the split operation. Options include SimpleMatch which changes -split to use a simple wildcard as shown in the example below.

'a1b2c3d4' -split 'b2', 0, 'SimpleMatch'

The value of 0 in the example above represents an unlimited number of results.

 Binary operators

Binary operators are used to perform bitwise operations in PowerShell. That is, operations based around the bits that make up a numeric value. Each operator returns the numeric result of a binary operation.

The available operators are:

	Binary and: -band

	Binary or: -bor

	Binary exclusive or: -bxor

	Binary not: -bnot

 Binary and

The result of -band is a number where each of the bits in both the value on the left and the value on the right is set.

In the following example, the result is 2:

11 -band 6

This operation can be shown in a table:

	
Bit value

	
	
8

	
4

	
2

	
1

	
Left-hand side

	
11

	
1

	
0

	
1

	
1

	
Right-hand side

	
6

	
0

	
1

	
1

	
0

	
-band

	
2

	
0

	
0

	
1

	
0

The result is a number where both the left-hand side and right-hand side include the bit.

 Binary or

The result of -bor is a number where the bits are set in either the value on the left or right.

In the following example, the result is 15:

11 -bor 12

This operation can be shown in a table:

	
Bit value

	
	
8

	
4

	
2

	
1

	
Left-hand side

	
11

	
1

	
0

	
1

	
1

	
Right-hand side

	
12

	
1

	
1

	
0

	
0

	
-band

	
15

	
1

	
1

	
1

	
1

The result is a number made up of the bits from each number where either number has the bit set.

 Binary exclusive or

The result of -bxor is a number where the bits are set in either the value on the left or the value on the right, but not both.

In the following example, the result is 11:

6 -bxor 13

This operation can be shown in a table:

	
Bit value

	
	
8

	
4

	
2

	
1

	
Left-hand side

	
6

	
0

	
1

	
1

	
0

	
Right-hand side

	
13

	
1

	
1

	
0

	
1

	
-band

	
11

	
1

	
0

	
1

	
1

The -bxor operator is useful for toggling bit values. For example, bxor might be used to toggle the AccountDisable bit of UserAccountControl in Active Directory:

512 -bxor 2 # Result is 514 (Disabled, 2 is set)
514 -bxor 2 # Result is 512 (Enabled, 2 is not set)

 Binary not

The -bnot operator is applied before a numeric value; it does not use a value on the left-hand side. The result is a value that's composed of all bits that are not set.

The -bnot operator works with signed and unsigned 32-bit and 64-bit integers (Int32, UInt32, Int64, and UInt64). When working with 8-bit or 16-bit integers (SByte, Byte, Int16, and UInt16), the result is always a signed 32-bit integer (Int32).

In the following example, the result is -123:

-bnot 122

As the preceding result is a 32-bit integer (Int32), it is difficult to show the effect in a small table. If this value were a SByte, the operation could be expressed in a table as follows:

	
Bit value

	

	
Signing

	
64

	
32

	
16

	
8

	
4

	
2

	
1

	
Before -bnot

	
122

	
0

	
1

	
1

	
1

	
1

	
0

	
1

	
0

	
After -bnot

	
-123

	
1

	
0

	
0

	
0

	
0

	
1

	
0

	
1

As shown in the table above, the -bnot operator reverses the value for each bit. The signing bit is not treated any differently.

 Logical operators

Logical operators are used to evaluate two or more comparisons or other operations that produce a Boolean (true or false) result.

The following logic operators are available:

	And: -and

	Or: -or

	Exclusive or: -xor

	Not: -not and !

 And

The -and operator will return true if the values on the left-hand and right-hand side are both true.

For example, each of the following returns true:

$true -and $true
1 -lt 2 -and "string" -like 's*'
1 -eq 1 -and 2 -eq 2 -and 3 -eq 3
(Test-Path C:\Windows) -and (Test-Path 'C:\Program Files')

 Or

The -or operator will return true if either the value on the left, or the value on the right, or both are true.

For example, each of the following returns true:

$true -or $true
2 -gt 1 -or "something" -ne "nothing"
1 -eq 1 -or 2 -eq 1
(Test-Path C:\Windows) -or (Test-Path D:\Windows)

 Exclusive or

The -xor operator will return true if either the value on the left is true, or the value on the right is true, but not both.

For example, each of the following returns true:

$true -xor $false
1 -le 2 -xor 1 -eq 2
(Test-Path C:\Windows) -xor (Test-Path D:\Windows)

The -xor operator is perhaps one of the most rarely used in PowerShell.

 Not

The -not (or !) operator may be used to negate the expression that follows it.

For example, each of the following returns true:

-not $false
-not (Test-Path X:\)
-not ($true -and $false)
!($true -and $false)

Double negatives

 The -not operator has an important place, but it is worth rethinking an expression if it injects a double negative. For example, the following expression will return true: -not (1 -ne 1).

The preceding expression is better written using the -eq operator: 1 -eq 1.

 Type operators

Type operators are designed to work with .NET types. The following operators are available:

	As: -as

	Is: -is

	Is not: -isnot

These operators may be used to convert an object of one type into another, or to test whether or not an object is of a given type.

 As

The -as operator is used to convert a value into an object of the specified type. The operator returns null (without throwing an error) if the conversion cannot be completed.

For example, the operator may be used to perform the following conversions:

"1" -as [Int32]
'String' -as [Type]

The -as operator can be useful for testing whether or not a value can be cast to a specific type, or whether a specific type exists.

For example, the System.Web assembly is not imported by default and the System.Web.HttpUtility class does not exist. The -as operator may be used to test for this condition:

PS> if (-not ('System.Web.HttpUtility' -as [Type])) {
>> Write-Host 'Adding assembly' -ForegroundColor Green
>> Add-Type -Assembly System.Web
>> }
Adding assembly

If the System.Web assembly has not been imported, attempting to turn the string, System.Web.HttpUtility, into a type will fail. The failure to convert will not generate an error.

 is and isnot

The -is and -isnot operators test whether or not a value is of the specified type.

For example, each of the following returns true:

'string' -is [String]
1 -is [Int32]
[String] -is [Type]
123 -isnot [String]

The -is and -isnot operators are very useful for testing the exact type of a value without needing to use more complex methods.

 Redirection operators

In Chapter 3, Working with Objects in PowerShell, we started exploring the different output streams PowerShell utilizes.

Information from a command may be redirected using the redirection operator >. Information may be sent to another stream or a file.

For example, the output from a command can be directed to a file. The file will contain the output as it would have been displayed in the console:

PS> Get-Process -Id $pid > process.txt
PS> Get-Content process.txt

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 731 57 132264 133156 1.81 11624 1 powershell_ise

Each of the streams in PowerShell has a number associated with it. These are shown in the following table:

	
Stream name

	
Stream number

	
Standard out

	
1

	
Error

	
2

	
Warning

	
3

	
Verbose

	
4

	
Debug

	
5

	
Information

	
6

Each of the streams above can be redirected. In most cases PowerShell provides parameters for commands which can be used to capture the streams when used. For example, the ErrorVariable and WarningVariable parameters.

About Write-Host

 Before PowerShell 5, the output written using the Write-Host command could not be captured, redirected, or assigned to a variable. In PowerShell 5, Write-Host has become a wrapper for Write-Information and is sent to the information stream.

Information written using Write-Host is unaffected by the InformationPreference variable and the InformationAction parameter, except when either is set to Ignore.

When InformationAction for the Write-Host command is set to Ignore, the output will be suppressed. When Ignore is set for the InformationPreference variable, an error is displayed, stating that it is not supported.

 Redirection to a file

Output from a specific stream may be directed by placing the stream number on the left of the redirect operator.

For example, the output written by Write-Warning can be directed to a file:

PS> function Test-Redirect{
>> 'This is standard out'
>> Write-Warning 'This is a warning'
>> }
PS> $stdOut = Test-Redirect 3> 'warnings.txt'
PS> Get-Content 'warnings.txt'
This is a warning

When using the redirect operator, any file of the same name is overwritten. If information must be added to a file, the operator becomes >>:

$i = 1
function Test-Redirect{
 Write-Warning "Warning $i"
}
Test-Redirect 3> 'warnings.txt' # Overwrite
$i++
Test-Redirect 3>> 'warnings.txt' # Append

It is possible to redirect additional streams, for example, warnings and errors, by adding more redirect statements. The following example redirects the error and warning streams to separate files:

function Test-Redirect{
 'This is standard out'

 Write-Error 'This is an error'
 Write-Warning 'This is a warning'
}
Test-Redirect 3> 'warnings.txt' 2> 'errors.txt'

The wildcard character * may be used to represent all streams if all content was to be sent to a single file:

$verbosePreference = 'continue'
function Test-Redirect {
 'This is standard out'

 Write-Information 'This is information'
 Write-Host 'This is information as well'
 Write-Error 'This is an error'
 Write-Verbose 'This is verbose'
 Write-Warning 'This is a warning'
}
Test-Redirect *> 'alloutput.txt'

The preceding example starts by setting the verbosePreference variable. Without this, or the addition of the verbose parameter to the Write-Verbose command, the output from Write-Verbose will not be shown at all.

 Redirecting streams to standard output

Streams can be redirected to standard output in PowerShell. The destination stream is written on the right-hand side of the redirect operator (without a space). Stream numbers on the right-hand side are prefixed with an ampersand (&) to distinguish the stream from a filename.

Only Stdout

 Each of the following examples shows redirection to Stdout. It is not possible to redirect to streams other than standard output.

For example, the Information output written by the following command is sent to standard output:

PS> function Test-Redirect{
>> 'This is standard out'
>> Write-Information 'This is information'
>> }
PS> $stdOut = Test-Redirect 6>&1
PS> $stdOut

This is standard out
This is information

It is possible to redirect additional streams, for example, warnings and errors, by adding more redirect statements. The following example redirects the error and warning streams to standard output:

function Test-Redirect {
 'This is standard out'
 Write-Error 'This is an error'
 Write-Warning 'This is a warning'
}
$stdOut = Test-Redirect 2>&1 3>&1

The wildcard character * may be used to represent all streams if all streams were to be sent to another stream:

$verbosePreference = 'continue'
function Test-Redirect {
 'This is standard out'
 Write-Information 'This is information'
 Write-Host 'This is information as well'
 Write-Error 'This is an error'
 Write-Verbose 'This is verbose'
 Write-Warning 'This is a warning'
}
$stdOut = Test-Redirect *>&1

The preceding example starts by setting the verbose preference variable. Without this, the output from Write-Verbose will not be shown at all.

 Redirection to null

Redirecting output to null is a technique that's used to drop unwanted output. The $null variable takes the place of the filename:

Get-Process > $null

The preceding example redirects standard output (stream 1) to nothing. This is equivalent to using an empty filename:

Get-Process > ''

The stream number or * may be included to the left of the redirect operator. For example, warnings and errors might be redirected to null:

.\somecommand.exe 2> $null 3> $null
.\somecommand.exe *> $null

Redirection like this is most commonly used with native executables; redirection is often unnecessary with PowerShell commands.

 Other operators

PowerShell has a wide variety of operators, a few of which do not easily fall into a specific category, including the following:

	Call: &

	Comma: ,

	Format: -f

	Increment and decrement: ++ and --

	Join: -join

Each of these operators is in common use. The call operator can run a command based on a string, to the format operator which can be used to build up complex strings, and so on.

 Call

The call operator is used to execute a string or script block. For example, the call operator may be used to execute the ipconfig command using a variable:

$command = 'ipconfig'
& $command

Or, it may be used to execute a scriptBlock:

$scriptBlock = { Write-Host 'Hello world' }
& $scriptBlock

The call operator accepts a list of arguments that can be passed to the command. For example, the displaydns parameter can be passed into the ipconfig command:

& 'ipconfig' '/displaydns'

The call operator is also used when calling a script or a command with a space in the path. The list of arguments can be placed in an array.

 Comma

The comma operator may be used to separate elements in an array, for example:

$array = 1, 2, 3, 4

If the comma operator is used before a single value, it creates an array containing one element:

$array = ,1

When working with functions, the comma operator can be used to emit an array as an object. PowerShell will expand an array by default. The Write-Output command can be used with the NoEnumerate parameter to achieve the same thing.

 Format

The -f operator can be used to create complex formatted strings. The syntax for the format operator is inherited from .NET; MSDN has a number of advanced examples: https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting.

The -f operator uses a number in curly braces ({<number>}) in a string on the left of the operator to reference a value in an array on the right, for example:

'1: {0}, 2: {1}, 3: {2}' -f 1, 2, 3

The format operator is one possible way to assemble complex strings in PowerShell. In addition to this, it may be used to simplify some string operations. For example, a decimal may be converted into a percentage:

'The pass mark is {0:P}' -f 0.8

An integer may be converted into a hexadecimal string:

'244 in Hexadecimal is {0:X2}' -f 244

A number may be written as a culture-specific currency:

'The price is {0:C2}' -f 199

Reserved characters

 When using the -f operator, curly braces are considered reserved characters. If a curly brace is to be included in a string as a literal value, it can be escaped: 'The value in {{0}} is {0}' -f 1.

 Increment and decrement

The ++ and -- operators are used to increment and decrement numeric values. The increment and decrement operators are split into pre-increment and post-increment versions.

The post-increment operators are frequently seen in for loops. The value for $i is used, and then incremented by one after use. In the case of the for loop, this happens after all the statements inside the loop block have executed:

for ($i = 0; $i -le 15; $i++) {
 Write-Host $i -ForegroundColor $i
}

The post-decrement reduces the value by one after use:

for ($i = 15; $i -ge 0; $i--) {
 Write-Host $i -ForegroundColor $i
}

Post-increment and post-decrement operators are often seen when iterating through an array:

$array = 1..15
$i = 0
while ($i -lt $array.Count) {
 # $i will increment after this statement has completed.
 Write-Host $array[$i++] -ForegroundColor $i
}

Pre-increment and pre-decrement are rarely seen. Instead of incrementing or decrementing a value after use, the change happens before the value is used, for example:

$array = 1..5
$i = 0
do {
 # $i is incremented before use, 2 will be the first printed.
 Write-Host $array[++$i]
 } while ($i -lt $array.Count -1)

The post-increment operator, ++, is the most commonly used, typically in looping scenarios like those above.

 Join

The -join operator joins arrays using a string. In the following example, the string is split based on a comma, and then joined based on a tab (`t):

PS> "a,b,c,d" -split ',' -join "`t"
a b c d

The join operator may also be used in front of an array, when there is no need for a separator, for example:

PS> -join ('h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd')
hello world

If the parentheses are excluded from the example, the join operation will be confined to the first element of the array, the first h character.

 Summary

In this chapter, we have explored many of the operators PowerShell has to offer, including operators for performing arithmetic, assignment, and comparison. Several specialized operators that use regular expressions were introduced for matching, replacing, and splitting. Binary, logical, and type operators were demonstrated. Finally, a number of other significant operators were introduced, including call, format, increment, and decrement, and the join operator.

In Chapter 5, Variables, Arrays, and Hashtables, are explored in detail.

 Section 2: Working with Data

In this section, we will work with structured and unstructured data in PowerShell.

The following chapters are included in this section:

	Chapter 5, Variables, Arrays, and Hashtables

	Chapter 6, Branching and Looping

	Chapter 7, Working with .NET

	Chapter 8, Strings, Numbers, and Dates

	Chapter 9, Regular Expressions

	Chapter 10, Files, Folders, and the Registry

	Chapter 11, Windows Management Instrumentation

	Chapter 12, HTML, XML, and JSON

	Chapter 13, Web Requests and Web Services

 Variables, Arrays, and Hashtables

This chapter explores variables, along with a detailed look at arrays and hashtables, as these have their own complexities.

A variable in a programming language allows you to assign a label to a piece of information or data. A variable can be used and reused in the console, script, or function or in any other piece of code.

In this chapter, we're going to cover the following topics:

	Naming and creating variables

	Variable commands

	Variable provider

	Variable scope

	Types and type conversion

	Objects assigned to variables

	Arrays

	Hashtables

	Lists, dictionaries, queues, and stacks

A variable may be of any .NET type or object instance. The variable may be a string Hello World, an integer 42, a decimal 3.141, an array, a hashtable, a ScriptBlock, and so on. Everything a variable might hold is considered to be an object when used in PowerShell.

 Naming and creating variables

Variables in PowerShell are preceded by the dollar symbol ($), for example:

$MyVariable

The name of a variable may contain numbers, letters, and underscores. For example, each of the following is a valid name:

$123
$x
$my_variable
$variable
$varIABle
$Path_To_File

Variables are frequently written in either camel case or upper-camel case (also known as Pascal case). PowerShell doesn't enforce any naming convention, nor does it exhibit a convention in any of the automatic variables. For example:

	$myVariable is camel case

	$MyVariable is upper-camel case, or Pascal case

One of the most commonly accepted practices is that variables used as parameters must use Pascal case. Variables used only within a script or a function must use camel case.

I suggest making your variable names meaningful so that when you revisit your script again after a long break, you can identify its purpose. I recommend choosing and maintaining a consistent style in your own code.

It's possible to use more complex variable names using the following notation:

${My Variable}
${My-Variable}

From time to time, the preceding notation appears in PowerShell, perhaps most often in dynamically generated code. This convention is otherwise rare and harder to read and therefore not desirable.

The bracing style has at least one important use. The following example shows an attempt to embed the var variable in a string:

$var = 'var'
"$variable" # Will not expand correctly
"${var}iable" # Will expand var

The braces define a boundary for the variable name. It is otherwise unclear whether PowerShell should attempt to expand the string.

The following notation, where a file path is written as the variable name, allows variables to be stored on the filesystem:

${C:\Windows\Temp\variable.txt} = "New value"

Inspecting the given file path shows that the variable value has been written there:

PS> Get-Content C:\Windows\Temp\variable.txt
New value

As with the bracing notation, this is non-standard practice. It may confuse or surprise anyone reading the code.

Variables don't need to be declared prior to use, nor does a variable need to be assigned a specific type, for example:

$itemCount = 7
$dateFormat = "ddMMyyyy"
$numbers = @(1, 9, 5, 2)
$psProcess = Get-Process -Name PowerShell

It is possible to assign the same value to several variables in one statement. For example, this creates two variables, i and j, both with a value of 0:

$i = $j = 0

 Variable commands

A number of commands are available to interact with the following variables:

	Clear

	Get

	New

	Remove

	Set

When using the * variable commands, the $ preceding the variable name isn't considered part of the name.

 Clear

The Clear variable removes the value from any existing variable. It does not remove the variable itself. For example, the following example calls Write-Host twice: on the first occasion, it writes the variable value; on the second occasion, it does not write anything:

PS> $temporaryValue = "Some-Value"
PS> Write-Host $temporaryValue -ForegroundColor Green

Some-Value

PS> Clear-Variable temporaryValue
PS> Write-Host $temporaryValue -ForegroundColor Green

 Get

The Get variable provides access to any variable that has been created in the current session as well as the default (automatic) variables created by PowerShell. For further information on automatic variables, refer to about_Automatic_Variables (Get-Help about_Automatic_Variables).

Default or automatic variables often have descriptions; these may be seen by using the Get variable and selecting the description:

Get-Variable | Select-Object Name, Description

 New

The New variable can be used to create a new variable:

New-Variable -Name today -Value (Get-Date)

This command is the equivalent of using the following:

$today = Get-Date

The New variable gives more control over the created variable. For example, you may wish to create a constant, a variable that can't be changed following its creation:

New-Variable -Name startTime -Value (Get-Date) -Option Constant

Any attempt to modify the variable after creation results in an error message; this includes changing the variable value or its properties and attempts to remove the variable, as shown here:

PS> $startTime = Get-Date
Cannot overwrite variable startTime because it is read-only or constant.
At line:1 char:1
+ $startTime = Get-Date
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : WriteError: (startTime:String) [], SessionStateUnauthorizedAccessException
 + FullyQualifiedErrorId : VariableNotWritable

A variable cannot be changed into a constant after creation.

 Remove

As the name suggests, the Remove variable destroys a variable and any data it may hold.

The Remove variable is used as follows:

$psProcesses = Get-Process powershell
Remove-Variable psProcesses

If more than one variable refers to an object, the object won't be removed. For example, the following command shows the name of the first process running (conhost.exe, in this particular case):

PS> $object1 = $object2 = Get-Process | Select-Object -First 1
PS> Remove-Variable object1
PS> Write-Host $object2.Name

conhost

 Set

The Set variable allows you to change the value and certain aspects of the created variable. For example, the following sets the value of an existing variable:

$objectCount = 23
Set-Variable objectCount -Value 42

It isn't common to see the Set variable being used in this manner; it is simpler to assign the new value directly, as was done when the variable was created. As with the New variable, much of the Set variable's utility comes from the additional parameters it offers, as shown in the following examples.

Setting a description for a variable is effected as follows:

Set-Variable objectCount -Description 'The number of objects in the queue'

Rendering a variable private is effected as follows:

Set-Variable objectCount -Option Private

Private scope

Private scope is accessible using $private:objectCount. The Set variable may be used but is not required.

 Variable provider

PowerShell includes a variable provider that can be queried as a filesystem using Get-ChildItem, Test-Path, and so on.

Get-ChildItem may be used to list all of the variables in the current scope by running the command shown as follows:

Get-ChildItem variable:

The output will include the default variables, as well as any variables created by modules that might have been imported.

As this behaves much like a filesystem, Test-Path may be used to determine whether or not a variable exists:

Test-Path variable:\VerbosePreference

Set-Item may be used to change the value of a variable or create a new variable:

Set-Item variable:\new -Value variable

Get-Content can also be used to retrieve the content of a variable:

Get-Content variable:\OutputEncoding

The backslash character used in the preceding examples is optional. The output from each command in the following example will be identical:

$new = 123
Get-Item variable:\new
Get-Item variable:new

 Variable scope

Variables may be declared in a number of different scopes. The scopes are as follows:

	Local

	Global

	Private

	Script

	A numeric scope relative to the current scope

More about scopes

The help document, about_scopes (Get-Help about_scopes), contains further examples and details.

By default, variables are placed in local scope. Access to variables is hierarchical: a child (scopes created beneath a parent) can access variables created by the parent (or ancestors). Variables created in a child scope cannot be accessed from a parent scope.

 Local and global scope

When creating a variable in the console (outside of functions or script blocks), the local scope is global. The global scope can be accessed from inside a function (child) because it is a parent scope:

Remove-Variable thisValue -ErrorAction SilentlyContinue
$Local:thisValue = "Some value"
"From Local: $local:thisValue" # Accessible
"From Global: $global:thisValue" # Accessible

function Test-ThisScope {
 "From Local: $local:thisValue" # Does not exist
 "From Global: $global:thisValue" # Accessible
}

Test-ThisScope

When scopes are explicitly named as this, the source of a variable value can be reasonably clear. If the scope prefix is removed, PowerShell attempts to resolve the variable by searching the parent scopes, as follows:

Remove-Variable thisValue -ErrorAction SilentlyContinue
This is still "local" scope
$thisValue = "Some value"

function Test-ThisScope {
 "From Local: $local:thisValue" # Does not exist
 "From Global: $global:thisValue" # Accessible
 "Without scope: $thisValue" # Accessible
}

Test-ThisScope

The thisValue variable was created in the global scope. As the function does not have a similarly named variable in its local scope, it walks up the scope hierarchy and picks out the variable from the parent scope.

 Private scope

The private scope may be accessed using the private prefix, as follows:

$private:thisValue = "Some value"

Moving a variable into the private scope will hide the variable from child scopes:

Remove-Variable thisValue -ErrorAction SilentlyContinue
This is still "local" scope
$private:thisValue = "Some value"
"From global: $global:thisValue" # Accessible

function Test-ThisScope {
 "Without scope: $thisValue" # Not accessible
 "From private: $private:thisValue" # Not accessible
 "From global: $global:thisValue" # Not accessible
}

Test-ThisScope

If the stack depth is increased, the variable search can be made to skip a private variable within an intermediate function and reference the variable from an ancestor, as shown here:

PS> function bottom {
>> $thisValue = "Bottom"
>> Write-Host "Bottom: $thisValue"
>> middle
>> }
PS> function middle {
>> # Hide thisValue from children
>> $private:thisValue = "Middle" # Middle only
>> Write-Host "Middle: $thisValue"
>> top
>> }
PS> function top {
>> Write-Host "Top: $thisValue" # Original value
>> }
PS> bottom

Bottom: Bottom
Middle: Middle
Top: Bottom

 Script scope

The script scope is shared across all children in a script or script module. The script scope is a useful place to store variables that must be shared without exposing the variable to the global scope (and therefore to anyone with access to the session).

For example, the following short script stores a version number in a script-level variable. The Get-Version and Set-Version functions both interact with the same variable:

Script file: example.ps1
[Version]$Script:Version = "0.1"

function Get-Version {
 Write-Host "Version: $Version"
}

function Set-Version {
 param(
 [Version]$version
)

 $Script:Version = $version
}

Set-Version 0.2
Write-Host (Get-Version)

The Set-Version function implements a local variable in the param block with the same name as the script scope variable. To access the script scope variable version, the name must be prefixed with the scope.

Scope confusion

If variables within a named scope are used, I recommend referencing the scope whenever the variable is used to make it clear where the values originate from.

In the preceding example, that means using $Script:Version in the Get-Version command.

 Type and type conversion

Type conversion in PowerShell is used to switch between different types of a value. Types are written between square brackets, in which the type name must be a .NET type, a class, or an enumeration, such as a string, an integer (Int32), and a date (DateTime).

For example, a date may be changed into a string:

PS> [String](Get-Date)
10/27/2016 13:14:32

Or a string may be changed into a date:

PS> [DateTime]"01/01/2016"

01 January 2016 00:00:00

In a similar manner, variables may be assigned a fixed type. To assign a type to a variable, the following notation is used:

[String]$thisString = "some value"
[Int]$thisNumber = 2
[DateTime]$date = '01/01/2016'

This adds an argument-type converter attribute to the variable. The presence of this converter is visible using Get-Variable, although the resultant type is not:

PS> [String]$thisString = "some value"
PS> (Get-Variable thisString).Attributes

TransformNullOptionalParameters TypeId
------------------------------- ------
 True System.Management.Automation.ArgumentTypeConverterAttribute

Subsequent assignments made to the variable will be converted into a string. This remains so for the lifetime of the variable: until the session is closed, the variable falls out of scope, or the variable is removed using Remove-Variable.

Setting the variable value to $null does not remove the type conversion attribute. This can be seen here:

PS> [String]$thisString = 'A string value'
PS> $thisString = $null
PS> $thisString = Get-Process powershell
PS> $thisString.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PowerShell's type conversion is exceptionally powerful. When converting a value, PowerShell uses the following conversions:

	Direct assignment

	Language-based conversion

	Parse conversion

	Static create conversion

	Constructor conversion

	Cast conversion

	IConvertible conversion

	IDictionary conversion

	PSObject property conversion

	TypeConverter conversion

More about type conversion

The conversion process is extensive, but documentation is available.

The preceding list can be found on an MSDN blog: https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/.

Experimentation with the process is a vital part of learning.

 Objects assigned to variables

So far, we've explored one-off assignments of simple value types, and while these values are considered objects, they're still (reasonably) simple objects. Once created, variables holding simple values, such as integers and strings, can diverge without affecting one another.

That is, the numeric value assigned to each variable is independent following creation:

$i = $j = 5

Each of the following commands increases the value held in the i variable by creating a new integer object (based on the original object):

$i = $j = 5
$i++
$i += 1
$i = $i + 1

If each statement is executed in turn, the i variable will be 8, and the j will be 5 variable .

When changing the value of a property on a more complex object, the change will be reflected in any variable referencing that object. Consider the following example, where we create a custom object and assign it to two variables, as follows:

$object1 = $object2 = [PSCustomObject]@{
 Name = 'First object'
}

A change to a property on an object will be reflected in both variables. The action of changing a property value does not create a new copy of the object. The two variables will continue to reference the same object:

PS> $object1.Name = 'New name'
PS> Write-Host $object2.Name

New name

The same applies when using nested objects; objects that use other objects as properties:

PS> $complexObject = [PSCustomObject]@{
>> OuterNumber = 1
>> InnerObject = [PSCustomObject]@{
>> InnerNumber = 2
>> }
>> }
PS> $innerObject = $complexObject.InnerObject
PS> $innerObject.InnerNumber = 5
PS> Write-Host $complexObject.InnerObject.InnerNumber

5

 Arrays

An array contains a set of objects of the same type. Each entry in the array is called an element, and each element has an index (position). Indexing in an array starts from 0.

Arrays are an important part of PowerShell. When the return from a command is assigned to a variable, an array will be the result if the command returns more than one object. For example, the following command will yield an array of objects:

$processes = Get-Process

Array type

In PowerShell, arrays are, by default, given the System.Object[] type (an array of objects where [] is used to signify that it is an array).

Why System.Object?

All object instances are derived from a .NET type or class, and, in .NET, every object instance is derived from System.Object (including strings and integers). Therefore, a System.Object array in PowerShell can hold just about anything.

Arrays in PowerShell (and .NET) are immutable. The size is declared on creation and cannot be changed. A new array must be created if an element is to be added or removed. The array operations described next are considered less efficient for large arrays because of the recreation overhead involved in changing the array size.

We will explore creating arrays, assigning a type to the array, and selecting elements, as well as adding and removing elements. We will also take a brief look at how arrays may be used to fill multiple variables and conclude with a look at multi-dimensional arrays and jagged arrays.

 Creating an array

There are a number of ways to create arrays. An empty array (containing no elements) can be created as follows:

$myArray = @()

An empty array of a specific size may be created using the New object. Using [] after the name of the type denotes that it is an array, and the number following sets the array size:

$myArray = New-Object Object[] 10 # 10 objects
$byteArray = New-Object Byte[] 100 # 100 bytes
$ipAddresses = New-Object IPAddress[] 5 # 5 IP addresses

An array with a few strings in it can be created as follows:

$myGreetings = "Hello world", "Hello sun", "Hello moon"

Or it can be created as follows:

$myGreetings = @("Hello world", "Hello sun", "Hello moon")

An array may be spread over multiple lines in either the console or a script that may make it easier to read in a script:

$myGreetings = "Hello world",
 "Hello sun",
 "Hello moon"

You can mix values that are considered to be objects without losing anything:

$myThings = "Hello world", 2, 34.23, (Get-Date)

 Arrays with a type

An array may be given a type in similar manner to a variable holding a single value. The difference is that the type name is followed by [], as was the case when creating an empty array of a specific size. For example, each of these is an array type, which may appear before a variable name:

[String[]] # An array of strings
[UInt64[]] # An array of unsigned 64-bit integers
[Xml[]] # An array of XML documents

If a type is set for the array, more care must be taken as regards assigning values. If a type is declared, PowerShell will attempt to convert any value assigned to an array element into that type.

In this example, $null will become 0 and 3.45 (a double) will become 3 (normal rounding rules apply when converting integers):

[Int32[]]$myNumbers = 1, 2, $null, 3.45

The following example shows an error being thrown, as a string cannot be converted into an integer:

PS> [Int32[]]$myNumbers = 1, 2, $null, "A string"
Cannot convert value "A string" to type "System.Int32". Error: "Input string was not in a correct format."
At line:1 char:1
+ [Int32[]]$myNumbers = 1, 2, $null, "A string"
+ ~~~
 + CategoryInfo : MetadataError: (:) [], ArgumentTransformationMetadataException
 + FullyQualifiedErrorId : RuntimeException

 Adding elements to an array

A single item can be added to the end of an array using the assignment by addition operator:

$myArray = @()
$myArray += "New value"

The preceding command is equivalent to the following:

$myArray = $myArray + "New value"

In the background, PowerShell creates a new array with one extra element, copies the existing array in, and then adds the value for the new element before disposing of the original array. The larger the array, the less efficient this operation becomes.

The same technique can be used to join one array to another, demonstrated as follows:

$firstArray = 1, 2, 3
$secondArray = 4, 5, 6
$mergedArray = $firstArray + $secondArray

 Selecting elements from an array

Individual elements from an array may be selected using an index. The index counts from 0 to the end of the array. The first and second elements are available using index, 0 and 1:

$myArray = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$myArray[0]
$myArray[1]

In a similar manner, array elements can be accessed counting backward, from the end. The last element is available using the -1 index, and the penultimate element using the -2 index, for example:

$myArray[-1]
$myArray[-2]

Ranges of elements may be selected either going forward (starting from 0) or going backward (starting with -1):

$myArray[2..4]
$myArray[-1..-5]

More than one range can be selected in a single statement:

$myArray[0..2 + 6..8 + -1]

This requires some care. The first part of the index set must be an array for the addition operation to succeed. The expression in square brackets is evaluated first and converted into a single array (of indexes) before any elements are selected from the array:

PS> $myArray[0 + 6..8 + -1]
Method invocation failed because [System.Object[]] does not contain a method named 'op_Addition'.
At line:1 char:1
+ $myArray[0 + 6..8 + -1]
+ ~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (op_Addition:String) [], RuntimeException
 + FullyQualifiedErrorId : MethodNotFound

Exactly the same error would be shown when running the expression within square brackets alone:

0..2 + 6..8 + -1

The following modified command shows two different ways to achieve the intended result:

$myArray[@(0) + 6..8 + -1]
$myArray[0..0 + 6..8 + -1]

 Changing element values in an array

Elements within an array may be changed by assigning a new value to a specific index, for example:

$myArray = 1, 2, 9, 4, 5
$myArray[2] = 3

Values in an array may be changed within a loop, as follows:

$myArray = 1, 2, 3, 4, 5
for ($i = 0; $i -lt $myArray.Count; $i++) {
 $myArray[$i] = 9
}

 Removing elements from an array

Removing elements from an array is difficult because arrays are immutable. To remove an element, a new array must be created.

It is possible to appear to remove an element by setting it to null, for example:

$myArray = 1, 2, 3, 4, 5
$myArray[1] = $null
$myArray

However, observe that the count does not decrease when a value is set to null:

PS> $myArray.Count
5

Loops (or pipelines) consuming the array will not skip the element with the null value (extra code is needed to guard against the null value):

$myArray | ForEach-Object { Write-Host $_ }

The Where object may be used to remove the null value, creating a new array:

$myArray | Where-Object { $_ } | ForEach-Object { Write-Host $_ }

Depending on usage, a number of ways are available to address removal. Removal by index and removal by value are discussed next.

 Removing elements by index

Removing elements based on an index requires the creation of a new array and omission of the value in the element in that index. In each of the following cases, an array with 100 elements will be used as an example; the element at index 49 (with the value of 50) will be removed:

$oldArray = 1..100

This method uses indexes to access and add everything we want to keep:

$newArray = $oldArray[0..48] + $oldArray[50..99]

Using the .NET Array.Copy static method (see Chapter 7, Working with .NET), we have the following:

$newArray = New-Object Object[] ($oldArray.Count - 1)
Before the index
[Array]::Copy(
 $oldArray, # Source
 $newArray, # Destination
 49 # Number of elements to copy
)
After the index
[Array]::Copy(
 $oldArray, # Source
 50, # Copy from index of Source
 $newArray, # Destination
 49, # Copy to index of Destination
 50 # Number of elements to copy
)

This is the outcome using a for loop:

$newArray = for ($i = 0; $i -lt $oldArray.Count; $i++) {
 if ($i -ne 49) {
 $oldArray[$i]
 }
}

 Removing elements by value

Removing an element with a specific value from an array can be achieved in a number of different ways.

Again, we start with an array of 100 elements, as follows:

$oldArray = 1..100

The Where object may be used to identify and omit the element with the value 50. If 50 were to occur more than once, all instances would be omitted:

$newArray = $oldArray | Where-Object { $_ -ne 50 }

The index of the element might be identified and removed using the methods explored in removing elements according to the index:

$index = $oldArray.IndexOf(50)

If the value of the variable index is -1, the value is not present in the array (0 would indicate that it is the first element):

$index = $oldArray.IndexOf(50)
if ($index -gt -1) {
 $newArray = $oldArray[0..($index - 1)] +
 $oldArray[($index + 1)..99]
}

Unlike the Where object version, which inspects all elements, IndexOf gets the first occurrence of a value only. A complementary method, LastIndexOf, allows the most recent occurrence of a value to be removed.

 Clearing an array

Finally, an array may be completely emptied by calling the Clear method:

$newArray = 1, 2, 3, 4, 5
$newArray.Clear()

 Filling variables from arrays

It is possible to fill two (or more) variables from an array:

$i, $j = 1, 2

This is often encountered when splitting a string:

$firstName, $lastName = "First Last" -split " "
$firstName, $lastName = "First Last".Split(" ")

If the array is longer than the number of variables, all remaining elements are assigned to the last variable. For example, the k variable will hold 3, 4, and 5, as can be seen as follows:

$i, $j, $k = 1, 2, 3, 4, 5

If there are too few elements, the remaining variables will not be assigned a value. In this example, k will be null:

$i, $j, $k = 1, 2

 Multi-dimensional and jagged arrays

Given that an array contains objects, an array can therefore also contain other arrays.

For example, an array that contains other arrays (a multi-dimensional array) might be created as follows:

$arrayOfArrays = @(
 @(1, 2, 3),
 @(4, 5, 6),
 @(7, 8, 9)
)

Be careful to ensure that the comma following each of the inner arrays (except the last) is in place. If that comma is missing, the entire structure will be flattened, merging the three inner arrays.

Elements in the array are accessed by indexing into each array in turn (starting with the outermost). The element with the value 2 is accessible using the following notation:

PS> $arrayOfArrays[0][1]
2

This states that we wish to retrieve the first element (which is an array) and the second element of that array.

The element with the value 6 is accessible using the following:

PS> $arrayOfArrays[1][2]
6

Jagged arrays are a specific form of multi-dimensional array. An example of a jagged array is as follows:

$arrayOfArrays = @(
 @(1, 2),
 @(4, 5, 6, 7, 8, 9),
 @(10, 11, 12)
)

As in the first example, it is an array containing arrays. Instead of containing inner arrays, which all share the same size (dimension), the inner arrays have no consistent size (hence, they are jagged).

In this example, the element with the value 9 is accessed as follows:

PS> $arrayOfArrays[1][5]
9

 Hashtables

A hashtable is an associative array or an indexed array. Individual elements in the array are created with a unique key. Keys cannot be duplicated within the hashtable.

Hashtables are important in PowerShell. They are used to create custom objects, to pass parameters into commands, to create custom properties using the Select object, and as the type for values assigned to parameter values of many different commands, among other things.

For finding commands that use Hashtable as a parameter, we use the following:

Get-Command -ParameterType Hashtable

This topic explores creating hashtables, selecting elements, enumerating all values in a hashtable, and adding and removing elements.

 Creating a hashtable

An empty hashtable is created in the same manner as the following:

$hashtable = @{}

A hashtable with a few objects appears as follows:

$hashtable = @{Key1 = "Value1"; Key2 = "Value2"}

Elements in a hashtable may be spread across multiple lines:

$hashtable = @{
 Key1 = "Value1"
 Key2 = "Value2"
}

 Adding and changing elements to a hashtable

Elements may be explicitly added to a hashtable using the Add method:

$hashtable = @{}
$hashtable.Add("Key1", "Value1")

If the value already exists, using Add will generate an error (as shown here):

PS> $hashtable = @{"Existing", "Value0"}
PS> $hashtable.Add("Existing", "Value1")

Exception calling "Add" with "2" argument(s): "Item has already been added. Key in dictionary: 'Existing' Key being added: 'Existing'"
At line:2 char:1
+ $hashtable.Add("Existing", "Value1")
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : ArgumentException

The Contains method will return true or false, depending on whether or not a key is present in hashtable. This may be used to test for a key before adding:

$hashtable = @{}
if (-not $hashtable.Contains("Key1")) {
 $hashtable.Add("Key1", "Value1")
}

Alternatively, two different ways of adding or changing elements are available. The first option is as follows:

$hashtable = @{ Existing = "Old" }
$hashtable["New"] = "New" # Add this
$hashtable["Existing"] = "Updated" # Update this

The second option is as follows:

$hashtable = @{ Existing = "Old" }
$hashtable.New = "New" # Add this
$hashtable.Existing = "Updated" # Update this

If a value only has to be changed if it exists, the Contains method may be used:

$hashtable = @{ Existing = "Old" }
 if ($hashtable.Contains("Existing")) {
 $hashtable.Existing = "New"
}

This may also be used to ensure a value is only added if it does not exist:

$hashtable = @{ Existing = "Old" }
if (-not $hashtable.Contains("New")) {
 $hashtable.New = "New"
}

Keys cannot be added nor can values be changed while looping through the keys in a hashtable using the keys property. Doing so changes the underlying structure of the hashtable, invalidating the iterator:

PS> $hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
PS> foreach ($key in $hashtable.Keys) {
 $hashtable[$key] = "NewValue"
}

Collection was modified; enumeration operation may not execute.
At line:5 char:10
+ foreach ($key in $hashtable.Keys) {
+ ~~~~
 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException
 + FullyQualifiedErrorId : System.InvalidOperationException

It is possible to work around this problem by first creating an array of the keys, as follows:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
[Object[]]$keys = $hashtable.Keys
foreach ($key in $keys) {
 $hashtable[$key] = "NewValue"
}

Notice that the highlighted keys variable is declared as an array of objects. Earlier in this chapter, we discussed assigning objects to variables, and how an assignment does not always create a new instance of an object. Using the Object[] type conversion forces the creation of a new object (a new array of objects) based on the values held in KeyCollection. Without this step, the preceding error message would repeat.

Another approach uses the ForEach object to create a new array of the keys:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
$keys = $hashtable.Keys | ForEach-Object { $_ }
foreach ($key in $keys) {
 $hashtable[$key] = "NewValue"
}

 Selecting elements from a hashtable

Individual elements may be selected by key. A number of different formats are supported for selecting elements:

$hashtable["Key1"]

Using dot notation, we have the following:

$hashtable.Key1

The key is not case sensitive, but it is type sensitive and will not automatically convert. For instance, consider the following hashtable:

$hashtable = @{1 = 'one'}

The value 1 can be selected if an integer is used as the key, but not if a string is used. In other words, the following works:

$hashtable.1
$hashtable[1]

The following approach, however, does not:

$hashtable."1"
$hashtable["1"]

 Enumerating a hashtable

A hashtable can return the information it holds in several ways. Start with the hashtable:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}

Keys can be returned using the Keys property of the hashtable, which returns KeyCollection:

$hashtable.Keys

Values can be returned using the Values property, which returns ValueCollection. The key is discarded when using the Values property:

$hashtable.Values

A simple loop can be used to retain the association between key and value:

foreach ($key in $hashtable.Keys) {
 Write-Host "Key: $key Value: $($hashtable[$key])"
}

 Removing elements from a hashtable

Unlike arrays, removing an element from a hashtable is straightforward—an element is removed using the Remove method:

$hashtable = @{ Existing = "Existing" }
$hashtable.Remove("Existing")

If the requested key does not exist, the command does nothing (and does not throw an error).

The Remove method cannot be used to modify the hashtable while looping through the keys in a hashtable using the Keys property:

PS> $hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
PS> foreach ($key in $hashtable.Keys) {
 $hashtable.Remove($key)
}

Collection was modified; enumeration operation may not execute.
At line:5 char:10
+ foreach ($key in $hashtable.Keys) {
+ ~~~~
 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException
 + FullyQualifiedErrorId : System.InvalidOperationException

The same method as discussed in the Adding and changing elements to a hashtable section, may be used.

Finally, a hashtable may be emptied completely by calling the Clear method:

$hashtable = @{one = 1; two = 2; three = 3}
$hashtable.Clear()

 Lists, dictionaries, queues, and stacks

Arrays and hashtables are integral to PowerShell, and being able to manipulate these is critical. If these simpler structures fail to provide an efficient means of working with a set of data, there are advanced alternatives.

The following .NET collections will be discussed:

	System.Collections.Generic.List

	System.Collections.Generic.Dictionary

	System.Collections.Generic.Queue

	System.Collections.Generic.Stack

Each of these collections has detailed documentation (for .NET) available on MSDN: https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx.

 Lists

A list is the same as an array, but with a larger set of features, such as the ability to add elements without copying two arrays into a new one. The generic list using the .NET class, System.Collections.Generic.List, is shown next.

ArrayList is often used in examples requiring advanced array manipulation in PowerShell. However, ArrayList is older (.NET 2.0) and less efficient (it can use more memory), and cannot be strongly typed, as will be shown when creating a generic list.

 Creating a list

A generic list must have a type declared. A generic list, in this case a list of strings, is created as follows:

$list = New-Object System.Collections.Generic.List[String]

ArrayList is created in a similar manner. ArrayList cannot have the type declared:

$arrayList = New-object System.Collections.ArrayList

Once created, ArrayList may be used in much the same way as a generic list.

 Adding elements to the list

Add can be used to add new elements to the end of the list:

$list.Add("David")

The Insert and InsertRange methods are available to add items elsewhere in the list. For example, an element may be added at the beginning:

$list.Insert(0, "Sarah")
$list.Insert(2, "Jane")

 Selecting elements from the list

As with the array, elements may be selected by index:

$list = New-Object System.Collections.Generic.List[String]
$list.AddRange([String[]]("Tom", "Richard", "Harry"))
$list[1] # Returns Richard

The generic list offers a variety of methods that may be used to find elements when the index is not known, such as the following:

$index = $list.FindIndex({ $args[0] -eq 'Richard' })

Predicates

In the preceding example, ScriptBlock is a predicate. Arguments are passed into ScriptBlock and all list items matching the query are returned.

The predicate is similar in syntax to the Where object, except $args[0] is used to refer to the item in the list instead of the pipeline variable, $_.

A param block may be declared for ScriptBlock to assign a more meaningful name to the argument ($args[0]) if desirable.

Alternatively, the IndexOf and LastIndex methods may be used. Both of these methods support additional arguments (as opposed to Array.IndexOf, which only supports a restrictive search for a value) to constrain the search. For example, the search may start at a specific index:

$list.IndexOf('Harry', 2) # Start at index 2
$list.IndexOf('Richard', 1, 2) # Start at index 1, and 2 elements

Finally, a generic list offers a BinarySearch (half-interval) search method. This method may dramatically cut the time to search very large, sorted, datasets when compared to a linear search.

In a binary search, the element in the middle of the list is selected, and compared to the value. If the value is larger, the first half of the list is discarded, and the element in the middle of the new, smaller, set is selected for comparison. This process repeats (always cutting the list in half) until the value is found (or it runs out of elements to test):

$list = New-Object System.Collections.Generic.List[Int]
$list.AddRange([Int[]](1..100000000))
Linear and Binary are roughly comparable
Measure-Command { $list.IndexOf(24) } # A linear search
Measure-Command { $list.BinarySearch(24) } # A binary search
Binary is more effective
Measure-Command { $list.IndexOf(99767859) } # A linear search
Measure-Command { $list.BinarySearch(99767859) } # A binary search

The time taken to execute a binary search remains fairly constant, regardless of the element position. The time taken to execute a linear search increases as every element must be read (in sequence).

 Removing elements from the list

Elements in a list may be removed based on the index or value:

$list = New-Object System.Collections.Generic.List[String]
$list.AddRange([String[]]("Tom", "Richard", "Harry", "David"))
$list.RemoveAt(1) # By Richard by index
$list.Remove("Richard") # By Richard by value

All instances of a particular value may be removed using the RemoveAll method:

$list.RemoveAll({ $args[0] -eq "David" })

 Changing element values in a list

Elements within a list may be changed by assigning a new value to a specific index, as in the following example:

$list = New-Object System.Collections.Generic.List[Int]
$list.AddRange([Int[]](1, 2, 2, 4))
$list[2] = 3

 Dictionaries

A dictionary, using the .NET class, System.Collections.Generic.Dictionary, is most similar to a hashtable. Like a hashtable, it is a form of associative array.

Unlike the hashtable, however, a dictionary implements a type for both the key and the value, which may make it easier to use.

 Creating a dictionary

A dictionary must declare a type for the key and value when it is created. A dictionary that uses a string for the key and an IP address for the value may be created using either of the following examples:

$dictionary = New-Object System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary = New-Object "System.Collections.Generic.Dictionary[String,IPAddress]"

 Adding and changing elements in a dictionary

As with the hashtable, the Add method may be used to add a new value to a dictionary:

$dictionary.Add("Computer1", "192.168.10.222")

If the key already exists, using Add will generate an error, as was the case with the hashtable.

In a dictionary, the Contains method behaves differently from the same method in the hashtable. When checking for the existence of a key, the ContainsKey method should be used as follows:

if (-not $dictionary.ContainsKey("Computer2")) {
 $dictionary.Add("Computer2", "192.168.10.13")
}

The dictionary supports the addition of elements using dot-notation:

$dictionary.Computer3 = "192.168.10.134"

The dictionary leverages PowerShell's type conversion for both the key and the value. For example, if a numeric key is used, it will be converted into a string. If an IP address is expressed as a string, it will be converted into an IPAddress object.

For example, consider the addition of the following element:

$dictionary.Add(1, 20)

In this case, key 1 is converted into a string, and the value 20 is converted into an IP address. Inspecting the element afterward shows the following:

PS> $dictionary."1"

Address : 20
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False
IsIPv6Teredo : False
IsIPv4MappedToIPv6 : False
IPAddressToString : 20.0.0.0

 Selecting elements from a dictionary

Individual elements may be selected by a key. As with the hashtable, two different notations are supported:

$dictionary["Computer1"] # Key reference
$dictionary.Computer1 # Dot-notation

We've seen that, when adding elements, types are converted. Looking back to selecting elements from a hashtable, we know that the value for the key was sensitive to type. As the dictionary has a type declared for the key, it can leverage PowerShell's type conversion.

Consider a dictionary created using a number as a string for the key:

$dictionary = New-Object System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary.Add("1", "192.168.10.222")
$dictionary.Add("2", "192.168.10.13")

Each of the following examples works to access the value:

$dictionary."1"
$dictionary[1]
$dictionary["1"]

 Enumerating a dictionary

A dictionary can return the information it holds in several ways. Start with this dictionary:

$dictionary = New-Object System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary.Add("Computer1", "192.168.10.222")
$dictionary.Add("Computer2", "192.168.10.13")

Keys can be returned using the Keys property of the dictionary, which returns KeyCollection:

$dictionary.Keys

Values can be returned using the Values property, which returns ValueCollection. The key is discarded when using the Values property:

$dictionary.Values

A simple loop can be used to retain the association between key and value:

foreach ($key in $dictionary.Keys) {
 Write-Host "Key: $key Value: $($dictionary[$key])"
}

 Removing elements from a dictionary

An element may be removed from a dictionary using the Remove method:

$dictionary.Remove("Computer1")

The Remove method cannot be used to modify the dictionary while looping through the keys in a dictionary using the Keys property.

 Queues

A queue is a first-in, first-out array. Elements are added to the end of the queue and taken from the beginning.

The queue uses the .NET class, System.Collections.Generic.Queue, and must have a type set.

 Creating a queue

A queue of strings may be created as follows:

$queue = New-Object System.Collections.Generic.Queue[String]

 Enumerating the queue

PowerShell will display the content of a queue in the same way as it would the content of an array. It isn't possible to access elements of the queue by the index. The ToArray method may be used to convert the queue into an array if required:

$queue.ToArray()

The preceding command returns an array of the same type as the queue. That is, if the queue is configured to hold strings, the array will be an array of strings.

The queue has a Peek method that allows retrieval of the next element in the queue without it being removed:

$queue.Peek()

The Peek method will throw an error if the queue is empty (refer to the Removing elements from the queue section).

 Adding elements to the queue

Elements are added to the end of the queue using the Enqueue method:

$queue.Enqueue("Tom")
$queue.Enqueue("Richard")
$queue.Enqueue("Harry")

 Removing elements from the queue

Elements are removed from the end using the Dequeue method:

$queue.Dequeue() # This returns Tom.

If the queue is empty and the Dequeue method is called, an error will be thrown, as shown here:

PS> $queue.Dequeue()
Exception calling "Dequeue" with "0" argument(s): "Queue empty."
At line:1 char:1
+ $queue.Dequeue()
+ ~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : InvalidOperationException

To avoid this, the Count property of the queue may be inspected, for example:

Set-up the queue
$queue = New-Object System.Collections.Generic.Queue[String]
"Tom", "Richard", "Harry" | ForEach-Object {
 $queue.Enqueue($_)
}
Dequeue until the queue is empty
while ($queue.Count -gt 0) {
 Write-Host $queue.Dequeue()
}

 Stacks

A stack is a collection of objects in which objects are accessed in Last In First Out (LIFO). Elements are added and removed from the top of the stack.

The stack uses the .NET class, System.Collections.Generic.Stack, and must have a type set.

 Creating a stack

A stack containing strings may be created as follows:

$stack = New-Object System.Collections.Generic.Stack[String]

 Enumerating the stack

PowerShell will display the content of a stack in the same way as it would the content of an array. It isn't possible to index into a stack. The ToArray() method may be used to convert the stack into an array if required:

$stack.ToArray()

The preceding command returns an array of the same type as the stack. That is, if a stack is configured to hold strings, the array will be an array of strings.

The stack has a Peek method that allows retrieval of the top element from the stack without it being removed:

$stack.Peek()

The Peek method will throw an error if the stack is empty (refer to the Removing elements from the stack section).

 Adding elements to the stack

Elements may be added to the stack using the Push method:

$stack.Push("Up the road")
$stack.Push("Over the gate")
$stack.Push("Under the bridge")

 Removing elements from the stack

Elements may be removed from the stack using the Pop method:

$stack.Pop() # This returns Under the bridge

If the stack is empty and the Pop method is called, an error will be thrown, as shown here:

PS> $stack.Pop()
Exception calling "Pop" with "0" argument(s): "Stack empty."
At line:1 char:1
+ $stack.Pop()
+ ~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : InvalidOperationException

To avoid this, the Count property of the stack may be inspected, for example:

Set-up the stack
$stack = New-Object System.Collections.Generic.Stack[String]
"Up the road", "Over the gate", "Under the bridge" | ForEach-Object {
 $stack.Push($_)
}
Pop from the stack until the stack is empty
while ($stack.Count -gt 0) {
 Write-Host $stack.Pop()
}

 Summary

Variables can be created to hold on to information that's to be reused in a function or a script. A variable may be a simple name, or loaded from a file.

The * variable commands are available to interact with variables beyond changing the value, such as setting a description, making a variable in a specific scope, or making a variable private.

A variable scope affects how variables may be accessed. Variables are created in the local scope by default.

Arrays are sets of objects of the same type. Arrays are immutable, and the size of an array cannot change after creation. Adding or removing elements from an array requires the creation of a new array.

Hashtables are associative arrays. An element in a hashtable is accessed using a unique key.

Lists, stacks, queues, and dictionaries are advanced collections that may be used when a particular behavior is required, or if they offer a desirable performance benefit.

In Chapter 6, Branching and Looping, we will explore branching and looping in PowerShell.

 Branching and Looping

A branch in a script or command is created every time an if, switch statement, or loop is added. The branch represents a different set of instructions. Branches can be conditional, such as one created by an if statement, or unconditional, such as a for loop.

As a script or command increases in complexity, the branches spread out the same as the limbs of a tree.

In this chapter, we are going to cover the following topics:

	Conditional statements

	Loops

	Branching and assignment

 Conditional statements

Statements or lines of code may be executed when certain conditions are met. PowerShell provides if and select statements for this purpose.

 if, else, and elseif

An if statement is written as follows; the statements enclosed by the if statement will execute if the condition evaluates to true:

if (<condition>) {
 <statements>
}

The else statement is optional and will trigger if all previous conditions evaluate to false:

if (<first-condition>) {
 <first-statements>
} else {
 <second-statements>
}

The elseif statement allows conditions to be stacked:

if (<first-condition>) {
 <first-statements>
} elseif (<second-condition>) {
 <second-statements>
} elseif (<last-condition>) {
 <last-statements>
}

The else statement may be added after any number of elseif statements.

Execution of a block of conditions stops as soon as a single condition evaluates to true. For example, both the first and second condition would evaluate to true, as shown here, but only the first will execute:

$value = 1
if ($value -eq 1) {
 Write-Host 'value is 1'
} elseif ($value -lt 10) {
 Write-Host 'value is less than 10'
}

Implicit Boolean

An implicit Boolean is a condition that can evaluate as true (is considered to be something) without using a comparison operator that would explicitly return true or false. For example, the number 1 will evaluate as true:

$value = 1

if ($value) {

 Write-Host 'Implicit true'

}

In the previous example, the statement executes because casting the value 1 to Boolean results in true. If the variable were set to 0, the condition would evaluate to false.

Each of the following will evaluate to true, as they are considered to be something when used in this manner:

[Boolean]1

[Boolean]-1

[Boolean]2016

[Boolean]"Hello world"

Each of the following will evaluate to false, as each is considered to be nothing:

[Boolean]0

[Boolean]""

[Boolean]$null

 Assignment within if statements

An if statement can include an assignment step, as follows:

if ($i = 1) {
 Write-Host "Implicit true. The variable i is $i"
}

This is most commonly used when testing for the existence of a value in a variable, for example:

if ($interface = Get-NetAdapter | Where-Object Status -eq 'Up') {
 Write-Host "$($interface.Name) is up"
}

In the previous example, the statement to the right of the assignment operator (=) is executed, assigned to the $interface variable, and then the value in the variable is treated as an implicit Boolean.

 switch

A switch statement uses the following generalized notation:

switch [-regex|-wildcard][-casesensitive] (<value>) {
 <condition> { <statements> }
 <condition> { <statements> }
}

The casesensitive parameter applies when testing conditions against a string value.

The switch command can also be used to work on the content of a file using the following notation:

switch [-regex|-wildcard][-casesensitive] -File <Name> {
 <condition> { <statements> }
 <condition> { <statements> }
}

The File parameter can be used to select from a text file (line by line). The switch statement differs from conditions written using if-elseif in one important respect. The switch statement will not stop testing conditions unless the break keyword is used, for example:

$value = 1
switch ($value) {
 1 { Write-Host 'value is 1' }
 1 { Write-Host 'value is still 1' }
}

Using break, as shown here, will exit the switch statement after a match:

$value = 1
switch ($value) {
 1 { Write-Host 'value is 1'; break }
 1 { Write-Host 'value is still 1' }
}

The default keyword provides the same functionality as the else statement when using if, for example:

$value = 2
switch ($value) {
 1 { Write-Host 'value is 1' }
 default { Write-Host 'No conditions matched' }
}

A switch statement can test more than one value at once; however, break applies to the entire statement, not just a single value. For example, without break, both of the following Write-Host statements execute:

switch (1, 2) {
 1 { Write-Host 'Equals 1' }
 2 { Write-Host 'Equals 2' }
}

If the break keyword is included, as shown here, only the first executes:

switch (1, 2) {
 1 { Write-Host 'Equals 1'; break }
 2 { Write-Host 'Equals 2' }
}

 wildcard and regex

The wildcard and regex parameters are used when matching strings. The wildcard parameter allows for the use of the characters ? (any single character) and * (any character, repeated 0 or more times) in a condition, for example:

switch -Wildcard ('cat') {
 'c*' { Write-Host 'The word begins with c' }
 '???' { Write-Host 'The word is 3 characters long' }
 '*t' { Write-Host 'The word ends with t' }
}

The Regex parameter allows for the use of regular expressions to perform comparisons (Chapter 9, Regular Expressions, will explain this syntax in greater detail), for example:

switch -Regex ('cat') {
 '^c' { Write-Host 'The word begins with c' } '[a-z]{3}' { Write-Host 'The word is 3 characters long' } 't$' { Write-Host 'The word ends with t' } }

 Expressions

Switch allows expressions (a ScriptBlock) to be used in place of a simpler condition. The result of the expression should be an explicit true or false, or an implicit Boolean, for example:

switch (Get-Date) {
 { $_ -is [DateTime] } { Write-Host 'This is a DateTime type' }
 { $_.Year -ge 2017 } { Write-Host 'It is 2017 or later' }
}

 Loops

Loops may be used to iterate through collections, performing an operation against each element in the collection, or to repeat an operation (or series of operations) until a condition is met.

 foreach

The foreach loop executes against each element of a collection using the following notation:

foreach (<element> in <collection>) {
 <body-statements>
}

For example, the foreach loop may be used to iterate through each of the processes returned by Get-Process:

foreach ($process in Get-Process) {
 Write-Host $process.Name
}

If the collection is $null or empty, the body of the loop will not execute.

 for

The for loop is typically used to step through a collection using the following notation:

for (<intial>; <exit condition>; <repeat>){
 <body-statements>
}

<initial> represents the state of a variable before the first iteration of the loop. This is normally used to initialize a counter for the loop.

The exit condition must be true as long as the loop is executing.

<repeat> is executed after each iteration of the body and is often used to increment a counter.

The for loop is most often used to iterate through a collection, for example:

$processes = Get-Process
for ($i = 0; $i -lt $processes.Count; $i++) {
 Write-Host $processes[$i].Name
}

The for loop provides a significant degree of control over the loop and is useful where the step needs to be something other than simple ascending order. For example, repeat may be used to execute the body for every third element:

for ($i = 0; $i -lt $processes.Count; $i += 3) {
 Write-Host $processes[$i].Name
}

The loop parameters may also be used to reverse the direction of the loop, for example:

for ($i = $processes.Count - 1; $i -ge 0; $i--) {
 Write-Host $processes[$i].Name
}

 do until and do while

do until and do while each execute the body of the loop at least once, as the condition test is at the end of the loop statement. Loops based on do until will exit when the condition evaluates to true; loops based on do while will exit when the condition evaluates to false.

do loops are written using the following notation:

do {
 <body-statements>
} <until | while> (<condition>)

do until is suited to exit conditions that are expected to be positive. For example, a script might wait for a computer to respond to a ping:

do {
 Write-Host "Waiting for boot"
 Start-Sleep -Seconds 5
} until (Test-Connection 'SomeComputer' -Quiet -Count 1)

The do while loop is more suitable for exit conditions that are negative. For example, a loop might wait for a remote computer to stop responding to a ping:

do {
 Write-Host "Waiting for shutdown"
 Start-Sleep -Seconds 5
} while (Test-Connection 'SomeComputer' -Quiet -Count 1)

 while

As the condition for a while loop comes first, the body of the loop will only execute if the condition evaluates to true:

while (<condition>) {
 <body-statements>
}

A while loop may be used to wait for something to happen. For example, it might be used to wait for a path to exist:

while (-not (Test-Path $env:TEMP\test.txt -PathType Leaf)) {
 Start-Sleep -Seconds 10
}

 break and continue

break can be used to end a loop early. The loop in the following example would continue to 20; break is used to stop the loop at 10:

for ($i = 0; $i -lt 20; $i += 2) {
 Write-Host $i
 if ($i -eq 10) {
 break # Stop this loop
 }
}

break acts on the loop it is nested inside. In the following example, the inner loop breaks early when the i variable is less than or equal to 2:

PS> $i = 1 # Initial state for i
PS> while ($i -le 3) {
>> Write-Host "i: $i"
>> $k = 1 # Reset k
>> while ($k -lt 5) {
>> Write-Host " k: $k"
>> $k++ # Increment k
>> if ($i -le 2 -and $k -ge 3) {
>> break
>> }
>> }
>> $i++ # Increment i
>> }

i: 1
k: 1
k: 2
i: 2
k: 1
k: 2
i: 3
k: 1
k: 2
k: 3
k: 4

The continue keyword may be used to move on to the next iteration of a loop immediately. For example, the following loop executes a subset of the loop body when the value of the i variable is less than 2:

for ($i = 0; $i -le 5; $i++) {
 Write-Host $i
 if ($i -lt 2) {
 continue # Continue to the next iteration
 }
 Write-Host "Remainder when $i is divided by 2 is $($i % 2)"
}

 Branching and assignment

PowerShell allows the output from a branching operation (if, switch, foreach, for, and so on) to be assigned to a variable.

This example assigns a value based on a switch statement when converting a value. The values of the variables at the top are expected to change:

$value = 20
$units = 'TB'
$bytes = switch ($Units) {
 'TB' { $value * 1TB }
 'GB' { $value * 1GB }
 'MB' { $value * 1MB }
 default { $value }
}

The same approach may be used when working with a loop, such as foreach. The following example shows a commonly used approach to building an array:

$serviceProcesses = @()
foreach ($service in Get-CimInstance Win32_Service -Filter 'State="Running"') {
 $serviceProcesses += Get-Process -Id $service.ProcessId
}

In this example, a new array must be recreated with one extra element (and the old copied) for every iteration of the loop.

This operation may be simplified by moving the assignment operation in front of foreach:

$serviceProcesses = foreach ($service in Get-CimInstance Win32_Service -Filter 'State="Running"') {
 Get-Process -Id $service.ProcessId
}

In this case, the assignment occurs once when the loop finishes running. There is no array to continually resize.

 Summary

In this chapter, we have explored the if and switch statements.

Each of the different loops, foreach, for, do until, do while, and while, have been introduced.

In Chapter 7, Working with .NET, we will explore working with the .NET Framework.

 Working with .NET

PowerShell is written in and built on the .NET Framework. Much of the .NET Framework can be used directly, and doing so adds a tremendous amount of flexibility by removing many of the borders the language might otherwise have.

The idea of working with objects was introduced in Chapter 3, Working with Objects in Powershell, and this chapter extends on that, moving from objects created by commands to objects created from .NET classes. Many of the chapters that follow this one make extensive use of .NET, simply because it's the foundation of PowerShell.

It's important to understand that the .NET Framework is vast; it isn't possible to cover everything about the .NET Framework in a single chapter. This chapter aims to show how the .NET Framework may be used within PowerShell based on the MSDN reference, which is available at https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2.

What can you do with .NET?

I enjoy implementing network protocols in PowerShell. To do this, I use several branches of .NET that specialize in network operations, such as creating sockets, sending and receiving bytes, and reading and converting streams of bytes.

Classes implemented in .NET will come up again and again as different areas of the language are explored. From building strings and working with Active Directory, to writing graphical interfaces and working with web services, everything needs a little .NET.

In this chapter, we're going to cover the following topics:

	Assemblies

	Namespaces

	Types

	Classes

	Constructors

	Properties and methods

	Static properties

	Static methods

	Non-public classes

	Type accelerators

	The using keyword

 Assemblies

.NET objects are implemented within assemblies. An assembly may be static (based on a file) or dynamic (created in memory).

Many of the most commonly used classes exist in DLL files stored in %SystemRoot%\Assembly. The list of currently loaded assemblies in a PowerShell session may be viewed using the following statement:

[System.AppDomain]::CurrentDomain.GetAssemblies()

Once an assembly, and the types it contains, has been loaded into a session, it can't be unloaded without completely restarting the session.

Much of PowerShell is implemented in the System.Management.Automation DLL. Details of this can be shown using the following statement:

[System.Management.Automation.PowerShell].Assembly

In this statement, the PowerShell type is chosen to get the assembly. Any other type in the same assembly is able to show the same information. The PowerShell type could be replaced with another in the previous command, as follows:

[System.Management.Automation.PSCredential].Assembly
[System.Management.Automation.PSObject].Assembly

 Namespaces

A namespace is used to organize classes into a hierarchy, often to group types with related functionalities.

In PowerShell, the system namespace is implicit. The System.AppDomain type was used previously; this command, used when introducing assemblies, can be shortened:

[AppDomain]::CurrentDomain.GetAssemblies()

The same applies to types with longer names, such as System.Management.Automation.PowerShell, which can be shortened as follows:

[Management.Automation.PowerShell].Assembly

 Types

A type is used to represent the generalized functionality of an object. To use this book as an example again, it could have a number of types, including the following:

	PowerShellBook

	TextBook

	Book

Each of these types describes the general functionality of the object. The type doesn't say how this book came to be, nor whether it will do anything (on its own) to help create one.

In PowerShell, types are written between square brackets. The [System.AppDomain] and [System.Management.Automation.PowerShell] statements, used when discussing previous assemblies, are types.

Type descriptions are objects in PowerShell

 [System.AppDomain] denotes a type, but the syntax used to denote the type is itself an object. It has properties and methods and a type of its own (RuntimeType), which can be seen by running the following command:

[System.AppDomain].GetType()

To an extent, the terms type and class are synonymous. A class is used to define a type, but it isn't the only way of doing so. Another way is to use what is known as a structure (or struct), which is used to define value types such as integers (Int32, Int64, and so on).

A type cannot be used to create an object instance all on its own.

 Classes

A class is a set of instructions that dictates how a specific instance of an object is to be created. A class is, in a sense, a recipe.

In the case of this book, a class includes details of authoring, editorial processes, and publication steps. These steps are, hopefully, invisible to anyone reading this book; they're part of the internal implementation of the class. Following these steps will produce an instance of the PowerShellBook object.

It's often necessary to look up the instructions for using a class in the .NET class library on MSDN, available at https://msdn.microsoft.com/en-us/library/mt472912(v=vs.110).aspx.

The starting point for creating an instance of an object is often what's known as a constructor.

 Constructors

The System.Text.StringBuilder class can be used to build complex strings. The StringBuilder class has a number of constructors that can be viewed on the MSDN class library, as shown in the following screenshot:

PowerShell is also able to show the list of constructors. However, PowerShell cannot show the descriptive text. Still, this may be useful as a reminder if the general functionality is already known. In PowerShell 5.0, the following syntax may be used to list the constructors:

PS> [System.Text.StringBuilder]::new

OverloadDefinitions

System.Text.StringBuilder new()
System.Text.StringBuilder new(int capacity)
System.Text.StringBuilder new(string value)
System.Text.StringBuilder new(string value, int capacity)
System.Text.StringBuilder new(string value, int startIndex, int length, int capacity)
System.Text.StringBuilder new(int capacity, int maxCapacity)

For older versions of PowerShell, a longer, less descriptive alternative is available:

PS> [System.Text.StringBuilder].GetConstructors() | ForEach-Object ToString
Void .ctor()
Void .ctor(Int32)
Void .ctor(System.String)
Void .ctor(System.String, Int32)
Void .ctor(System.String, Int32, Int32, Int32)
Void .ctor(Int32, Int32)

Both MSDN and PowerShell show that there are six possible constructors for StringBuilder. Both show that the first of those does not expect any arguments.

 Calling constructors

In PowerShell 5.0 and higher, an object instance may be created using the new static method:

$stringBuilder = [System.Text.StringBuilder]::new()

For earlier versions of PowerShell, the object instance may be created using the following syntax:

$stringBuilder = New-Object System.Text.StringBuilder

PowerShell has added the static method (discussed later in this chapter); it can be used if required, but it isn't documented on the MSDN page for StringBuilder.

Once an instance of StringBuilder has been created, it can be viewed:

PS> $stringBuilder = New-Object System.Text.StringBuilder
PS> $stringBuilder

Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 0

The StringBuilder object has a number of other constructors. These are used to adjust the initial state of the instance.

 Calling constructors with lists of arguments

Arguments may be passed to the class constructor using a number of different approaches.

Using New-Object and the ArgumentList parameter, passing a single argument will use the second constructor in the list on MSDN (and in PowerShell):

PS> New-Object -TypeName System.Text.StringBuilder -ArgumentList 10

Capacity MaxCapacity Length
-------- ----------- ------
 10 2147483647 0

Alternatively, the following two approaches may be used:

New-Object System.Text.StringBuilder(10)
[System.Text.StringBuilder]::new(10)

PowerShell decides which constructor to use based on the numbers and types of the arguments.

In the previous examples, one argument is passed; there are two possible constructors that accept a single argument. One of these expects a value of the Int32 type, the other a string.

If a string is passed, StringBuilder will be created, with an initial value for the string. The following example creates a StringBuilder object instance containing the specified ('Hello world') string:

PS> $stringBuilder = New-Object System.Text.StringBuilder('Hello world')
PS> $stringBuilder.ToString()

Hello world

PowerShell will attempt to find a constructor, even if the value type used does not exactly match one of the definitions. For example, an argument of $true, a Boolean, creates a StringBuilder object with a capacity set to 1. The value for $true is treated as an Int32 value by PowerShell:

PS> New-Object System.Text.StringBuilder($true)

Capacity MaxCapacity Length
-------- ----------- ------
 1 2147483647 0

If the value for the argument does not match any of the possible constructors, an error will be thrown:

PS> New-Object System.Text.StringBuilder((Get-Date))

New-Object : Cannot convert argument "0", with value: "23/01/2017 15:26:59", for "StringBuilder" to type "System.Int32": "Cannot convert value "23/01/2017 15:26:59" to type
"System.Int32". Error: "Invalid cast from 'DateTime' to 'Int32'.""
At line:1 char:1
+ New-Object System.Text.StringBuilder((Get-Date))
+ ~~
+ CategoryInfo : InvalidOperation: (:) [New-Object], MethodException
+ FullyQualifiedErrorId : ConstructorInvokedThrowException,Microsoft.PowerShell.Commands.NewObjectCommand

 Arguments as an array

Arguments for constructors can be passed in as an array. Each of the following may be used to create an instance of a StringBuilder object:

$params = @{
 TypeName = 'System.Text.StringBuilder'
 ArgumentList = 'Initial value', 50
}
$stringBuilder = New-Object @params
$stringBuilder = New-Object System.Text.StringBuilder($argumentList)

Attempting to pass in a list of arguments using the new method will produce a different result; the initial string will be filled with both values:

PS> $argumentList = 'Initial value', 50
PS> $stringBuilder = [System.Text.StringBuilder]::new($argumentList)
PS> Write-Host $stringBuilder.ToString() -ForegroundColor Green
PS> $stringBuilder

Initial value 50
Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 16

An array can be passed in using new, by adopting a slightly different approach:

PS> $stringBuilder = [System.Text.StringBuilder]::new.Invoke($argumentList)
PS> Write-Host $stringBuilder.ToString() -ForegroundColor Green
PS> $stringBuilder

Initial value
Capacity MaxCapacity Length
-------- ----------- ------
 50 2147483647 13

The ability to push arguments into an array presents a complication when an argument is an array. For example, the memoryStream (System.IO.MemoryStream) class has a number of constructors; two of these expect an array of bytes, as shown in the following screenshot:

The first of these only expects an array (of bytes) as input. The following example shows an error generated when attempting to pass in the array:

PS> [Byte[]]$bytes = 97, 98, 99
PS> $memoryStream = New-Object System.IO.MemoryStream($bytes)

New-Object : Exception calling ".ctor" with "3" argument(s): "Offset and length were out of bounds for the array or count is greater than the number of elements from index to the end of the source collection."
At line:2 char:17
+ $memoryStream = New-Object System.IO.MemoryStream($bytes)
+ ~~~
+ CategoryInfo : InvalidOperation: (:) [New-Object], MethodInvocationException
+ FullyQualifiedErrorId : ConstructorInvokedThrowException,Microsoft.PowerShell.Commands.NewObjectCommand

PowerShell treats each byte as an individual argument for the constructor, rather than passing all of the values into the intended constructor.

The new static method does not suffer from this problem:

[Byte[]]$bytes = 97, 98, 99
$memoryStream = [System.IO.MemoryStream]::new($bytes)

To work around the problem in earlier versions of PowerShell, the unary comma operator may be used as follows:

$memoryStream = New-Object System.IO.MemoryStream(,$bytes)

Using the comma operator prevents PowerShell from expanding the array into a set of arguments. The array, held in bytes, is wrapped in another array that contains a single element. When PowerShell executes this, the wrapper is discarded, and the inner array (bytes) is passed without further expansion.

PowerShell will cast and coerce types

The preceding examples can be significantly shortened, as PowerShell will do a lot to call appropriate constructors when casting. This extended example will do the following:

	Create an array of characters from a string

	Create a byte array from the array of characters

	Create a memory stream from the byte array

	Create a binary reader from the memory stream

using namespace System.IO

[BinaryReader][MemoryStream][Byte[]][Char[]]'hello world'

 Creating objects from hashtables

Many classes (or types) implement a constructor that does not require any arguments, for example, ADSISearcher (the type accelerator for System.DirectoryServices.DirectorySearcher).

An instance of the searcher may be created as follows, using one of the available constructors:

$searcher = [ADSISearcher]::new(
 [ADSI]'LDAP://domain.com',
 '(&(objectClass=user)(objectCategory=person))'
)
$searcher.PageSize = 1000

Alternatively, it can be created from a hashtable, which can be easier to read, as each of the arguments has a clear name:

$searcher = [ADSISearcher]@{
 SearchRoot = [ADSI]'LDAP://domain.com'
 Filter = '(&(objectClass=user)(objectCategory=person))'
 PageSize = 1000
}

This technique is especially useful for classes that have a large number of properties, for example, those used by the Windows Presentation Framework or Windows Forms.

 Properties and methods

In Chapter 3, Working with Objects in PowerShell, the idea of using properties and methods was introduced. Get-Member was used to list each of these.

Properties for objects derived from .NET classes, such as those for the System.Text.StringBuilder class, are documented on MSDN:

Similarly, methods are described in detail, often with examples of usage (in C#, VB, F#, and so on):

These methods may be used as long as the argument lists can be satisfied. The fourth item on the list is difficult to leverage in PowerShell, as Char* represents a pointer to an array of Unicode characters. A pointer is a reference to a location in memory, something not often seen in PowerShell and beyond the scope of this chapter.

 Static properties

Properties require an instance of a type to be created before they can be accessed. Static properties, on the other hand, don't.

A static property is a piece of data; in some cases, this includes constant values, associated with class definitions, that can be retrieved without creating an object instance.

MSDN shows static properties using an S symbol in the leftmost column. For example, the System.Text.Encoding class has a number of static properties denoting different text encoding types, shown in the following screenshot:

PowerShell is also able to list the static properties for a type (or class) using Get-Member with the Static switch:

PS> [System.Text.Encoding] | Get-Member -MemberType Property -Static

 TypeName: System.Text.Encoding

Name MemberType Definition
---- ---------- ----------
ASCII Property static System.Text.Encoding ASCII {get;}
BigEndianUnicode Property static System.Text.Encoding BigEndianUnicode {get;}
Default Property static System.Text.Encoding Default {get;}
Unicode Property static System.Text.Encoding Unicode {get;}
UTF32 Property static System.Text.Encoding UTF32 {get;}
UTF7 Property static System.Text.Encoding UTF7 {get;}
UTF8 Property static System.Text.Encoding UTF8 {get;}

These static properties are accessed using the following generalized notation:

[<TypeName>]::<PropertyName>

In the case of System.Text.Encoding, the ASCII property is accessible using the following syntax:

[System.Text.Encoding]::ASCII

A variable may be used to represent either the type or the property name, as follows:

$type = [System.Text.Encoding]
$propertyName = 'ASCII'
$type::$propertyName

Fields are often used as part of the internal implementation of a class (or structure). Fields aren't often accessible outside of a class.

The Int32 structure exposes two static fields, holding the maximum and minimum possible values that the type can hold:

PowerShell does not distinguish between fields and properties. The following statements show the values of each static field in turn:

[Int32]::MaxValue
[Int32]::MinValue

 Static methods

As static properties, static methods do not require that an instance of a class is created.

MSDN shows static methods using an S symbol in the leftmost column. For example, the System.Net.NetworkInformation.NetworkInterface class has a number of static methods. The first of these is shown in the following screenshot:

PowerShell is also able to list these methods using Get-Member with the Static switch, as shown here:

PS> [System.Net.NetworkInformation.NetworkInterface] | Get-Member -MemberType Method -Static

 TypeName: System.Net.NetworkInformation.NetworkInterface

Name MemberType Definition
---- ---------- ----------
Equals Method static bool Equals(System.Object objA, System.Object objB)
GetAllNetworkInterfaces Method static System.Net.NetworkInformation.NetworkInterface[] GetAllNetworkInterfaces()
GetIsNetworkAvailable Method static bool GetIsNetworkAvailable()
ReferenceEquals Method static bool ReferenceEquals(System.Object objA, System.Object objB)

Static methods are accessed using the following generalized notation:

[<TypeName>]::<MethodName>(<ArgumentList>)

As the GetAllNetworkInterfaces method does not require arguments, it may be called as follows:

[System.Net.NetworkInformation.NetworkInterface]::GetAllNetworkInterfaces()

The parentheses at the end of the statement must be included to tell PowerShell that this is a method.

As was seen with static properties, both type and method may be assigned to variables:

$type = [System.Net.NetworkInformation.NetworkInterface]
$methodName = 'GetAllNetworkInterfaces'
$type::$methodName()

The parentheses are not part of the method name.

Static methods often require arguments. The System.IO.Path class has many static methods that require arguments, as shown in the following screenshot:

Arguments are passed in as a comma-separated list. For example, the ChangeExtension method may be used, as follows:

[System.IO.Path]::ChangeExtension("C:\none.exe", "bak")

An array containing a list of arguments cannot be directly supplied. Consider the following example:

$argumentList = "C:\none.exe", "bak"
[System.IO.Path]::ChangeExtension($argumentList)

If a list of arguments is to be supplied from a variable, the method object must be invoked:

$argumentList = "C:\none.exe", "bak"
[System.IO.Path]::ChangeExtension.Invoke($argumentList)

The method object (because everything is an object) is accessed by omitting the parentheses that normally follow the name of the method:

PS> [System.IO.Path]::ChangeExtension

OverloadDefinitions

static string ChangeExtension(string path, string extension)

 Non-public classes

.NET classes come with a number of access modifiers. Each of these affords a different level of protection and visibility.

Instances of a public class may be created using New-Object (with an appropriate list of arguments) or the new static method via constructors, as shown previously.

Private and internal (non-public) classes are not directly accessible; they are placed out of sight by the developer of the class. They are often part of an implementation of a program or command and are not expected to be directly accessed.

In some cases, the decision to hide something away appears to be counterproductive. One example of this is the TypeAccelerators class.

The type derived from the class may be accessed using the following notation:

PS> [System.Management.Automation.PowerShell].Assembly.GetType(
 'System.Management.Automation.TypeAccelerators'
)

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False False TypeAccelerators System.Object

 Type accelerators

A type accelerator is an alias for a type name. At the beginning of this chapter, the System.Management.Automation.PowerShell type was used. This type has an accelerator available. The accelerator allows the following notation to be used:

[PowerShell].Assembly

Another commonly used example is the ADSI accelerator. This represents the System.DirectoryServices.DirectoryEntry type. This means that the following two commands are equivalent:

[System.DirectoryServices.DirectoryEntry]"WinNT://$env:COMPUTERNAME"
[ADSI]"WinNT://$env:COMPUTERNAME"

Getting the list of type accelerators isn't quite as easy as it should be. An instance of the TypeAccelerators type is required first. Once that has been retrieved, a static property called Get will retrieve the list; the first few results are shown as follows:

$type = [PowerShell].Assembly.GetType('System.Management.Automation.TypeAccelerators')
$type::Get

New accelerators may be added; for example, an accelerator for the TypeAccelerators class would make life easier. To do this, an accelerator with the name Accelerators is added, using the TypeAccelerators type as the object that it references:

$type = [PowerShell].Assembly.GetType('System.Management.Automation.TypeAccelerators')
$type::Add('Accelerators', $type)

Once the new accelerator has been added, the previous operations can be simplified. Getting the list of accelerators is now done as follows:

[Accelerators]::Get

New accelerators may be added using the following syntax:

[Accelerators]::Add('<Name>', [<TypeName>])

 The using keyword

The using keyword was introduced with PowerShell 5.0. The using keyword may be used in a script, a module, or in the console.

The using keyword does a number of different things. It can import and declare the following:

	Assemblies

	Modules

	Namespaces

In the context of working with .NET, assemblies, and namespaces are of particular interest.

Future plans for the using command look to include aliasing, as well as support for type and command objects. For example, we might expect the following to work in the future:

using namespace NetInfo = System.Net.NetworkInformation

At this time, however, this statement will fail with a not supported error.

 Using assemblies

If an assembly is listed in the using statement for a script, it will be loaded. For example, System.Windows.Forms may be loaded in Windows PowerShell; the assembly is not available in PowerShell Core:

using assembly System.Windows.Forms

Add-Type is able to do much the same thing:

Add-Type -AssemblyName System.Windows.Forms

Assemblies loaded by name are stored in the Global Assembly Cache (GAC). The GAC is stored in $env:WINDIR\Assembly. gacutil may be used to find assemblies within the cache:

gacutil /l System.Windows.Forms

The Gac module, on the PowerShell Gallery, provides a more consistent experience:

PS> Install-Module Gac -Scope CurrentUser
PS> Get-GacAssembly System.Windows.Forms

Name Version Culture PublicKeyToken PrArch
---- ------- ------- -------------- ------
System.Windows.Forms 2.0.0.0 b77a5c561934e089 MSIL
System.Windows.Forms 1.0.5000.0 b77a5c561934e089 None
System.Windows.Forms 4.0.0.0 b77a5c561934e089 MSIL

As shown in the preceding code block, more than one version of the same assembly can exist on a system. If a specific version is required, the full name of the assembly may be used:

using assembly 'System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'

This full name is exposed by both gacutil and the Gac module, as shown here:

PS> Get-GacAssembly System.Windows.Forms | Select-Object FullName

FullName

System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
System.Windows.Forms, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

The using assembly statement will load assemblies from a specific path, if one is supplied, as follows:

using assembly 'C:\SomeDir\someAssembly.dll'

PowerShell allows the using assembly statement any number of times in a script, and more than one assembly can be loaded in a single script.

 Using namespaces

Many of the examples used in this chapter have involved typing the full namespace path to get to a class name. This requirement can be eased with the using keyword.

For example, if a script does a lot of work with the System.Net.NetworkInformation class, the requirement to type the namespace every time can be removed. This allows the System.Net.NetworkInformation.NetworkInterface class to be used with a much shorter type name:

using namespace System.Net.NetworkInformation

With this statement in place, classes can be used without the long namespace:

[NetworkInterface]::GetAllNetworkInterfaces()

If the namespace is present within an assembly that isn't loaded by default, the using assembly command should be added first. For example, if a script is to work with Windows Presentation Framework in Windows PowerShell, the following might be useful:

Load the Windows Presentation Framework
using assembly PresentationFramework
Use the System.Windows namespace
using namespace System.Windows

$window = [Window]@{
 Height = 100
 Width = 150
}
Create a System.Windows.Controls.Button object
$button = [Controls.Button]@{
 Content = 'Close'
}
$button.Add_Click({ $window.Close() })
$window.Content = $button
$window.ShowDialog()

GUIs and PowerShell Core

Like System.Windows.Forms, the Windows Presentation Framework is not available in .NET Core at this time. Both are planned to reappear in .NET Core 3 in 2019 (on Windows systems only).

PowerShell only allows one using namespace statement line in the console. If the statements are made on different lines, only the last will be valid. It is possible to use more than one namespace in the console by separating the statements with ;. This is demonstrated in the following code block:

PS> using namespace System.IO; using namespace System.Text
PS> [File].FullName
System.IO.File
PS> [StringBuilder].FullName
System.Text.StringBuilder

In a script, using namespace statements may appear across as many lines as required.

 Summary

In this chapter, we've explored assemblies, namespaces, types, and classes, before delving into the creation of objects from a class. Static properties and static methods were introduced, both of which may be used without creating an instance of a class. Non-public classes were introduced, before briefly touching on type accelerators. The using keyword was introduced, along with a peek at its possible future direction.

This chapter brings part one of this book to an end. In part two, we'll explore working with data in PowerShell, starting with data parsing and manipulation.

 Strings, Numbers, and Dates

Access to the .NET framework means that PowerShell comes with a wide variety of ways to work with simple data types, such as strings and numbers.

In this chapter, we're going to cover the following topics:

	Manipulating strings

	Converting strings

	Manipulating numbers

	Converting strings into numeric values

	Manipulating dates and times

 Manipulating strings

The .NET System.String type offers a wide array of methods for manipulating or inspecting strings. The following methods are case-sensitive, but are, in many cases, faster alternatives to using regular expressions, for situations when the time that it takes for a script to run is important.

Working with data held in strings is an important part of any scripting language.

 Indexing into strings

In PowerShell, it's possible to index into a string the same way as we select elements from an array. Consider the following example:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString[0] # This is a (the first character in the string)
$myString[-1] # This is z (the last character in the string)

 String methods and arrays

In PowerShell, some string methods can be called on an array. The method will be executed against each of the elements in the array. For example, the Trim method is used against each of the strings as follows:

('azzz', 'bzzz', 'czzz').Trim('z')

The Split method is also capable of acting against an array:

('a,b', 'c,d').Split(',')

This remains true as long as the array object doesn't have a conflicting method or property. For example, the Insert method can't be used as an array object has a version of its own.

Properties and methods of array elements

 The feature demonstrated here has broader scope than methods, and it applies to more than string objects.

In the case of strings, you can view the methods that can be used as follows:

$arrayMembers = (Get-Member -InputObject @() -MemberType Property, Method).Name
 'string' | Get-Member -MemberType Property, Method | Where-Object Name -notin $arrayMembers.

Using this feature with DateTime objects, the AddDays method may be called on each element in an array: ((Get-Date '01/01/2017'), (Get-Date '01/02/2017')).AddDays(5).

Likewise, the DayOfWeek property may be accessed on each element in the array, as follows: ((Get-Date '01/01/2017'), (Get-Date '01/02/2017')).DayOfWeek.

A similar Get-Member command reveals the list of properties and methods that may be used in this manner: Get-Date | Get-Member -MemberType Property, Method | Where-Object Name -notin $arrayMembers.

 Substring

The Substring method selects part of a string. Substring can select everything after a specific index:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString.Substring(20) # Start at index 20. Returns 'uvwxyz'

Substring can also select a specific number of characters from a starting point:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString.Substring(3, 4) # Start at index 3, get 4 characters.

The index starts at 0, counting from the beginning of the string.

 Split

The Split method has a relative in PowerShell: the -split operator. The -split operator expects a regular expression, whereas the split method for a string expects an array of characters by default:

$myString = 'Surname,GivenName'
$myString.Split(',')

When splitting the following string based on a comma, the resulting array will have three elements. The first element is Surname, the last is GivenName. The second element in the array (index 1) is blank:

$string = 'Surname,,GivenName'
$array = $string.Split(',')
$array.Count # This is 3
$array[1] # This is empty

This blank value may be discarded by setting the StringSplitOptions argument of the Split method:

$string = 'Surname,,GivenName'
$array = $string.Split(',', [StringSplitOptions]::RemoveEmptyEntries)
$array.Count # This is 2

When using the Split method in this manner, individual variables may be filled from each value as follows:

$surname, $givenName = $string.Split(',', [StringSplitOptions]::RemoveEmptyEntries)

The Split method is powerful, but care is required when using its different arguments. Each of the different sets of arguments works as follows:

PS> 'string'.Split

OverloadDefinitions

string[] Split(Params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char[] separator, System.StringSplitOptions options)
string[] Split(char[] separator, int count, System.StringSplitOptions options)
string[] Split(string[] separator, System.StringSplitOptions options)
string[] Split(string[] separator, int count, System.StringSplitOptions options)

PowerShell can create a character array from a string, or an array of strings, provided that each string is no more than one character long. Both of the following statements will result in an array of characters (char[]):

[char[]]$characters = [string[]]('a', 'b', 'c') [char[]]$characters = 'abc'

When the Split method is used as follows, the separator is any (and all) of the characters in the string. The result of the following expression is an array of five elements (one, <empty>, two, <empty>, and three):

$string = 'one||two||three'
$string.Split('||')

To split using a string, instead of an array of characters, PowerShell must be forced to use this overload definition:

string[] Split(string[] separator, System.StringSplitOptions options)

This can be achieved with the following cumbersome syntax:

$string = 'one||two||three'
$string.Split([String[]]'||', [StringSplitOptions]::None)

 Replace

The Replace method will substitute one string value for another:

$string = 'This is the first example'
$string.Replace('first', 'second')

PowerShell also has a replace operator. The replace operator uses a regular expression to describe the value that should be replaced.

Regular expressions (discussed in Chapter 9, Regular Expressions) may be more difficult to work with in some cases, especially when replacing characters that are reserved in regular expressions (such as the period character, .):

$string = 'Begin the begin.'
$string -replace 'begin.', 'story, please.'
$string.Replace('begin.', 'story, please.')

In these cases, the Replace method may be easier to work with.

 Trim, TrimStart, and TrimEnd

The Trim method, by default, removes all white space (spaces, tabs, and line breaks) from the beginning and end of a string. Consider the following example:

$string = "
 This string has leading and trailing white space "
$string.Trim()

The TrimStart and TrimEnd methods limit their operation to either the start or end of the string.

Each of the methods accepts a list of characters to trim. Consider the following example:

$string = '*__This string is surrounded by clutter.--#'
$string.Trim('*_-#')

The Trim method does not remove a string from the end of another. The string supplied in the previous example ('*_-#') is treated as an array. This can be seen in the definition of the method:

PS> 'string'.Trim

OverloadDefinitions

string Trim(Params char[] trimChars)
string Trim()

A failure to appreciate this can lead to unexpected behavior. The domain name in the following example ends with the suffix, '.uk.net'. The goal is to trim the suffix from the end of the string. However, the method goes too far here, taking away part of the name:

PS> $string = 'magnet.uk.net'
PS> $string.TrimEnd('.uk.net')

mag

 Insert and remove

The Insert method is able to add one string into another. This method expects an index from the beginning of the string, counting from 0, and a string to insert, as follows:

$string = 'The letter of the alphabet is a'
$string.Insert(4, 'first ') # Insert this before "letter", include a trailing space

The Remove method removes characters from a string, based on a start position and the length of the string to remove:

$string = 'This is is an example'
$string.Remove(4, 3)

The previous statement removes the first instance of is, including the trailing space.

 IndexOf and LastIndexOf

IndexOf and LastIndexOf may be used to locate a character or string within a string. IndexOf finds the first occurrence of a string, and LastIndexOf finds the last occurrence of the string. In both cases, the zero-based index of the start of the string is returned. If the character, or string, isn't present, the two methods will return -1:

$string = 'abcdefedcba'
$string.IndexOf('b') # Returns 1
$string.LastIndexOf('b') # Returns 9
$string.IndexOf('ed') # Returns 6

As -1 is used to indicate that the value is absent, the method is not suitable for statements based on an implicit Boolean. The index 0, a valid position, is considered to be false. The following example correctly handles the return value from IndexOf in a conditional statement:

$string = 'abcdef'
if ($string.IndexOf('a') -gt -1) {
 'The string contains an a'
}

The scope of the IndexOf and LastIndexOf methods can be limited using the start index and count arguments.

Methods that are able to locate a position within a string are useful when combined with other string methods, as shown here:

PS> $string = 'First,Second,Third'
PS> $string.Substring(
>> $string.IndexOf(',') + 1, # startIndex (6)
>> $string.LastIndexOf(',') - $string.IndexOf(',') - 1 # length (6)
>>)

Second

 PadLeft and PadRight

The PadLeft and PadRight options endeavor to increase the length of a string up to a given maximum length. Both PadLeft and PadRight take the same arguments, as follows:

PS> ''.PadRight

OverloadDefinitions

string PadRight(int totalWidth)
string PadRight(int totalWidth, char paddingChar)

PS> ''.PadLeft

OverloadDefinitions

string PadLeft(int totalWidth)
string PadLeft(int totalWidth, char paddingChar)

Both methods attempt to make a string up to the total width. If the string is already equal to, or longer than the total width, it won't be changed. Unless another is supplied, the padding character is a space.

The following example pads the right-hand side of strings, using . as the padding character argument:

PS> ('one', 'two', 'three').PadRight(10, '.')

one.......
two.......
three.....

Padding a string on the left, in effect, aligns the string on the right:

PS> ('one', 'two', 'three').PadLeft(10, '.')

.......one
.......two
.....three

 ToUpper, ToLower, and ToTitleCase

ToUpper converts any lowercase characters in a string into uppercase. ToLower converts any uppercase characters in a string into lowercase:

'aBc'.ToUpper() # Returns ABC
'AbC'.ToLower() # Returns abc

Considering that the methods discussed here are case sensitive, converting a string into a known case may be an important first step. Consider the following example:

$string = 'AbN'
$string = $string.ToLower()
$string = $string.Replace('n', 'c')

The ToTitleCase is not a method of the String object. It is a method of the System.Globalization.TextInfo class. The ToTitleCase method performs limited culture-specific capitalization of words:

PS> (Get-Culture).TextInfo.ToTitleCase('some title')
Some Title

As this is not a static method, the TextInfo object must be created first. This object cannot be directly created. TextInfo can be obtained via the System.Globalization.CultureInfo object, and this object is returned by the Get-Culture command.

The same TextInfo object may also be accessed using the host automatic variable:

$host.CurrentCulture.TextInfo.ToTitleCase('another title')

The ToTitleCase method will not convert words that are entirely uppercase as they're considered to be acronyms.

 Contains, StartsWith, and EndsWith

The Contains, StartsWith, and EndsWith methods will each return true or false, depending on whether or not the string contains the specified string.

Contains returns true if the value is found within the subject string:

$string = 'I am the subject'
$string.Contains('the') # Returns $true

StartsWith and EndsWith return true if the subject string starts or ends with the specified value:

$string = 'abc'
$string.StartsWith('ab')
$string.EndsWith('bc')

 Chaining methods

As many of the string methods return a string, it is entirely possible to chain methods together. For example, each of the following methods return a string, so another method can be added to the end:

' ONe*? '.Trim().TrimEnd('?*').ToLower().Replace('o', 'O')

This ability to chain methods is not in any way unique to strings.

 Converting strings

PowerShell has a variety of commands that can convert strings. These are explained in the following sections.

 Working with Base64

Base64 is a transport encoding that is used to represent binary data, and therefore, any (relatively simple) data type.

Base64 is particularly useful when storing complex strings in files, or in text-based transport protocols, such as SMTP.

The .NET System.Convert class contains the following static methods that can be used to work with Base64:

	ToBase64String

	FromBase64String

The ToBase64String method takes an array of bytes and converts it into a string. For example, a simple byte array may be converted as follows:

PS> [Byte[]]$bytes = 97, 98, 99, 100, 101
PS> [Convert]::ToBase64String($bytes)
YWJjZGU=

A more meaningful byte sequence can be made from a few words by getting the byte values for each character:

PS> $bytes = [System.Text.Encoding]::ASCII.GetBytes('Hello world')
PS> [Convert]::ToBase64String($bytes)
SGVsbG8gd29ybGQ=

If the encoding is ASCII, it is possible in PowerShell to supply the ToBase64String method with an array of characters. Consider the following example:

PS> [Convert]::ToBase64String('Hello world'.ToCharArray())
SGVsbG8gd29ybGQ=

The text encoding type used here is ASCII (1 byte per character); UTF16 text encoding will result in a longer Base64 string, as each character is stored in two bytes:

PS> $bytes = [System.Text.Encoding]::Unicode.GetBytes('Hello world')
PS> [Convert]::ToBase64String($bytes)
SABlAGwAbABvACAAdwBvAHIAbABkAA==

Unicode encoding is used to create an encoded command

 PowerShell.exe and pwsh.exe both have an EncodedCommand parameter. This can be any encoded script. The text must be Unicode-encoded.

Converting from a Base64 string into a sequence of bytes, and then into a string, may be achieved as follows:

PS> $base64String = 'YWJjZGU='
PS> $bytes = [Convert]::FromBase64String($base64String)
PS> [System.Text.Encoding]::ASCII.GetString($bytes)
abcde

Base64 can be a handy format for storing items such as keys (normally a set of bytes) for use with the ConvertTo-SecureString command. Consider the following example:

Create a 16-byte key
[Byte[]]$key = 1..16 | ForEach-Object { Get-Random -Minimum 0 -Maximum 256 }
Convert the key to a string and save it in a file
[Convert]::ToBase64String($key) | Out-File 'KeepThisSafe.txt'

Create a secure string (from plain text) to encrypt
$secure = ConvertTo-SecureString -String 'Secure text' -AsPlainText -Force
Encrypt the password using the key (from the file)
$convertFromSecureString = @{
 SecureString = $secure
 Key = [Convert]::FromBase64String((Get-Content .\KeepThisSafe.txt))
}
$encrypted = ConvertFrom-SecureString @convertFromSecureString

Decrypt the password using the same key
$convertToSecureString = @{
 String = $encrypted
 Key = [Convert]::FromBase64String((Get-Content .\KeepThisSafe.txt))
}
$secure = ConvertTo-SecureString @convertToSecureString

Show the original password
[PSCredential]::new('.', $secure).GetNetworkCredential().Password

 Working with comma-separated value strings

ConvertTo-Csv turns objects in PowerShell into comma-separated value (CSV) strings:

PS> Get-Process -Id $pid | Select-Object Name, Id, Path | ConvertTo-Csv
"Name","Id","Path"
"powershell_ise","9956","C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell_ise.exe"

In the preceding example, Windows PowerShell will also include type data by default.

ConvertFrom-Csv turns CSV-formatted strings into objects:

"David,0123456789,28" | ConvertFrom-Csv -Header Name, Phone, Age

As ConvertFrom-Csv is specifically written to read CSV-formatted data, it will discard quotes surrounding strings but will allow fields to spread across lines and so on. Consider the following example:

'David,0123456789,28,"1 Some street, A Lane"' | ConvertFrom-Csv -Header Name, Phone, Age, Address | Format-Table -Wrap

If the Header parameter is not defined, the first line read by ConvertFrom-Csv is expected to be a header. If there's only one line of data, nothing will be returned:

'Name,Age', 'David,28' | ConvertFrom-Csv

Export-Csv and Import-Csv complement these two commands by writing and reading information to a file instead:

Get-Process -Id $pid | Select-Object Name, Id, Path | Export-Csv 'somefile.csv'
Import-Csv somefile.csv

 Convert-String

Convert-String and PowerShell Core: Convert-String is not available in PowerShell Core 6.1. It may reappear in a later version, or may be moved to a separate module.

The Convert-String command may be used to simplify some string conversion operations. The conversion is performed based on an example that must be supplied. For example, Convert-String can generate account names from a list of users:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example 'Michael Caine=MCaine'

The Example parameter uses the generalized syntax as follows:

<Before>=<After>

This example text does not have to be one of the set being converted. For example, the following will work:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example 'First Second=FSecond'

The following alternate syntax is also supported:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example @{
 Before = 'First Second'
 After = 'FSecond'
}

The Convert-String command is not without its limitations. After may only include strings, or partial strings, from Before, along with a subset of punctuation characters. Characters that aren't permitted in After include @, $, ~, `, and !. Because of these limitations, Convert-String cannot, for example, build an email address for each user in the list in a single step.

 ConvertFrom-String

Convert-FromString and PowerShell Core

ConvertFrom-String is not available in PowerShell Core 6.1. It may reappear in a later version, or may be moved to a separate module.

ConvertFrom-String has two different styles of operation. The first behaves much as ConvertFrom-Csv does, except that it doesn't discard characters that make up the CSV format. In the following example, the quotation marks surrounding the first name are preserved:

PS> '"bob",tim,geoff' | ConvertFrom-String -Delimiter ',' -PropertyNames name1, name2, name3

name1 name2 name3
----- ----- -----
"bob" tim geoff

The default delimiter (if the parameter is not supplied) is a space. The second operating mode of ConvertFrom-String is far more complex. A template must be defined for each element of data that's to be pushed into a property.

The following example uses ConvertFrom-String to convert the output from the tasklist command into an object:

$template = '{Task*:{ImageName:System Idle Process} {[Int]PID:0} {SessionName:Services} {Session:0} {Memory:24 K}}'

tasklist |
 Select-Object -Skip 3 |
 ConvertFrom-String -TemplateContent $template |
 Select-Object -ExpandProperty Task

The Task* element denotes the start of a data record. It allows each of the remaining fields to be grouped together under a single object.

The ConvertFrom-String command is good at dealing with well formatted data that's already divided correctly. In the case of the tasklist command, the end of a single task (or data record) is denoted by a line break.

 Manipulating numbers

Basic mathematical operations in PowerShell make use of the operators discussed in Chapter 4, Operators.

Formatting numbers using the format operators are introduced, along with a number of features, as follows:

'{0:x}' -f 24244 # Lower-case hexadecimal. Returns 5eb4
'{0:X}' -f 24244 # Upper-case hexadecimal. Returns 5EB4
'{0:P}' -f 0.28232 # Percentage. Returns 28.23%
'{0:N2}' -f 32583.122 # Culture specific number format.
 # 2 decimal places.
 # Returns 32,583.12 (for en-GB)

The format operator is powerful, but it has one major shortcoming: it returns a string. It is great for when you want to display a number to a user, but will prevent sorting or work with the numeric form.

 Large byte values

PowerShell provides operators for working with bytes. These operators are as follows:

	nKB: Kilobytes (n * 10241)

	nMB: Megabytes (n * 10242)

	nGB: Gigabytes (n * 10243)

	nTB: Terabytes (n * 10244)

	nPB: Petabytes (n * 10245)

These operators can be used to represent large values:

PS> 22.5GB
24159191040

The operators may also be used to convert large byte values into shorter values. For example, a shorter value might be added to a message using the format operator, as shown here:

PS> '{0:F} TB available' -f (123156235234522 / 1TB)
112.01 TB available

 Power of 10

PowerShell uses the e operator to represent a scientific notation (power-of-10, "* 10n") that can be used to represent very large numbers. The exponent can be either positive or negative:

2e2 # Returns 200 (2 * 102)
2e-1 # Returns 0.2 (2 * 10-1)

 Hexadecimal

Hexadecimal formats are accessible in PowerShell without any significant work. PowerShell will return the decimal form of any given hexadecimal number. The hexadecimal number should be prefixed with 0x:

PS> 0x5eb4

24244

 Using System.Math

While PowerShell itself comes with reasonably basic mathematical operators, the .NET System.Math class has a far wider variety.

The Round static method can be used to round up to a fixed number of decimal places. In the following example, the value is rounded to two decimal places:

[Math]::Round(2.123456789, 2)

By default, the Round method in .NET performs what's known as bankers rounding. It will always prefer to round to an even number. For example, 1.5 will round to 2, and 2.5 will round to 2.

This behavior can be changed using the MidpointRounding enumeration, as shown here:

[Math]::Round(2.225, 2) # Results in 2.22
[Math]::Round(2.225, 2, [MidpointRounding]::AwayFromZero) # Results in 2.23

The Ceiling and Floor methods are used when performing whole-number rounding:

[Math]::Ceiling(2.1234) # Returns 3
[Math]::Floor(2.9876) # Returns 2

The Abs converts a positive or negative integer into a positive integer (and multiplies by -1 if the value is negative):

[Math]::Abs(-45748)

Numbers may be raised to a power using the following syntax:

[Math]::Pow(2, 8) # Returns 256 (28)

A square root can be calculated as follows:

[Math]::Sqrt(9) # Returns 3

The System.Math class also contains static properties for mathematical constants:

[Math]::pi # π, 3.14159265358979
[Math]::e # e, 2.71828182845905

Methods are also available to work with log, tan, sin, cos, and so on.

For a deeper dive into math in PowerShell, Tim Curwick's blog uncovers more detail. The article is available at https://www.madwithpowershell.com/2013/10/math-in-powershell.html.

 Converting strings into numeric values

In most cases, strings may be cast back to numeric values. Consider the following example:

[Int]"2" # String to Int32
[Decimal]"3.141" # String to Decimal
[UInt32]10 # Int32 to UInt32
[SByte]-5 # Int32 to SByte

For advanced conversions, the System.Convert class may be used. The Convert class includes static methods that can take a string and convert it into a number using a specified base.

A binary (base 2) value is converted as follows:

[Convert]::ToInt32('01000111110101', 2) # Returns 4597

A hexadecimal (base 16) value can be converted like so:

[Convert]::ToInt32('FF9241', 16) # Returns 16749121

The bases that Convert supports are 2 (binary), 8 (octal), 10 (denary), and 16 (hexadecimal).

 Manipulating dates and times

DateTime objects may be created in a number of ways. The Get-Date command is one of these. The methods on the DateTime type has a number of static methods that might be used, and an instance of DateTime has methods that might be used.

 DateTime parameters

While most commands deal with dates in a culture-specific format, care must be taken when passing dates as strings to parameters that cast to DateTime.

Casting to DateTime does not account for a cultural bias. For example, in the UK, the format dd/MM/yyyy is often used. Casting this format to DateTime will switch the format to MM/dd/yyyy (as used in the US):

$string = "11/10/2000" # 11th October 2000
[DateTime]$string # 10th November 2000

If a function is created that accepts DateTime as a parameter, the result may not be as expected, depending on the local culture:

function Test-DateTime {
 param(
 [DateTime]$Date
)
 $Date
}
Test-DateTime -Date "11/10/2000"

It is possible to work around this problem using the Get-Date command, to ensure the culture specific conversion is more appropriately handled:

Test-DateTime -Date (Get-Date "11/10/2000")

 Parsing dates

The Get-Date command is the best first stop for converting strings into dates. Get-Date deals with a reasonable number of formats.

If, however, Get-Date is unable to help, the DateTime class has two static methods that may be used:

	ParseExact

	TryParseExact

The format strings used by these methods are documented on MSDN, available at https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx.

The ParseExact method accepts one or more format strings, and returns a DateTime object:

$string = '20170102-2030' # Represents 1st February 2017, 20:30
[DateTime]::ParseExact($string, 'yyyyddMM-HHmm', (Get-Culture))

The culture, returned from Get-Culture, used previously, fills in the format provider argument.

The format string uses the following syntax:

	yyyy to represent a four-digit year

	dd for a two-digit day

	MM for a two-digit month

	HH for the hours in the day (this is for 24 hour format; hh is used for 12 hour format)

This can be extended to account for more than one date format. In this case, two variations of the format are accepted, the second of which expects seconds (ss):

$strings = '20170102-2030', '20170103-0931.24'
[String[]]$formats = 'yyyyddMM-HHmm', 'yyyyddMM-HHmm.ss'
foreach ($string in $strings) {
 [DateTime]::ParseExact(
 $string,
 $formats,
 (Get-Culture),
 'None'
)
}

The final argument, None, grants greater control over the parsing process. The other possible values and the effects are documented on MSDN, available at https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx.

The TryParseExact method has a safer failure control than ParseExact, which will throw an exception if it fails. The TryParseExact method itself returns true or false, depending on whether or not it was able to parse the string.

The parsed date can be extracted using a reference to an existing date. This is an existing variable that holds DateTime. The method updates the value held in the variable, if parsing is successful, as follows:

$date = Get-Date 01/01/1601 # A valid DateTime object with an obvious date
$string = '20170102-2030'
if ([DateTime]::TryParseExact($string, 'yyyyddMM-HHmm', $null, 'None', [Ref]$date)) {
 $date
}

The updated value of the $date variable is shown when the TryParseExact method returns true, and the body of the if statement executes.

 Changing dates

A date object can be changed in a number of ways.

A Timespan object can be added to or subtracted from a date:

(Get-Date) + (New-Timespan -Hours 6)

The Date property can be used, representing the start of the day:

(Get-Date).Date

The Add<Interval> methods can be used to add and subtract time, as follows:

(Get-Date).AddDays(1) # One day from now
(Get-Date).AddDays(-1) # One day before now

In addition to AddDays, the DateTime object makes the following available:

(Get-Date).AddTicks(1)
(Get-Date).AddMilliseconds(1)
(Get-Date).AddSeconds(1)
(Get-Date).AddMinutes(1)
(Get-Date).AddHours(1)
(Get-Date).AddMonths(1)
(Get-Date).AddYears(1)

By default, dates returned by Get-Date are local (that is, within the context of the current timezone). A date may be converted into UTC as follows:

(Get-Date).ToUniversalTime()

The ToUniversalTime method only changes the date if the Kind property of the date is set to Local or Unspecified. This is shown in the following snippet:

PS> Get-Date | Select-Object DateTime, Kind

DateTime Kind
-------- ----
30 October 2018 18:38:41 Local

The ToLocalTime method adjusts the date in accordance with the system's current timezone. This operation may be performed if Kind is Utc or unspecified.

A date of a specific Kind may be created as follows, enabling appropriate use of ToLocalTime or ToUniversalTime:

$UtcDate = [DateTime]::new((Get-Date).Ticks, 'Utc')

Dates may be converted into a string, either immediately using Get-Date with the Format parameter or using the ToString method. The Format parameter and ToString method accept the same arguments.

The date strings created by the following statements are equal:

Get-Date -Format 'dd/MM/yyyy HH:mm'
(Get-Date).ToString('dd/MM/yyyy HH:mm')

The ToString method is useful, as it means a date can be adjusted by chaining properties and methods before conversion into a string:

(Get-Date).ToUniversalTime().Date.AddDays(-7).ToString('dd/MM/yyyy HH:mm')

When storing dates, it might be good practice to store them in an unambiguous format, such as a universal date-time string. Consider the following:

(Get-Date).ToUniversalTime().ToString('u')

 Comparing dates

DateTime objects may be compared using PowerShell's comparison operators:

$date1 = (Get-Date).AddDays(-20)
$date2 = (Get-Date).AddDays(1)
$date2 -gt $date1

Dates can be compared to a string; the value on the right-hand side will be converted into DateTime. As with casting with parameters, a great deal of care is required for date formats other than those used in the US.

For example, in the UK, I might write the following code, yet the conversion will fail. The value on the left will convert into 13th January, 2017, but the value on the right will convert into 1st December, 2017:

(Get-Date "13/01/2017") -gt "12/01/2017"

The corrected conversion is as follows:

(Get-Date "13/01/2017") -gt "01/12/2017"

 Summary

In this chapter, some of the methods used to work with strings were introduced. Alternate formats, such as Base64, were explored, along with the PowerShell commands for working with CSV formats.

Two new commands from PowerShell 5 were introduced: Convert-String and ConvertFrom-String.

Working with byte values in PowerShell was explored, as well as the power-of-10 operator.

The System.Math class adds a great deal of functionality, which was briefly demonstrated. Finally, we took a brief look at working with DateTime objects.

In Chapter 9, Regular Expressions, we'll look at regular expressions.

 Regular Expressions

Regular expressions (regex) are used to perform advanced searches against a text. For the uninitiated, anything but a trivial regular expression can be a confusing mess. To make the topic more difficult, regular expressions differ slightly across different programming languages, platforms, and tools. Given that PowerShell is built on .NET, PowerShell uses .NET style regular expressions. There are often several different ways to achieve a goal when using regular expressions.

In this chapter, we'll cover the following topics:

	Regex basics

	Anchors

	Repetition

	Character classes

	Alternation

	Grouping

	Examples

 Regex basics

A few basic characters can go a long way. A number of the most widely used characters and operators introduced in this section are summarized in the following table:

	
Description

	
Character

	
Example

	
Literal character

	
Any, except: [\^$.|?*+()

	
'a' -match 'a'

	
Any single character (except carriage return, line feed, \r, and \n)

	
.

	
'a' -match '.'

	
The preceding character repeated zero or more times

	
*

	
'abc' -match 'a*'

'abc' -match '.*'

	
The preceding character repeated one or more times

	
+

	
'abc' -match 'a+'

'abc' -match '.+'

	
Escape a character's special meaning

	
\

	
'*' -match '*'

'\' -match '\\'

	
Optional character

	
?

	
'abc' -match 'ab?c'

'ac' -match 'ab?c'

 Debugging regular expressions

Regular expressions can quickly become complicated and difficult to understand. Modifying a complex regular expression isn't a particularly simple undertaking.

While PowerShell indicates whether there's a syntax error in a regular expression, it can't do more than that. For example, in the following expression, PowerShell announces that there is a syntax error:

PS> 'abc' -match '*'
parsing "*" - Quantifier {x,y} following nothing.
At line:1 char:1
+ 'abc' -match '*'
+ ~~~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

Fortunately, there are a number of websites that can visualize a regular expression and lend an understanding of how it works against a string.

Debuggex is one such site. This service can pick apart regular expressions, showing how each element applies to an example. Debuggex can be found at https://www.debuggex.com/.

Debuggex uses Java regular expressions, so some of the examples used in this chapter may not be compatible.

Online engines that are .NET-specific, but don't include visualization, are as follows:

	https://regextester.github.io/

	http://www.regexplanet.com/advanced/dotnet/index.html

Finally, the website (http://www.regular-expressions.info) is an important learning resource that provides detailed descriptions, examples, and references.

 Literal characters

The best place to begin is with the simplest of expressions, that is, expressions that contain no special characters. These expressions contain what are known as literal characters. A literal character can be anything except [\^$.|?*+(). Special characters must be escaped using \ to avoid errors. See the following example:

'9*8'-match '*' # * is reserved
'1+5' -match '\+' # + is reserved

Curly braces ({}) are considered literal in many contexts.

Curly braces become reserved characters if they enclose either a number, two numbers separated by a comma, or one number followed by a comma.

In the following two examples, { and } are literal characters:

'{string}' -match '{'

'{string}' -match '{string}'

In the preceding example, the curly braces take on a special meaning. To match, the string would have to be string followed by 123 of the character, "g". We'll explore 'string{123}' -match 'string{123}'

{} in detail when discussing repetition.

The following statement returns True and fills the matches automatic variable with what matched. The matches variable is a hash table; it's only updated when something successfully matches when using the -match operator:

PS> 'The first rule of regex club' -match 'regex'

True

PS> $matches

Name Value
---- -----
0 regex

If a -match fails, the matches variable will continue to hold the last matching value:

PS> 'This match will fail' -match 'regex'

False

PS> $matches

Name Value
---- -----
0 regex

 Any character (.)

The next step is to introduce the period, or dot (.). The dot matches any single character, except the end-of-line characters. The following statement will return True:

'abcdef' -match '......'

As the previous expression matches any six characters anywhere in a string, it will also return True when a longer string is provided. There are no implied boundaries on the length of a string, only on the number of characters matched:

'abcdefghijkl' -match '......'

 Repetition with * and +

+ and * are two of a set of characters known as quantifiers. Quantifiers are discussed in great detail later in this chapter.

The * character can be used to repeat the preceding character zero or more times. Consider the following example:

'aaabc' -match 'a*'# Returns true, matches 'aaa'

However, zero or more means the character in question doesn't have to be present at all:

'bcd' -match 'a*' # Returns true, matches nothing

If a character must be present in a string, the + quantifier is more appropriate:

'aaabc' -match 'a+'# Returns true, matches 'aaa'
'bcd' -match 'a+' # Returns false

Combining * or + with . produces two very simple expressions: .* and .+. These expressions may be used as follows:

'Anything' -match '.*' # 0 or more. Returns true
'' -match '.*' # 0 or more. Returns true
'Anything' -match '.+' # 1 or more. Returns true

Attempting to use either * or + as a match, without a preceding character, will result in an error:

PS> '*' -match '*'
parsing "*" - Quantifier {x,y} following nothing.
At line:1 char:1
+ '*' -match '*'
+ ~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

 The escape character (\)

In this context, \ is an escape character, but it is perhaps more accurate to say that \ changes the behavior of the character that follows. For example, finding a string that contains the normally reserved character, *, may be accomplished using \, as follows:

'1 * 3' -match '*'

In the following example, \ is used to escape the special meaning of \, making it a literal character:

'domain\user' -match 'domain\\user'
'domain\user' -match '.*\\.*'

This technique may be used with -replace to change the domain prefix:

'domain\user' -replace 'domain\\', 'newdomain\'

Using \ alone will result in either an invalid expression or an unwanted expression. For example, the following expression is valid, but it doesn't act as you might expect. The . character is treated as a literal value because it is escaped. The following -match will return false:

'domain\user' -match 'domain\.+'

The following string will be matched by the previous expression, as the string contains a literal .:

'domain.user' -match 'domain\.+'

The -replace operator will allow access to parts of these strings as follows:

'Domain\User' -replace '.+\\' # Everything up to and including \

Alternatively, it can -replace everything after a character:

'Domain\User' -replace '\\.+' # Everything including and after \

 Optional characters

The question mark character (?) can be used to make the preceding character optional. For example, there might be a need to look for either the singular or plural form of a certain word:

'There are 23 sites in the domain' -match 'sites?'

The regular expression will match the optional s if it can; the ? character is greedy. A greedy expression will match as many characters as it possibly can..

 Non-printable characters

Regular expressions support searches for non-printable characters. The most common of these are shown in the following table:

	
Description

	
Character

	
Tab

	
\t

	
Line feed

	
\n

	
Carriage return

	
\r

 Anchors

An anchor does not match a character; instead, it matches what comes before (or after) a character:

	
Description

	
Character

	
Example

	
Beginning of a string

	
^

	
'aba' -match '^a'

	
End of a string

	
$

	
'cbc' -match 'c$'

	
Word boundary

	
\b

	
'Band and Land' -match '\band\b'

Anchors are useful where a character, string, or word may appear elsewhere in a string and the position is critical.

For example, there might be a need to get values from the PATH environment variable that starts with a specific drive letter. One approach to this problem is to use the start of a string anchor; in this case, retrieving everything that starts with the C drive:

$env:PATH -split ';' | Where-Object { $_ -match '^C' }

Alternatively, there may be a need to get every path that is three or more directories deep from a given set:

$env:PATH -split ';' | Where-Object { $_ -match '\\.+\\.+\\.+$' }

The word boundary anchor matches both before and after a word. It allows a pattern to look for a specific word, rather than a string of characters that may be a word or a part of a word.

For example, if the intent is to -replace the word day in the following string, then attempting this without the word boundary replaces too much:

'The first day is Monday' -replace 'day', 'night'
'Monday is the first day' -replace 'day', 'night'

Adding the word boundary avoids the problem without significantly increasing the complexity:

'The first day is Monday' -replace '\bday\b', 'night'
'Monday is the first day' -replace '\bday\b', 'night'

 Repetition

A quantifier is used to repeat an element. Three examples of quantifiers have already been introduced: *, +, and ?. The quantifiers are as follows:

	
Description

	
Character

	
Example

	
The preceding character repeated zero or more times

	
*

	
'abc'-match 'a*'

'abc'-match '.*'

	
The preceding character repeated one or more times

	
+

	
'abc'-match 'a+'

'abc'-match '.+'

	
Optional character

	
?

	
'abc' -match 'ab?c'

'ac' -match 'ab?c'

	
A fixed number of characters

	
{exactly}

	
'abbbc' -match 'ab{3}c'

	
A number of characters within a range

	
{min,max}

	
'abc' -match 'ab{1,3}c'

'abbc' -match 'ab{1,3}c'

'abbbc' -match 'ab{1,3}c'

	
Specifies a minimum number of characters

	
{min,}

	
'abbc' -match 'ab{2,}c'

'abbbbbc' -match 'ab{2,}c'

Each *, +, and ? can be described using a curly brace notation:

	* is the same as {0,}

	+ is the same as {1,}

	? is the same as {0,1}

It's extremely uncommon to find examples where the functionality of special characters is replaced with curly braces. It is equally uncommon to find examples where the quantifier {1} is used, as it adds unnecessary complexity to an expression.

 Exploring the quantifiers

Each of these different quantifiers is greedy. A greedy quantifier will grab as much as it possibly can before allowing the regex engine to move on to the next character in the expression.

In the following example, the expression has been instructed to match everything it can, ending with a \ character. As a result, it takes everything up to the last \, because the expression is greedy:

PS> 'C:\long\path\to\some\files' -match '.*\\'; $matches[0]
True
C:\long\path\to\some\

The repetition operators can be made lazy by adding the ? character. A lazy expression, by contrast, will get as little as it can before it ends:

PS> 'C:\long\path\to\some\files' -match '.*?\\'; $matches[0]
True
C:\

A possible use of a lazy quantifier is parsing HTML. The following line describes a very simple HTML table. The goal is to get the first table's data (td) element:

<table><tr><td>Value1</td><td>Value2</td></tr></table>

Using a greedy quantifier will potentially take too much:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
$html -match '<td>.+</td>'; $matches[0]
True
<td>Value1</td><td>Value2</td>

Using a character class is one possible way to solve this problem. The character class is used to take all characters except >, which denotes the end of the next </td> tag:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
PS> $html -match '<td>[^>]+</td>'
True
PS> $matches[0]
<td>Value1</td>

Another way to solve a problem is to use a lazy quantifier:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
PS> $html -match '<td>.+?</td>'
True
PS> $matches[0]
<td>Value1</td>

 Character classes

A character class is used to match a single character to a set of possible characters. A character class is denoted using square brackets ([]).

For example, a character class may contain each of the vowels:

'get' -match 'g[aeiou]t'
'got' -match 'g[aeiou]'

Within a character class, the special or reserved characters are as follows:

	-: Used to define a range

	\: Escape character

	^: Negates the character class

 Ranges

The hyphen is used to define a range of characters. For example, we might want to match any number that's repeated one or more times in a set (using +):

'1st place' -match '[0-9]+' # $matches[0] is "1"
'23rd place' -match '[0-9]+' # $matches[0] is "23"

A range in a character class can be any range of ASCII characters, such as the following examples:

	a-z

	A-K

	0-9

	1-5

	!-9 (0-9 and the ASCII characters 33 to 47)

The following code returns true, as " is ASCII character 34, and # is ASCII character 35; that is, they're within the specified !-9 range:

PS> '"#' -match '[!-9]+'; $matches[0]
True
"#

The range notation allows hexadecimal numbers within strings to be identified. A hexadecimal character can be identified by a character class containing 0-9 and a-f:

PS> 'The registry value is 0xAF9B7' -match '0x[0-9a-f]+'; $matches[0]
True
0xAF9B7

If the comparison operator were case-sensitive, the character class may also define A-F:

'The registry value is 0xAF9B7' -cmatch '0x[0-9a-fA-F]+'

Alternatively, a range might be used to tentatively find an IP address in a string, as follows:

PS> (ipconfig) -match 'IPv4 Address.+: *[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'
 IPv4 Address. : 172.16.255.30

The range used to find the IP address here is very simple. It matches any string containing four numbers separated by a period. For example, the following version number matches this range:

'version 0.1.2.3234' -match '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'

This IP address-matching regular expression will be improved as the chapter progresses.

The hyphen is not a reserved character when it is put in a position where it does not describe a range. If it is the first character (with no start to the range), it will be treated as a literal. The following split operation demonstrates this:

PS> 'one-two_three,four' -split '[-_,]'
one
two
three
four

The same output is seen when - is placed at the end (that is, when there is no end to the range):

'one-two_three,four' -split '[_,-]'

Elsewhere in the class, the escape character may be used to remove the special meaning from the hyphen:

'one-two_three,four' -split '[_\-,]'

 Negated character class

Within a character class, the caret (^) is used to negate the class. The character class, [aeiou], matches vowels, negating it with the caret, [^aeiou], which matches any character except a vowel (including spaces, punctuation, tabs, and everything else).

As with the hyphen, the caret is only effective if it is in the right position. In this case, it only negates the class if it is the first character. Elsewhere in the class, it is a literal character.

A negated character class is sometimes the fastest way to tackle a problem. If the list of expected characters is small, negating that list is a quick way to perform a match.

In the following example, the negated character class is used with the -replace operator to fix a problem:

'Ba%by8 a12315tthe1231 k#.,154eyboard' -replace '[^a-z]'

 Character class subtraction

Character class subtraction is supported by .NET (and hence PowerShell). Character class subtraction is not commonly used at all.

Inside a character class, one character class may be subtracted from another, reducing the size of the overall set. One of the best examples of this extends to the character class containing vowels. The following matches the first vowel in a string:

'The lazy cat sat on the mat' -match '[aeiou]'

To match the first consonant, one approach can be to list all of the consonants:

'The lazy cat sat on the mat' -match '[b-df-hj-np-tv-z]'

Another approach to the problem is to take a larger character class, then subtract the vowels:

'The lazy cat sat on the mat' -match '[a-z-[aeiou]]'

 Shorthand character classes

A number of shorthand character classes are available. The following table shows each of these:

	
Shorthand

	
Description

	
Character class

	
\d

	
Digit character

	
[0-9]

	
\s

	
White space (space, tab, carriage return, new line, and form feed)

	
[\t\r\n\f]

	
\w

	
Word character

	
[A-Za-z0-9_]

Each of these shorthand classes can be negated by capitalizing the letter. [^0-9] may be represented using \D and \S is for any character except white space, and \W for any character except a word character.

 Alternation

The alternation (or) character in a regular expression is a pipe (|). This is used to combine several possible regular expressions. A simple example is to match a list of words:

'one', 'two', 'three' | Where-Object { $_ -match 'one|three' }

The alternation character has the lowest precedence; in the previous expression, every value is first tested against the expression to the left of the pipe and then against the expression to the right of the pipe.

The goal of the following expression is to extract strings that only contain the words one or three. Adding the start and the end of string anchors ensures that there is a boundary. However, because the left and right are treated as separate expressions, the result might not be as expected when using the following expression:

PS> 'one', 'one hundred', 'three', 'eighty three' | Where-Object { $_ -match '^one|three$' }
one
one hundred
three
eighty three

The two expressions are evaluated as follows:

	Look for all strings that start with one

	Look for all strings that end with three

There are at least two possible solutions to this problem. The first is to add the start and end of string characters to both expressions:

'one', 'one hundred', 'three', 'eighty three' |
Where-Object { $_ -match '^one$|^three$' }

Another possible solution is to use a group:

'one', 'one hundred', 'three', 'eighty three' | Where-Object { $_ -match '^(one|three)$' }

Grouping is discussed in detail in the following section.

 Grouping

A group in a regular expression serves a number of different possible purposes:

	To denote repetition (of more than a single character)

	To restrict alternation to a part of the regular expression

	To capture a value

 Repeating groups

Groups may be repeated using any of the quantifiers. The regular expression that tentatively identifies an IP address can be improved using a repeated group. The starting point for this expression is as follows:

[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+

In this expression, the [0-9]+ term followed by a literal . character is repeated three times. Therefore, the expression can become as follows:

([0-9]+\.){3}[0-9]+

The expression itself is not very specific—it will match much more than an IP address, but is also now more concise. This example will be taken further later in this chapter.

If * is used as the quantifier for the group, it becomes optional. If faced with a set of version numbers ranging in formats from 1 to 1.2.3.4, a similar regular expression might be used:

[0-9]+(\.[0-9]+)*

The result of applying this to a number of different version strings is shown in the following code:

PS> 'v1', 'Ver 1.000.232.14', 'Version: 0.92', 'Version-7.92.1-alpha' |
 Where-Object { $_ -match '[0-9]+(\.[0-9]+)*' } |
 ForEach-Object { $matches[0] }
1
1.000.232.14
0.92
7.92.1

In the case of the last example, -alpha is ignored; if that were an interesting part of the version number, the expression would need to be modified to account for that.

 Restricting alternation

Alternation is the lowest precedence operator. In a sense, it might be wise to consider it as describing an ordered list of regular expressions to test.

Placing an alternation statement in parentheses reduces the scope of the expression.

For example, it is possible to match a multi-line string using alternation as follows:

PS> $string = @'
First line
second line
third line
'@

PS> if ($string -match 'First(.|\r?\n)*line') { $matches[0] }
First line
second line
third line

In this example, as . does not match the end of line character, using alternation allows each character to be tested against a broader set. In this case, each character is tested to see whether it is any character, \r\n or \n.

A regular expression might be created to look for files with specific words, or parts of words, in the name:

Get-ChildItem -Recurse -File |
 Where-Object { $_.Name -match '(pwd|pass(word|wd)?).*\.(txt|doc)$' }

The expression that compares filenames looks for strings that contain pwd, pass, password, or passwd, followed by anything with the .txt or .doc extensions.

This expression will match any of the following (and more):

pwd.txt
server passwords.doc
passwd.txt
my pass.doc
private password list.txt

 Capturing values

The ability to capture values from a string is an incredibly useful feature of regular expressions.

When using the -match operator, groups that have been captured are loaded into the matches variable (hash table) in the order that they appear in the expression. Consider the following example:

PS> 'first second third' -match '(first) (second) (third)'
True

PS> $matches

Name Value
---- -----
3 third
2 second
1 first
0 first second third

The first key, 0, is always the string that matched the entire expression. Numbered keys are added to the hash table for each of the groups in the order that they appear. This applies to nested groups as well, counting from the leftmost (:

PS> 'first second third' -match '(first) ((second) (third))'
True

PS> $matches

Name Value
---- -----
4 third
3 second
2 second third
1 first
0 first second third

When using the -replace operator, the matches variable is not filled, but the contents of individual groups are available as tokens for use in Replace-With:

PS>'first second third' -replace '(first) ((second) (third))', '$1, $4, $2'
first, third, second third

Use single quotes when tokens are included: As was mentioned in Chapter 4, Operators, single quotes should be used when using capture groups in Replace-With. Tokens in double quotes will expand as if they were PowerShell variables.

 Named capture groups

Capture groups can be given names. The name must be unique within the regular expression.

The following syntax is used to name a group:

(?<GroupName>Expression)

This may be applied to the previous simple example as follows:

PS> 'first second third' -match '(?<One>first) (?<Two>second) (?<Three>third)'
True

PS> $matches

Name Value
---- -----
One first
Three third
Two second
0 first second third

In PowerShell, this adds a pleasant additional capability. If the goal is to tear apart text and turn it into an object, one approach is as follows:

if ('first second third' -match '(first) (second) (third)') {
 [PSCustomObject]@{
 One = $matches[1]
 Two = $matches[2]
 Three = $matches[3]
 }
}

This produces an object that contains the result of each (unnamed) -match group in a named property.

An alternative is to use named matches and create an object from the matches hash table. When using this approach, $matches[0] should be removed:

PS> if ('first second third' -match '(?<One>first) (?<Two>second) (?<Three>third)') {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

One Three Two
--- ----- ---
first third second

A possible disadvantage of this approach is that the output is not ordered, as it has been created from a hash table.

 Non-capturing groups

By default, every group is a capture group. A group can be marked as non-capturing by using ?: before the expression. In the following example, the third group has been marked as a non-capturing group:

PS> 'first second third' -match '(?<One>first) (?<Two>second) (?:third)'
True

PS> $matches

Name Value
---- -----
Two second
One first
0 first second third

The outer group, which previously added second third to the matches list, is now excluded from the results:

PS> 'first second third' -match '(first) (?:(second) (third))'; $matches
True

PS> $matches

Name Value
---- -----
3 third
2 second
1 first
0 first second third

This technique may be useful when using -replace—it simplifies the list of tokens available, even if an expression grows in complexity:

PS> 'first second third' -replace '(first) (?:(second) (third))', '$1, $2, $3'
first, second, third

 Examples of regular expressions

The following examples walk you through creating regular expressions for a number of different formats.

 MAC addresses

Media Access Control (MAC) is a unique identifier for network interface addresses with 6-byte fields normally written in hexadecimal.

Tools such as ipconfig show the value of a MAC address with each hexadecimal byte separated by a hyphen, for example, 1a-2b-3c-4d-5f-6d.

Linux or Unix-based systems tend to separate each hexadecimal byte with :, such as 1a:2b:3c:4d:5f:6d. This includes Linux and Unix variants, VMWare, JunOS (the Juniper network device operating system, based on FreeBSD), and so on.

Cisco IOS shows a MAC address as three two-byte pairs, separated by a period (.).

A regular expression can be created to simultaneously match all of these formats.

To match a single hexadecimal character, the following character class may be used:

[0-9a-f]

To account for the first two formats, a pair of hexadecimal characters is followed by a hyphen or a colon:

[0-9a-f]{2}[-:]

This pattern is repeated 5 times, followed by one last pair:

([0-9a-f]{2}[-:]){5}[0-9a-f]{2}

Adding the Cisco format into the mix will make the expression a little longer:

(([0-9a-f]{2}[-:]?){2}[-:.]){2}([0-9a-f]{2}[-:]?){2}

Another approach is to keep the formats separate and use the alternation operator to divide the two possibilities:

([0-9a-f]{2}[-:]){5}[0-9a-f]{2}|([0-9a-f]{4}\.){2}[0-9a-f]{4}

A small script can be written to test the regular expressions against some strings. In the following tests, the first pattern is expected to fail when testing against the Cisco IOS format:

$patterns = '^([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$',
 '^(([0-9a-f]{2}[-:]?){2}[-:.]){2}([0-9a-f]{2}[-:]?){2}$',
 '^([0-9a-f]{2}[-:]){5}[0-9a-f]{2}|([0-9a-f]{4}\.){2}[0-9a-f]{4}$'
$strings = '1a-2b-3c-4d-5f-6d',
 '1a:2b:3c:4d:5f:6d',
 '1c2b.3c4d.5f6d'
foreach ($pattern in $patterns) {
 Write-Host "Testing pattern: $pattern" -ForegroundColor Cyan
 foreach ($string in $strings) {
 if ($string -match $pattern) {
 Write-Host "${string}: Matches" -ForegroundColor Green
 } else {
 Write-Host "${string}: Failed" -ForegroundColor Red
 }
 }
}

 IP addresses

Validating an IPv4 address using a regular expression is not necessarily a trivial task.

The IP address consists of four octets; each octet can be a value between 0 and 255. When using a regular expression, the values are considered strings, therefore, the following strings must be considered:

	[0-9]: 0 to 9

	[1-9][0-9]: 1 to 9, then 0 to 9 (10 to 99)

	1[0-9]{2}: 1, then 0 to 9, then 0 to 9 (100 to 199)

	2[0-4][0-9]: 2, then 0 to 4, then 0 to 9 (200 to 249)

	25[0-5]: 2, then 5, then 0 to 5 (250 to 255)

Each of these is an exclusive set, so alternation is used to merge all of the previous small expressions into a single expression. This generates the following group, that matches a single octet (0 to 255):

([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

The IP address validation expression contains repetition now, it contains four octets with a period between each of them:

(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

There are other, perhaps better, ways to do this than using such a long regex. If a string is a strong candidate for being an IP address, consider using the TryParse static method on the IPAddress type. It will handle both v4 and v6 addressing, as follows:

$ipAddress = [IPAddress]0 # Used as a placeholder

if ([IPAddress]::TryParse("::1", [ref]$ipAddress)) {

$ipAddress

}

 The netstat command

The netstat command produces tab-delimited, fixed-width tables. The following example converts the active connections that list active TCP connections, as well as listening TCP and UDP ports, into an object.

A snippet of the output that the example is intended to parse is shown in the following code:

PS> netstat -ano

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
 TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

When handling text such as this, a pattern based on white space (or not white space) can be used:

^\s*\S+\s+\S+

For each column, the following expression with a named group is created:

(?<ColumnName>\S+)\s+

The trailing \s+ is omitted for the last column (PID):

^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<State>\S+)\s+(?<PID>\d+)$

The expression is long, but incredibly repetitive. The repetition is desirable in this case, where each column value is pushed into a differently named group.

The expression can be applied using Where-Object:

$regex = '^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<State>\S+)\s+(?<PID>\d+)$'
netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

Unfortunately, the output from this command will be missing information about UDP ports. The regular expression makes having a value in the state column mandatory. Marking this group as optional will add UDP connection information to the output:

(State>\S+)?

Inserting it back into the regular expression is achieved as follows:

$regex = '^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<State>\S+)?\s+(?<PID>\d+)$'
netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

Finally, if it is desirable to return the fields in the same order as netstat does, Select-Object may be used:

PS>$regex = '^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<State>\S+)\s+(?<PID>\d+)$'
PS> netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
} | Select-Object Protocol, LocalAddress, ForeignAddress, State, PID |
 Format-Table

Protocol LocalAddress ForeignAddress State PID
-------- ------------ -------------- ----- ---
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

 Formatting certificates

It is occasionally necessary to create certificates in very specific formats to appease other systems requiring such a certificate.

A certificate may be exported as a Base64 string as follows. The InsertLineBreaks option splits the string every 76 characters:

$certificate = Get-ChildItem Cert:\LocalMachine\Root | Select-Object -First 1
[Convert]::ToBase64String(
 $certificate.Export('Cert'),
 [System.Base64FormattingOptions]::InsertLineBreaks
)

If a different width is required, a regular expression may be used to tweak the format of the certificate—in this case, we split the lines every 64 characters:

$certificate = Get-ChildItem Cert:\LocalMachine\Root | Select-Object -First 1
@(
 '-----BEGIN CERTIFICATE-----'
 [Convert]::ToBase64String(
 $certificate.Export('Cert')
) -split '(?<=\G.{64})'
 '-----END CERTIFICATE-----'
) -join "`n"

This makes use of the \G anchor that continues from the end of the previous match. This anchor is difficult to demonstrate, but is very useful in situations such as this. The anchor is placed inside a positive look-behind assertion. The length of the string is important, but the content shouldn't be removed by -split.

 Summary

In this chapter, we took a look at regular expressions and their use in PowerShell.

The Regex basics section introduced a number of heavily used characters. Anchors showing how the start and end of a string or word boundary may be used to restrict the scope of an expression.

Character classes were introduced as a powerful form of alternation, providing a range of options for matching a single character. Alternation was demonstrated using different sets of expressions to be evaluated.

We looked at repetition using "*", +, ?, and curly braces, and discussed the notion of greedy and lazy expressions.

Grouping was introduced as a means of limiting the scope of alternation in order to repeat larger expressions or to capture strings.

Finally, a number of examples were included, bringing together the areas covered in this chapter to solve specific problems.

In Chapter 10, Files, Folders, and the Registry, we will discuss working with files, folders, and the registry.

 Files, Folders, and the Registry

The filesystem and the registry are two from among a number of providers available in PowerShell. A provider represents a data store as a filesystem.

The commands used to work with data within a particular provider, such as filesystems, are common to all providers.

In this chapter, we will cover the following topics:

	Working with providers

	Items

	Item properties

	Item attributes

	Windows permissions

	Transactions

	File catalogs

 Working with providers

Each provider shares a common set of commands, such as Set-Location, Get-Item, and New-Item.

 Navigating

Set-Location, which has the alias cd, is used to navigate around a provider's hierarchy, for example:

Set-Location \ # The root of the current drive
Set-Location Windows # A child container named Windows
Set-Location .. # Navigate up one level
Set-Location ..\.. # Navigate up two levels
Set-Location Cert: # Change to a different drive
Set-Location HKLM:\Software # Change to a specific child container under a drive

Set-Location may only be used to switch to a container object.

The print working directory pwd variable shows the current location across all providers:

PS> $pwd

Path

HKLM:\Software\Microsoft\Windows\CurrentVersion

pwd and .NET

.NET classes and methods are oblivious to PowerShell's current directory. When the following command is executed, the file will be created in the Start in path (if a shortcut started PowerShell: [System.IO.File]::WriteAllLines('file.txt', 'Some content').

.NET constructors and methods are an ideal place to use the pwd variable:[System.IO.File]::WriteAllLines("$pwd\file.txt", 'Some content').

 Getting items

The Get-Item command is used to get an object represented by a path:

Get-Item \ # The root container
Get-Item . # The current container
Get-Item .. # The parent container
Get-Item C:\Windows\System32\cmd.exe # A leaf item
Get-Item Cert:\LocalMachine\Root #A container item

The Get-ChildItem command, which has dir and ls aliases, is used to list the children of the current item.

Neither Get-ChildItem nor Get-Item will show hidden files and folders by default. The following error will be returned for a hidden item:

PS> Get-Item $env:USERPROFILE\AppData
Get-Item : Could not find item C:\Users\Someone\AppData.
At line:1 char:1
+ Get-Item $env:USERPROFILE\AppData
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (C:\Users\Someone \AppData:String) [Get-Item], IOException
 + FullyQualifiedErrorId : ItemNotFound,Microsoft.PowerShell.Commands.GetItemCommand

The Force parameter may be added to access hidden items:

PS> Get-Item $env:USERPROFILE\AppData -Force

 Directory: C:\Users\Someone

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--h-- 23/09/2016 18:22 AppData

 Drives

PowerShell will automatically create a drive for any disk with a drive letter, any existing shared drive, the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER registry hives, the certificate store, and so on.

Additional drives may be added using New-PSDrive; for example, a network drive can be created:

New-PSDrive X -PSProvider FileSystem -Root \\Server\Share
New-PSDrive HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT

Existing drives may be removed using Remove-PSDrive. PowerShell allows filesystem drives to be removed; however, this is not a destructive operation, and it only removes the reference to the drive from PowerShell.

The filesystem provider supports the use of credentials when creating a drive, allowing network shares to be mapped using specific credentials.

 Items

Support for each of the *-Item commands varies from one provider to another. The filesystem provider supports all of the commands, while the Registry provider supports a smaller number.

 Testing for existing items

The Test-Path command may be used to test for the existence of a specific item under a drive:

Test-Path HKLM:\Software\Publisher

Test-path distinguishes between item types with the PathType parameter. The container and leaf terms are used across providers to broadly classify items.

When working with the filesystem, a container is a directory (or folder) and a leaf is a file. In the registry, a key is a container and there are no leaves. In a certificate provider, a store or store location is a container and a certificate is a leaf.

The following commands test for items of differing types:

Test-Path C:\Windows -PathType Container
Test-Path C:\Windows\System32\cmd.exe -PathType Leaf

The Test-Path command is often used in an if statement prior to creating a file or directory:

if (-not (Test-Path C:\Temp\NewDirectory -PathType Container)) {
 New-Item C:\Temp\NewDirectory -ItemType Directory
}

Get-Item, Test-Path, and pagefile.sys

Some files in Windows are locked, with the result that Get-Item and Test-Path are unable to correctly return results. The pagefile.sys file is one of these.

Get-Item returns an error, indicating that the file does not exist, even when the Force parameter is used. Test-Path always returns false.

This may be considered to be a bug. To work around the problem, Get-ChildItem is able to get the file: Get-ChildItem C:\ -Filter pagefile.sys -Force.

To replace the functionality of Test-Path, the static method Exists may be used: [System.IO.File]::Exists('c:\pagefile.sys').

 Creating and deleting items

The New-Item command is able to create files, directories, keys, and so on depending on the provider:

New-Item $env:Temp\newfile.txt -ItemType File
New-Item $env:Temp\newdirectory -ItemType Directory
New-Item HKLM:\Software\NewKey -ItemType Key

When creating a file using New-Item in PowerShell, the file is empty (0 bytes).

In PowerShell 5, New-Item gained the ability to create symbolic links, junctions, and hard links:

	A symbolic link is a link to another file or directory. Creating a symbolic link requires administrator privileges (run as administrator).

	A hard link is a link to another file on the same drive.

	A junction is a link to another directory on any local drive. Creating a junction does not require administrative privileges.

Links may be created as follows:

New-Item LinkName -ItemType SymbolicLink -Value \\Server\Share New-Item LinkName.txt -ItemType HardLink -Value OriginalName.txt New-Item LinkName -ItemType Junction -Value C:\Temp

Temporary files

If a script needs a file to temporarily store data, the New-TemporaryFile command may be used.

This command was introduced with PowerShell 5. Earlier versions of PowerShell may use the Path.GetTempFileName static method: [System.IO.Path]::GetTempFileName().

Both commands create an empty file. The resulting file may be used with Set-Content, Out-File, or any commands that write data to a file.

The Remove-Item command may be used to remove an existing item under a provider, for example:

$file = New-TemporaryFile
Set-Content -Path $file -Value 'Temporary: 10'
Remove-Item $file

Providers such as filesystem and registry are reasonably flexible about removing items. When removing a directory or key with children, the recurse parameter should be used.

The certificate provider restricts the use of Remove-Item to certificates; certificate stores cannot be removed.

 Invoking items

Invoke-Item (which has an alias, ii) has a number of different uses. Invoke-Item will open or execute an object using the default settings for that file:

Invoke-Item . # Open the current directory in explorer
Invoke-Item test.ps1 # Open test.ps1 in the default editor
Invoke-Item $env:windir\system32\cmd.exe # Open cmd
Invoke-Item Cert: # Open the certificate store MMC for the current user

The registry provider does not support Invoke-Item.

 Item properties

The Get-ItemProperty and Set-ItemProperty commands allow individual properties to be modified.

 Filesystem properties

When working with the filesystem provider, Get-ItemProperty and Set-ItemProperty are rarely needed. For example, Set-ItemProperty might be used to make a file read-only. The following example assumes that the somefile.txt file already exists:

Set-ItemProperty .\somefile.txt -Name IsReadOnly -Value $true

The same property may be directly set from a file object retrieved using Get-Item (or Get-ChildItem):

(Get-Item 'somefile.txt').IsReadOnly = $true

The IsReadOnly flag affects the attributes of the file object, adding the ReadOnly flag.

 Adding and removing file attributes

The attributes property of a file object is a bit field presented as a number and given an easily understandable value by the System.IO.FileAttributes enumeration.

Bit fields

A bit field is a means of exposing multiple settings that have two states (on or off binary states) using a single number.

A byte, an 8-bit value, can therefore hold eight possible settings. A 32-bit integer, 4-bytes long, can hold 32 different settings.

The following table, whose state is described by 4 bits, has four settings:

Name: Setting4 Setting3 Setting2 Setting1

State: On Off On Off

Binary: 1 0 1 0

Decimal: 8 4 2 1

When settings 2 and 4 are toggled on, the value of the field is the conversion of 1010 to decimal. This value is the result of 8 -bor 2, that is, 10.

A number of the possible attributes are shown in the following table:

	
Name

	
Compressed

	
Archive

	
System

	
Hidden

	
Read-only

	
Bit value

	
2048

	
32

	
4

	
2

	
1

When a file is hidden and read-only, the value of the attributes property is 3 (2 + 1). The value 3 can be cast to the FileAttributes type, which shows the names of the individual flags:

PS> [System.IO.FileAttributes]3
ReadOnly, Hidden

While the value is numeric, the use of the enumeration means words can be used to describe each property:

PS> [System.IO.FileAttributes]'ReadOnly, Hidden' -eq 3
True

This opens up a number of possible ways to set attributes on a file.

Attributes may be replaced entirely:

(Get-Item 'somefile.txt').Attributes = 'ReadOnly, Hidden'

Attributes may be toggled:

$file = Get-Item 'somefile.txt'
$file.Attributes = $file.Attributes -bxor 'ReadOnly'

Attributes may be added:

$file = Get-Item 'somefile.txt'
$file.Attributes = $file.Attributes -bor 'ReadOnly'

The +, -, +=, and -= operators may be used, as this is a numeric operation. Addition or subtraction operations are not safe, as they do not account for existing flags. For example, if a file was already read-only and += was used to attempt to make the file read-only, the result would be a hidden file:

PS> $file = Get-Item 'somefile.txt'
PS> $file.Attributes = 'ReadOnly'
PS> $file.Attributes += 'ReadOnly'
PS> $file.Attributes

Hidden

Finally, regardless of whether or not a flag is present, attributes may be written as a string:

$file = Get-Item 'somefile.txt'
$file.Attributes = "$($file.Attributes), ReadOnly"

This is a feasible approach because casting to the enumeration type will ignore any duplication:

PS> [System.IO.FileAttributes]'ReadOnly, Hidden, ReadOnly'
ReadOnly, Hidden

 Registry values

Get-ItemProperty and Set-ItemProperty are most useful when manipulating registry values.

The following method may be used to get values from the registry:

Get-ItemProperty -Path HKCU:\Environment
Get-ItemProperty -Path HKCU:\Environment -Name Path
Get-ItemProperty -Path HKCU:\Environment -Name Path, Temp

Individual values may be written back to the registry under an existing key:

Set-ItemProperty -Path HKCU:\Environment -Name NewValue -Value 'New'

A value may be subsequently removed:

Remove-ItemProperty -Path HKCU:\Environment -Name NewValue

The Set-ItemProperty command does not directly allow the value type to be influenced. The command will do as much as it can to fit the value into the existing type. For a property with type REG_SZ, numbers will be converted to strings.

If a value does not already exist, a registry type will be created according to the value type:

	Int32: REG_DWORD

	Int64: REG_QWORD

	String: REG_SZ

	String[]: REG_MULTI_SZ (must use "[String[]]@('value', 'value')")

	Byte[]: REG_BINARY

	Any other type: REG_SZ

If a value of a specific type is required, the New-ItemProperty command should be used instead, for instance, if an expanding string must be created:

New-ItemProperty HKCU:\Environment -Name Expand -Value 'User: %USERNAME%' -PropertyType ExpandString

New-ItemProperty will throw an error if a property already exists. The Force parameter may be used to overwrite an existing value with the same name.

 Windows permissions

The filesystem and registry providers both support Get-Acl and Set-Acl, which allow the different access control lists to be modified.

Working with permissions in PowerShell involves a mixture of PowerShell commands and .NET objects and methods.

While some values and classes differ between the different providers, many of the same concepts apply.

The following snippet creates a set of files and folders in C:\Temp. These files and folders are used in the examples that follow:

New-Item C:\Temp\ACL -ItemType Directory -Force
1..5 | ForEach-Object {
 New-Item C:\Temp\ACL\$_ -ItemType Directory -Force
 'content' | Out-File "C:\Temp\ACL\$_\$_.txt"

 New-Item C:\Temp\ACL\$_\$_ -ItemType Directory -Force
 'content' | Out-File "C:\Temp\ACL\$_\$_\$_.txt"
}

The Get-Acl command is used to retrieve an existing Access Control List (ACL) for an object. Set-Acl is used to apply an updated ACL to an object.

If Get-Acl is used against a directory, the ACL type is DirectorySecurity; for a file, the ACL type is FileSecurity and, for a registry key, the ACL type is RegistrySecurity.

Alternatives to .NET classes

 The NtfsSecurity module found in the PowerShell Gallery may be an easier alternative to the native methods discussed in this section.

 Ownership

Ownership of a file or directory may be changed using the SetOwner method of the ACL object. Changing the ownership of a file requires administrative privileges.

The owner of the C:\Temp\ACL\1 file is the current user:

PS> Get-Acl C:\Temp\ACL\1 | Select-Object Owner

Owner

COMPUTER\Chris

The owner may be changed (in this case, to the Administrator account) using the SetOwner method:

$acl = Get-Acl C:\Temp\ACL\1
$acl.SetOwner([System.Security.Principal.NTAccount]'Administrator')
Set-Acl C:\Temp\ACL\1 -AclObject $acl

This is not taking ownership

Setting ownership when the current user already has full control is one thing. Very specific privileges are required to take ownership without existing permissions: SeRestorePrivilege, SeBackupPrivilege, and SeTakeOwnershipPrivilege.

 Access and audit

Access lists come with two different types of access controls.

The discretionary access control list (DACL) is used to grant (or deny) access to a resource. The DACL is referred to as access in PowerShell.

The system access control list (SACL) is used to define which activities should be audited. The SACL is referred to as audit in PowerShell.

Reading and setting the audit ACL requires administrator privileges (run as administrator). Get-Acl will only attempt to read the audit ACL if it is explicitly requested. The -Audit switch parameter is used to request the list:

Get-Acl C:\Temp\ACL\1 -Audit | Format-List

As none of the folders created have audit ACLs at this time, the -Audit property will be blank.

 Rule protection

Access control lists, by default, inherit rules from parent container objects. Access rule protection blocks the propagation of rules from a parent object.

Rule protection can be enabled for the access ACL using the SetAccessRuleProtection method or for the audit ACL using the SetAuditRuleProtection method.

Setting rule protection has the same effect as disabling inheritance in the GUI.

Each of the methods expects two arguments. The first argument, isProtected, dictates whether or not the list should be protected. The second argument, preserveInheritance, dictates what should be done with existing inherited entries. Inherited entries can either be copied or discarded.

In the following example, access rule protection is enabled (inheritance is disabled) and the previously inherited rules are copied into the ACL:

$acl = Get-Acl C:\Temp\ACL\2
$acl.SetAccessRuleProtection($true, $true)
Set-Acl C:\Temp\ACL\2 -AclObject $acl

Copied rules will only appear on the ACL (as explicit rules) after Set-Acl has been run.

If access rule protection is subsequently re-enabled, copied rules are not removed. The resulting ACL will contain both inherited and explicit versions of each of the rules. Inheritance can be re-enabled as follows:

$acl = Get-Acl C:\Temp\ACL\2
$acl.SetAccessRuleProtection($false, $false)
Set-Acl C:\Temp\ACL\2 -AclObject $acl

The access control list will have doubled in length:

PS> Get-Acl 2 |
>> Select-Object -ExpandProperty Access |
>> Select-Object FileSystemRights, IdentityReference, IsInherited

FileSystemRights IdentityReference IsInherited
---------------- ----------------- -----------
-536805376 NT AUTHORITY\Authenticated Users False
Modify, Synchronize NT AUTHORITY\Authenticated Users False
FullControl NT AUTHORITY\SYSTEM False
268435456 NT AUTHORITY\SYSTEM False
268435456 BUILTIN\Administrators False
FullControl BUILTIN\Administrators False
ReadAndExecute, Synchronize BUILTIN\Users False
FullControl BUILTIN\Administrators True
268435456 BUILTIN\Administrators True
FullControl NT AUTHORITY\SYSTEM True
268435456 NT AUTHORITY\SYSTEM True
ReadAndExecute, Synchronize BUILTIN\Users True
Modify, Synchronize NT AUTHORITY\Authenticated Users True
-536805376 NT AUTHORITY\Authenticated Users True

Discarding access rules will result in an empty ACL:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($true, $false)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

Once this operation completes, any attempt to access the directory will result in access being denied:

PS> Get-ChildItem C:\Temp\ACL\3
Get-ChildItem : Access to the path 'C:\Temp\ACL\3' is denied.
At line:1 char:1
+ Get-ChildItem C:\Temp\ACL\3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : PermissionDenied: (C:\Temp\ACL\3:String) [Get-ChildItem], UnauthorizedAccessException
 + FullyQualifiedErrorId : DirUnauthorizedAccessError,Microsoft.PowerShell.Commands.GetChildItemCommand

Access to the folder can be restored provided the current user has the SeSecurityPrivilege privilege, granted to users with administrative privileges (run as administrator). Re-enabling inheritance is the simplest way to do this, although we might have taken the opportunity to add rules:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($false, $false)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

In the previous example, the second argument for SetAccessRuleProtection, preserveInheritance, is set to false. This value has no impact; it only dictates behavior when access rule protection is enabled.

This loss of access does not apply when using the SetAuditRuleProtection method, as it does not describe who or what can access an object.

 Inheritance and propagation flags

Inheritance and propagation flags dictate how individual access control entries are pushed down to child objects.

Inheritance flags are described by the System.Security.AccessControl.InheritanceFlags enumeration. The possible values are as follows:

	None: Objects will not inherit this access control entry

	ContainerInherit: Only container objects (such as directories) will inherit this entry

	ObjectInherit: Only leaf objects (such as files) will inherit this entry

Propagation flags are described by the System.Security.AccessControl.PropagationFlags enumeration. The possible values are as follows:

	None: Propagation of inheritance is not changed

	NoPropagateInherit: Do not propagate inheritance flags

	InheritOnly: This entry does not apply to this object, only children

These two flag fields are used to build the Applies to option shown in the graphical user interface when setting security on a folder. The following table shows how each option is created:

	Option
	Flags

	This folder only
	

	Inheritance: None

	Propagation: None

	This folder, subfolders, and files
	

	Inheritance: ContainerInherit, ObjectInherit

	Propagation: None

	This folder and subfolders
	

	Inheritance: ContainerInherit

	Propagation: None

	This folder and files
	

	Inheritance: ObjectInherit

	Propagation: None

	Subfolders only
	

	Inheritance: ContainerInherit

	Propagation: InheritOnly

	Files only
	

	Inheritance: ObjectInherit

	Propagation: InheritOnly

The NoPropagateInherit propagation flag comes into play when the tick box only applies these permissions to objects and/or containers ticked within this container. This may be used with all but in this folder, only right (where it has no effect).

 Removing access control entries

Individual rules may be removed from an access control list using a number of different methods:

	RemoveAccessRule: Matches IdentityReference and AccessMask

	RemoveAccessRuleAll: Matches IdentityReference

	RemoveAccessRuleSpecific: Exact match

Access mask is a generic term used to refer to specific rights granted (filesystem rights for a file or directory and registry rights for a registry key).

To demonstrate rule removal, explicit entries might be added to ACL. Enabling then disabling access rule protection will add new rules: the original inherited set and an explicitly set copy of the same rules.

To enable access rule protection and copy inherited rules, do the following:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($true, $true)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

In disable protection, once committed, the inherited rules will appear alongside the copied rules:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($false, $true)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

Rules may be viewed in ACL:

PS> $acl = Get-Acl C:\Temp\ACL\3
PS> $acl.Access | Select-Object IdentityReference, FileSystemRights, IsInherited

IdentityReference FileSystemRights IsInherited
----------------- ---------------- -----------
NT AUTHORITY\Authenticated Users -536805376 False
NT AUTHORITY\Authenticated Users Modify, Synchronize False
NT AUTHORITY\SYSTEM FullControl False
NT AUTHORITY\SYSTEM 268435456 False
BUILTIN\Administrators 268435456 False
BUILTIN\Administrators FullControl False
BUILTIN\Users ReadAndExecute, Synchronize False
BUILTIN\Administrators FullControl True
BUILTIN\Administrators 268435456 True
NT AUTHORITY\SYSTEM FullControl True
NT AUTHORITY\SYSTEM 268435456 True
BUILTIN\Users ReadAndExecute, Synchronize True
NT AUTHORITY\Authenticated Users Modify, Synchronize True
NT AUTHORITY\Authenticated Users -536805376 True

The following example finds each explicit rule and removes it from ACL:

$acl = Get-Acl C:\Temp\ACL\3
$acl.Access | Where-Object IsInherited -eq $false | ForEach-Object {
 $acl.RemoveAccessRuleSpecific($_)
}
Set-Acl C:\Temp\ACL\3 -AclObject $acl

 Copying lists and entries

Access lists can be copied from one object to another; for example, a template ACL might have been prepared:

$acl = Get-Acl C:\Temp\ACL\4
$acl.SetAccessRuleProtection($true, $true)
$acl.Access |
 Where-Object IdentityReference -like '*\Authenticated Users' |
 ForEach-Object { $acl.RemoveAccessRule($_) }
Set-Acl C:\Temp\ACL\4 –AclObject $acl

This ACL can be applied to another object:

$acl = Get-Acl C:\Temp\ACL\4
Set-Acl C:\Temp\ACL\5 -AclObject $acl

If ACL contains a mixture of inherited and explicit entries, the inherited entries will be discarded.

Access control rules may be copied in a similar manner:

Get the ACE to copy
$ace = (Get-Acl C:\Temp\ACL\3).Access | Where-Object {
 $_.IdentityReference -like '*\Authenticated Users' -and
 $_.FileSystemRights -eq 'Modify, Synchronize' -and
 -not $_.IsInherited
}

Get the target ACL
$acl = Get-Acl C:\Temp\ACL\5

Add the entry
$acl.AddAccessRule($ace)

Apply the change
Set-Acl C:\Temp\ACL\5 -AclObject $acl

 Adding access control entries

Access control entries must be created before they can be added to an access control list.

Creating an access control entry (ACE) for the filesystem or the registry, and for access or audit purposes, uses a set of .NET classes:

	System.Security.AccessControl.FileSystemAccessRule

	System.Security.AccessControl.FileSystemAuditRule

	System.Security.AccessControl.RegistryAccessRule

	System.Security.AccessControl.RegistryAuditRule

There are a number of different ways to use these classes; this section focuses on the most common.

 Filesystem rights

The filesystem access control entry uses the System.Security.AccessControl.FileSystemRights enumeration to describe the different rights that might be granted.

PowerShell is able to list each name using the GetNames (or GetValues) static methods of the Enum type:

[System.Security.AccessControl.FileSystemRights].GetEnumNames()

PowerShell might be used to show the names, numeric values, and even the binary values associated with each. Several of these rights are composites, such as write, which summarizes CreateFiles, AppendData, WriteExtendedAttributes, and WriteAttributes:

[System.Security.AccessControl.FileSystemRights].GetEnumValues() | ForEach-Object {
 [PSCustomObject]@{
 Name = $_
 Value = [Int]$_
 Binary = [Convert]::ToString([Int32]$_, 2).PadLeft(32, '0')
 }
}

Microsoft Docs is a better place to find a descriptive meaning of each of the different flags: https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2. This is a bit field, and can therefore be treated in the same way as FileAttributes earlier in this chapter. The simplest way to present rights is in a comma-separated list. There is a large number of possible combinations; the graphical user interface shows a small number of these before heading into advanced. These options are shown in the following table:

	
GUI option

	
Filesystem rights

	
Full control

	
FullControl

	
Modify

	
Modify, Synchronize

	
Read and execute

	
ReadAndExecute, Synchronize

	
List folder contents

	
ReadAndExecute, Synchronize

	
Read

	
Read, Synchronize

	
Write

	
Write, Synchronize

The previous table shows that both read and execute and list folder contents have the same value. This is, in essence, because the access mask is the same. The difference is in the inheritance flags:

	
GUI option

	
Inheritance flags

	
Read and execute

	
ContainerInherit, ObjectInherit

	
List folder contents

	
ContainerInherit

In all other cases, the inheritance flags are set to ContainerInherit, ObjectInherit. Propagation flags are set to None for all examples.

Using these, a full control ACE can be created using one of the constructors for FileSystemAccessRule:

$ace = [System.Security.AccessControl.FileSystemAccessRule]::new(
 'DOMAIN\User', # Identity reference
 'FullControl', # FileSystemRights
 'ContainerInherit, ObjectInherit', # InheritanceFlags
 'None', # PropagationFlags
 'Allow' # ACE type (allow or deny)
)

This ACE can be applied to ACL:

$acl = Get-Acl C:\Temp\ACL\5
$acl.AddAccessRule($ace)
Set-Acl C:\Temp\ACL\5 -AclObject $acl

 Registry rights

Creating access control entries for registry keys follows exactly the same pattern as for filesystem rights. The rights are defined in the System.Security.AccessControl.RegistryRights enumeration.

PowerShell is able to list these rights, but the descriptions on MSDN are more useful: https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.registryrights(v=vs.110).aspx.

A rule is created in the same way as a filesystem rule:

$ace = [System.Security.AccessControl.RegistryAccessRule]::new(
 'DOMAIN\User', # Identity reference
 'FullControl', # RegistryRights
 'ContainerInherit, ObjectInherit', # InheritanceFlags
 'None', # PropagationFlags
 'Allow' # ACE type (allow or deny)
)

The rule can be applied to a key (in this case, a newly created key):

$key = New-Item HKCU:\TestKey -ItemType Key -Force
$acl = Get-Acl $key.PSPath
$acl.AddAccessRule($ace)
Set-Acl $key.PSPath -AclObject $acl

 Numeric values in the access control list

The FileSystemRights enumeration used in the previous examples does not quite cover all of the possible values one might see when inspecting an ACL. In some cases, the rights will be shown as numeric values rather than names.

The -536805376 and 268435456 values were both included in some earlier examples. The missing values are part of the generic portion of the access control entry in Microsoft docs: https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format.

This generic portion is not accounted for by the FileSystemRights enumeration. These generic values, in turn, represent summarized rights, as shown on this page: https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights.

Converting each of the values to binary goes a long way to showing their composition:

PS> foreach ($value in -536805376, 268435456) {
>> '{0,-10}: {1}' -f $value, [Convert]::ToString($value, 2).PadLeft(32, '0')
>> }

-536805376: 11100000000000010000000000000000
268435456 : 00010000000000000000000000000000

This script uses a GenericAccessRights enumeration toward show how these values may be deconstructed:

using namespace System.Security.AccessControl

Define an enumeration which describes the generic access mask (only)
[Flags()]
enum GenericAccessRights {
 GenericRead = 0x80000000
 GenericWrite = 0x40000000
 GenericExecute = 0x20000000
 GenericAll = 0x10000000
}

For each value to convert
foreach ($value in -536805376, 268435456) {
 # For each enum that describes the values
 $accessRights = foreach ($enum in [GenericAccessRights], [FileSystemRights]) {
 # Find values from the enum where the value in question has that exact bit set.
 [Enum]::GetValues($enum) | Where-Object { ($value -band $_) -eq $_ }
 }
 # Output the original value and the values from the enum (as a string)
 '{0} : {1}' -f $value, ($accessRights -join ', ')
}

The two values discussed are therefore the following:

	-536805376: GenericExecute, GenericWrite, GenericRead, and Delete

	268435456: GenericAll

 Transactions

A transaction allows a set of changes to be grouped together and committed at the same time. Transactions are only supported under Windows PowerShell.

The registry provider supports transactions, as shown in the following code:

PS> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Registry ShouldProcess, Transactions {HKLM, HKCU}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Credentials {B, C, D}
Function ShouldProcess {Function}
Variable ShouldProcess {Variable}

A transaction may be created as follows:

Start-Transaction
$path = 'HKCU:\TestTransaction'
New-Item $path -ItemType Key -UseTransaction
Set-ItemProperty $path -Name 'Name' -Value 'Transaction' -UseTransaction
Set-ItemProperty $path -Name 'Length' -Value 20 -UseTransaction

At this point, the transaction may be undone:

Undo-Transaction

Alternatively, the transaction may be committed:

Complete-Transaction

A list of the commands that support transactions may be viewed, although not all of these may be used with the registry provider:

Get-Command -ParameterName UseTransaction

 File catalogs

A file catalog is a new feature with Windows PowerShell 5.1. A file catalog is a reasonably lightweight form of File Integrity Monitoring (FIM). The file catalog generates and stores SHA1 hashes for each file within a folder structure and writes the result to a catalog file.

About hashing

Hashing is a one-way process; a hash is not an encryption or encoding. A hash algorithm converts data of any length to a fixed-length value. The length of the value depends on the hashing algorithm used.

MD5 hashing is one of the more common algorithms; it produces a 128-bit hash that can be represented by a 32-character string.

SHA1 is rapidly becoming the default; it produces a 160-bit hash that can be represented by a 40-character string.

PowerShell has a Get-FileHash command that can be used to calculate the hash for a file.

As the catalog is the basis for determining integrity, it should be maintained in a secure location, away from the set of files being analyzed.

 New-FileCatalog

The New-FileCatalog command is used to generate (or update) a catalog:

New-FileCatalog -Path <ToWatch> -CatalogFilePath <StateFile>

A hash can only be generated for files that are larger than 0 bytes. However, filenames are recorded irrespective of the size.

The following command creates a file catalog from the files and folders created when exploring permissions:

New-FileCatalog -Path C:\Temp\ACL -CatalogFilePath C:\Temp\Security\example.cat

If the CatalogFilePath had been a directory instead of a file, New-FileCatalog would have automatically created a file named catalog.cat.

 Test-FileCatalog

The Test-FileCatalog command compares the content of the catalog file to the filesystem. Hashes are recalculated for each file.

If none of the content has changed, Test-FileCatalog will return Valid:

PS> Test-FileCatalog -Path C:\Temp\ACL -CatalogFilePath C:\Temp\Security\example.cat
Valid

If a file has been added, removed, or changed, the Test-FileCatalog command will return ValidationFailed.

At this point, the Detailed parameter can be used to see which file changed.

Is it faster without Detailed?

 The Detailed parameter does not change the amount of work Test-FileCatalog must do. If the result is to be used, it might be better to use the Detailed parameter right away. This saves the CPU cycles and I/O operations required to list the content of a directory and generate the hashes a second time.

The command does not provide a summary of changes; instead, it returns all files and hashes from the catalog and all files and hashes from the path being tested:

PS> Set-Content C:\Temp\ACL\3\3.txt –Value 'New content'
PS> $params = @{
>> Path = 'C:\Temp\ACL'
>> CatalogFilePath = 'C:\Temp\Security\example.cat'
>> Detailed = $true
>> }
PS> Test-FileCatalog @params

Status : ValidationFailed
HashAlgorithm : SHA1
CatalogItems : {[1\1.txt, 3B88969F774811E6A5D634832BE099EDA42B5E72], ...}
PathItems : {[1\1.txt, 3B88969F774811E6A5D634832BE099EDA42B5E72], ...}
Signature : System.Management.Automation.Signature

These values can be used to find changes. First, assign the result of the command to a variable:

$params = @{
 Path = 'C:\Temp\ACL'
 CatalogFilePath = 'C:\Temp\Security\example.cat'
 Detailed = $true
}
$result = Test-FileCatalog @params

Once done, files that have been added can be listed with the following code:

$result.PathItems.Keys | Where-Object { -not $result.CatalogItems.ContainsKey($_) }

Files that have been removed are listed with the following code:

$result.CatalogItems.Keys | Where-Object { -not $result.PathItems.ContainsKey($_) }

Files that have been modified are listed with the following code:

$result.PathItems.Keys | Where-Object { $result.CatalogItems[$_] -ne $result.PathItems[$_]}

As the file catalog only stores hashes, the command is unable to describe exactly what has changed about a file, only that something has.

 Summary

This chapter took a look at working with providers, focusing on filesystem and registry providers. How PowerShell works with items and item properties was demonstrated. Working with permissions in PowerShell for both filesystem and registry providers was also demonstrated. Using transactions with supported providers was demonstrated using the registry provider. Finally, file catalogs were introduced.

Chapter 11, Windows Management Instrumentation, will explore how to work with WMI using the CIM commands built into Windows PowerShell and PowerShell Core.

 Windows Management Instrumentation

Windows Management Instrumentation (WMI) was introduced as a downloadable component with Windows 95 and NT. Windows 2000 had WMI pre-installed, and it has since become a core part of the operating system.

WMI can be used to access a huge amount of information about the computer system. This includes printers, device drivers, user accounts, ODBC, and so on; there are hundreds of classes to explore.

In this chapter, we will be covering the following topics:

	Working with WMI

	CIM cmdlets

	WMI cmdlets

	Permissions

 Working with WMI

The scope of WMI is vast, which makes it a fantastic resource for automating processes. WMI classes are not limited to the core operating system; it is not uncommon to find classes created after software or device drivers have been installed.

Given the scope of WMI, finding an appropriate class can be difficult. PowerShell itself is well equipped to explore the available classes.

 WMI classes

PowerShell, as a shell for working with objects, presents WMI classes in a very similar manner to .NET classes or any other object. There are a number of parallels between WMI classes and .NET classes.

A WMI class is used as the recipe to create an instance of a WMI object. The WMI class defines properties and methods. The WMI class Win32_Process is used to gather information about running processes in a similar manner to the Get-Process command.

The Win32_Process class has properties such as ProcessId, Name, and CommandLine. It has a terminate method that can be used to kill a process, as well as a create static method that can be used to spawn a new process.

WMI classes reside within a WMI namespace. The default namespace is root\cimv2; classes such as Win32_OperatingSystem and Win32_LogicalDisk reside in this namespace.

 WMI commands

PowerShell has two different sets of commands dedicated to working with WMI.

The CIM cmdlets were introduced with PowerShell 3.0. They are compatible with the Distributed Management Task Force (DMTF) standard DSP0004. A move towards compliance with open standards is critical as the Microsoft world becomes more diverse.

WMI itself is a proprietary implementation of the CIM server, using the Distributed Component Object Model (DCOM) API to communicate between the client and server.

Standards compliance and differences in approach aside, there are solid, practical reasons to consider when choosing which one to use.

Some properties of CIM cmdlets are as follows:

	They are available in both Windows PowerShell and PowerShell Core.

	They handle date conversion natively.

	They have a flexible approach to networking. They use WSMAN for remote connections by default, but can be configured to use DCOM over RPC.

Some properties of WMI cmdlets are as follows:

	They are only available in Windows PowerShell, not in PowerShell Core

	They do not automatically convert dates

	They use DCOM over RPC exclusively

	They can be used for all WMI operations

	They have been superseded by the CIM cmdlets

 The WMI Query Language

Before diving into the individual commands, it will help to have a grasp of the query language used for WMI queries. The query language is useful when querying classes that return multiple values.

The WMI Query Language (WQL) is used to build queries in WMI for both the CIM and WMI commands.

WQL implements a subset of Structured Query Language (SQL). The keywords that we will look at are traditionally written in uppercase; however, WMI queries are not case-sensitive.

Both the CIM and WMI cmdlets support Filter and Query parameters, which accept WQL queries.

 Understanding SELECT, WHERE, and FROM

The SELECT, WHERE, and FROM keywords are used with the Query parameter.

The generalized syntax for the Query parameter is as follows:

SELECT <Properties> FROM <WMI Class>
SELECT <Properties> FROM <WMI Class> WHERE <Condition>

The wildcard, *, may be used to request all available properties or a list of known properties may be requested:

Get-CimInstance -Query "SELECT * FROM Win32_Process"
Get-CimInstance -Query "SELECT ProcessID, CommandLine FROM Win32_Process"

The WHERE keyword is used to filter results returned by SELECT; for example, see the following:

Get-CimInstance -Query "SELECT * FROM Win32_Process WHERE ProcessID=$PID"

WQL and arrays
 WQL cannot filter array-based properties (for example, the capabilities property of Win32_DiskDrive).

 Escape sequences and wildcard characters

The backslash character, \, is used to escape the meaning of characters in a WMI query. This might be used to escape a wildcard character, quotes, or itself. For example, the following WMI query uses a path; each instance of \ in the path must be escaped:

Get-CimInstance Win32_Process -Filter "ExecutablePath='C:\\Windows\\Explorer.exe'"

About Win32_Process and the Path property

The Path property is added to the output from the Win32_Process class by PowerShell. While it appears in the output, the property cannot be used to define a filter, nor can Path be selected using the Property parameter of either Get-CimInstance or Get-WmiObject.

Get-Member shows that it is a ScriptProperty as follows:

Get-CimInstance Win32_Process -Filter "ProcessId=$pid" | Get-Member -Name Path

Get-WmiObject Win32_Process -Filter "ProcessId=$pid" | Get-Member -Name Path

WQL defines two wildcard characters that can be used with string queries:

	The % (percentage) character matches any number of characters and is equivalent to using * in a filesystem path or with the -like operator

	The _ (underscore) character matches a single character and is equivalent to using ? in a filesystem path or with the -like operator

The following query filters the results of Win32_Service, including services with paths starting with a single drive letter and ending with .exe:

Get-CimInstance Win32_Service -Filter 'PathName LIKE "_:\\%.exe"'

 Logic operators

Logic operators may be used with the Filter and Query parameters.

The examples in the following table are based on the following command:

Get-CimInstance Win32_Process -Filter "<Filter>"

	
Description

	
Operator

	
Syntax

	
Example

	
Logical and

	
AND

	
<Condition1> AND <Condition2>

	
ProcessID=$pid AND Name='powershell.exe'

	
Logical or

	
OR

	
<Condition1> OR <Condition2>

	
ProcessID=$pid OR ProcessID=0

	
Logical not

	
NOT

	
NOT <Condition>

	
NOT ProcessID=$pid

 Comparison operators

Comparison operators may be used with the Filter and Query parameters.

The examples in the following table are based on the following command:

Get-CimInstance Win32_Process -Filter "<Filter>"

	
Description

	
Operator

	
Example

	
Equal to

	
=

	
Name='powershell.exe' AND ProcessId=0

	
Not equal to

	
<>

	
Name<>'powershell.exe'

	
Greater than

	
>

	
WorkingSetSize>$(100MB)

	
Greater than or equal to

	
>=

	
WorkingSetSize>=$(100MB)

	
Less than

	
<

	
WorkingSetSize<$(100MB)

	
Less than or equal to

	
<=

	
WorkingSetSize<=$(100MB)

	
Is

	
IS

	
CommandLine IS NULL

CommandLine IS NOT NULL

	
Like

	
LIKE

	
CommandLine LIKE '%.exe'

 Quoting values

When building a WQL query, string values must be quoted; numeric and Boolean values do not need quotes.

As the filter is also a string, this often means nesting quotes within one another. The following techniques may be used to avoid needing to use PowerShell's escape character.

For filters or queries containing fixed string values, use either of the following styles. Use single quotes outside and double quotes inside:

Get-CimInstance Win32_Process -Filter 'Name="powershell.exe"'

Alternatively, use double quotes outside and single quotes inside:

Get-CimInstance Win32_Process -Filter "Name='powershell.exe'"

For filters or queries containing PowerShell variables or sub-expressions, use double quotes outside, as variables within a single-quoted string that will not expand:

Get-CimInstance Win32_Process -Filter "ProcessId=$PID"
Get-CimInstance Win32_Process -Filter "ExecutablePath LIKE '$($pshome -replace '\\', '\\')%'"

Regex recap

The regular expression '\\' represents a single literal '\', as the backslash is normally the escape character. Each '\' in the pshome path is replaced with '\\' to account for WQL using '\' as an escape character as well.

Finally, if a filter contains several conditions, consider using the format operator, as shown in this splatting block:

$params = @{
 ClassName = 'Win32_Process'
 Filter = 'ExecutablePath LIKE "{0}%" AND WorkingSetSize<{1}' -f
 ($env:WINDIR -replace '\\', '\\'),
 100MB
}
Get-CimInstance @params

 Associated classes

WMI classes often have several different associated or related classes; for example, each instance of Win32_Process has an associated class, CIM_DataFile.

Associations between two classes are expressed by a third class. In the case of Win32_Process and CIM_DataFile, the relationship is expressed by the CIM_ProcessExecutable class.

The relationship is defined by using the antecedent and dependent properties, as shown in the following example:

PS> Get-CimInstance CIM_ProcessExecutable |
>> Where-Object Dependent -match $PID |
>> Select-Object -First 1

Antecedent : CIM_DataFile (Name = "C:\WINDOWS\System32\WindowsPowerShell\v...)
Dependent : Win32_Process (Handle = "11672")
BaseAddress : 2340462460928
GlobalProcessCount :
ModuleInstance : 4000251904
ProcessCount : 0
PSComputerName :

This CIM_ProcessExecutable class does not need to be used directly.

 WMI object paths

A WMI path is required to find classes associated with an instance. The WMI object path uniquely identifies a specific instance of a WMI class.

The object path is made up of a number of components:

<Namespace>:<ClassName>.<KeyName>=<Value>

The namespace can be omitted if the class is under the default namespace, root\cimv2.

The KeyName for a given WMI class can be discovered in a number of ways. In the case of Win32_Process, the key name might be discovered by using any of the following methods.

It can be discovered by using the CIM cmdlets:

(Get-CimClass Win32_Process).CimClassProperties |
 Where-Object { $_.Flags -band 'Key' }

It can be discovered by using the MSDN website, which provides the descriptions of each property (and method) exposed by the class: https://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx.

Having identified a key, only the value remains to be found. In the case of Win32_Process, the key (handle) has the same value as the process ID. The object path for the Win32_Process instance associated with a running PowerShell console is, therefore, the following:

root\cimv2:Win32_Process.Handle=$PID

The namespace does not need to be included if it uses the default, root\cimv2; the object path can be shortened to the following:

Win32_Process.Handle=$PID

Get-CimInstance and Get-WmiObject will not retrieve an instance from an object path, but the Wmi type accelerator can:

PS> [Wmi]"Win32_Process.Handle=$PID" | Select-Object Name, Handle

Name Handle
---- ------
powershell_ise.exe 13020

 Using ASSOCIATORS OF

The ASSOCIATORS OF query may be used for any given object path; for example, using the preceding object path results in the following command:

Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}"

This query will return objects from three different classes: Win32_LogonSession, Win32_ComputerSystem, and CIM_DataFile. The classes returned are shown in the following example:

PS> Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}" |
>> Select-Object CimClass -Unique

CimClass

root/cimv2:Win32_ComputerSystem
root/cimv2:Win32_LogonSession
root/cimv2:CIM_DataFile

The query can be refined to filter a specific resulting class; an example is as follows:

Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID} WHERE ResultClass = CIM_DATAFILE"

The value in the ResultClass condition is deliberately not quoted.

The result of this operation is a long list of files that are used by the PowerShell process. A snippet of this is shown as follows:

PS> Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID} WHERE ResultClass = CIM_DATAFILE" |
>> Select-Object Name

Name

c:\windows\system32\windowspowershell\v1.0\powershell_ise.exe
c:\windows\system32\ntdll.dll
c:\windows\system32\mscoree.dll
c:\windows\system32\sysfer.dll
c:\windows\system32\kernel32.dll

 CIM cmdlets

The Common Information Model (CIM) commands are as follows:

	Get-CimAssociatedInstance

	Get-CimClass

	Get-CimInstance

	Get-CimSession

	Invoke-CimMethod

	New-CimInstance

	New-CimSession

	New-CimSessionOption

	Register-CimIndicationEvent

	Remove-CimInstance

	Remove-CimSession

	Set-CimInstance

Each of the CIM cmdlets uses either the ComputerName or CimSession parameter to target the operation at another computer.

 Getting instances

The Get-CimInstance command is used to execute queries for instances of WMI objects, an example is as follows:

Get-CimInstance -ClassName Win32_OperatingSystem
Get-CimInstance -ClassName Win32_Service
Get-CimInstance -ClassName Win32_Share

A number of different parameters are available when using Get-CimInstance. The command can be used with a filter, as follows:

Get-CimInstance Win32_Directory -Filter "Name='C:\\Windows'"
Get-CimInstance CIM_DataFile -Filter "Name='C:\\Windows\\System32\\cmd.exe'"
Get-CimInstance Win32_Service -Filter "State='Running'"

When returning large amounts of information, the Property parameter can be used to reduce the number of fields returned by a query:

Get-CimInstance Win32_UserAccount -Property Name, SID

The Query parameter can also be used, although it is rare to find a use for this that cannot be served by the individual parameters:

Get-CimInstance -Query "SELECT * FROM Win32_Process"
Get-CimInstance -Query "SELECT Name, SID FROM Win32_UserAccount"

 Getting classes

The Get-CimClass command is used to return an instance of a WMI class:

PS> Get-CimClass Win32_Process

NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminate, Get...} {Caption, Description, InstallDate, Name...}

The Class object describes the capabilities of that class. By default, Get-CimClass lists classes from the root\cimv2 namespace.

The Namespace parameter will fill using tab completion; that is, if the following partial command is entered, pressing Tab repeatedly will cycle through the possible root namespaces:

Get-CimClass -Namespace <tab, tab, tab>

The child namespaces of a given namespace are listed in a __Namespace class instance. For example, the following command returns the namespaces under root:

Get-CimInstance __Namespace -Namespace root

Extending this technique, it is possible to recursively query __Namespace to find all of the possible namespace values. Certain WMI namespaces are only available to administrative users (run as administrator); the following function may display errors for some namespaces:

function Get-CimNamespace {
 param (
 $Namespace = 'root'
)

 Get-CimInstance __Namespace -Namespace $Namespace | ForEach-Object {
 $childNamespace = Join-Path $Namespace $_.Name
 $childNamespace

 Get-CimNamespace -Namespace $childNamespace
 }
}
Get-CimNamespace

 Calling methods

The Invoke-CimMethod command may be used to call a method. The CIM class can be used to find details of the methods that a class supports:

PS> (Get-CimClass Win32_Process).CimClassMethods

Name ReturnType Parameters Qualifiers
---- ---------- ---------- ----------
Create UInt32 {CommandLine...} {Constructor...}
Terminate UInt32 {Reason} {Destructor...}
GetOwner UInt32 {Domain...} {Implemented...}
GetOwnerSid UInt32 {Sid} {Implemented...}

The method with the Constructor qualifier can be used to create a new instance of Win32_Process.

The Parameters property of a specific method can be explored to find out how to use a method:

PS> (Get-CimClass Win32_Process).CimClassMethods['Create'].Parameters

Name CimType Qualifiers
---- ------- ----------
CommandLine String {ID, In, MappingStrings}
CurrentDirectory String {ID, In, MappingStrings}
ProcessStartupInformation Instance {EmbeddedInstance, ID, In, MappingStrings}
ProcessId UInt32 {ID, MappingStrings, Out}

If an argument has the In qualifier, it can be passed in when creating an object. If an argument has the Out qualifier, it will be returned after the instance has been created. Arguments are passed in using a hashtable.

When creating a process, the CommandLine argument is required; the rest can be ignored until later:

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @params

The return object holds three properties in the case of Win32_Process, as follows:

PS> $return

ProcessId ReturnValue PSComputerName
--------- ----------- --------------
 15172 0

PSComputerName is blank when the request is local. The ProcessId is the Out property listed under the method parameters. ReturnValue indicates whether or not the operation succeeded, and 0 indicates that it was successful.

A nonzero value indicates that something went wrong, but the values are not translated in PowerShell. The return values are documented on MSDN at https://msdn.microsoft.com/en-us/library/aa389388(v=vs.85).aspx.

The Create method used here creates a new instance. The other methods for Win32_Process act against an existing instance (an existing process).

Extending the preceding example, a process can be created and then terminated:

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @params

pause

Get-CimInstance Win32_Process -Filter "ProcessID=$($return.ProcessId)" |
 Invoke-CimMethod -MethodName Terminate

The pause command will wait for return to be pressed before continuing; this gives us the opportunity to show that Notepad was opened before it is terminated.

The Terminate method has an optional argument that is used as the exit code for the terminate process. This argument may be added using hashtable; in this case, a (made up) value of 5 is set as the exit code:

$invokeParams = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @invokeParams

$getParams = @{
 ClassName = 'Win32_Process'
 Filter = 'ProcessId={0}' -f $return.ProcessId
}
Get-CimInstance @getParams |
 Invoke-CimMethod -MethodName Terminate -Arguments @{Reason = 5}

Invoke-CimMethod returns an object with a ReturnValue. A return value of 0 indicates that the command succeeded. A nonzero value indicates an error condition. The meaning of the value will depend on the WMI class.

The return values associated with the Terminate method of Win32_Process are documented on MSDN at https://msdn.microsoft.com/en-us/library/aa393907(v=vs.85).aspx.

 Creating instances

The arguments for Win32_Process, create include a ProcessStartupInformation parameter. ProcessStartupInformation is described by a WMI class, Win32_ProcessStartup.

There are no existing instances of Win32_ProcessStartup (Get-CimInstance), and the class does not have a Create method (or any other constructor).

New-CimInstance can be used to create a class:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-CimInstance -CimClass $class -ClientOnly

New-Object can also be used:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-Object CimInstance $class

Finally, the new method may be used:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = [CimInstance]::new($class)

Properties may be set on the created instance; the effect of each property is documented on MSDN at https://msdn.microsoft.com/en-us/library/aa394375(v=vs.85).aspx.

In the following example, properties are set to dictate the position and title of a cmd.exe window:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-CimInstance -CimClass $class -ClientOnly
$startupInfo.X = 50
$startupInfo.Y = 50
$startupInfo.Title = 'This is the window title'

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'cmd.exe'
 ProcessStartupInformation = $startupInfo
 }
}
$returnObject = Invoke-CimMethod @params

 Working with CIM sessions

As mentioned earlier in this chapter, a key feature of the CIM cmdlets is their ability to change how connections are formed and used.

The Get-CimInstance command has a ComputerName parameter, and when this is used, the command automatically creates a session to a remote system using WSMAN. The connection is destroyed as soon as the command completes.

While Get-CimInstance supports basic remote connections, it does not provide a means of authenticating a connection, nor can the protocol be changed.

The Get-CimSession, New-CimSession, New-CimSessionOption, and Remove-CimSession commands are optional commands that can be used to define the behavior of remote connections.

The New-CimSession command creates a connection to a remote server an example is as follows:

PS> $cimSession = New-CimSession -ComputerName Remote1
PS> $cimSession

Id : 1
Name : CimSession1
InstanceId : 1cc2a889-b649-418c-94a2-f24e033883b4
ComputerName : Remote1
Protocol : WSMAN

Alongside the other parameters, New-CimSession has a Credential parameter that can be used in conjunction with Get-Credential to authenticate a connection.

If the remote system does not, for any reason, present access to WSMAN, it is possible to switch the protocol down to DCOM by using the New-CimSessionOption command:

PS> $option = New-CimSessionOption -Protocol DCOM
PS> $cimSession = New-CimSession -ComputerName Remote1 –SessionOption $option
PS> $cimSession

Id : 2
Name : CimSession2
InstanceId : 62b2cb56-ec84-472c-a992-4bee59ee0618
ComputerName : Remote1
Protocol : DCOM

The New-CimSessionOption command is not limited to protocol switching; it can affect many of the other properties of the connection, as shown in the help and the examples for the command.

Once a session has been created, it exists in the memory until it is removed. The Get-CimSession command shows a list of connections that have been formed, and the Remove-CimSession command permanently removes connections.

 Associated classes

The Get-CimAssociatedClass command replaces the use of the ASSOCIATORS OF query type when using the CIM cmdlets.

The following command gets the class instances associated with Win32_NetworkAdapterConfiguration. As the arguments for the Get-CimInstance command are long strings, splatting is used to pass the parameters into the command:

$params = @{
 ClassName = 'Win32_NetworkAdapterConfiguration'
 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'
}
Get-CimInstance @params | Get-CimAssociatedInstance

The following example uses Get-CimAssociatedClass to get the physical interface associated with the IP configuration:

$params = @{
 ClassName = 'Win32_NetworkAdapterConfiguration'
 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'
}
Get-CimInstance @params | ForEach-Object {
 $adapter = $_ | Get-CimAssociatedInstance -ResultClassName Win32_NetworkAdapter

 [PSCustomObject]@{
 NetConnectionID = $adapter.NetConnectionID
 Speed = [Math]::Round($adapter.Speed / 1MB, 2)
 IPAddress = $_.IPAddress
 IPSubnet = $_.IPSubnet
 Index = $_.Index
 Gateway = $_.DefaultIPGateway
 }
}

 The WMI cmdlets

The WMI cmdlets have been superseded by the CIM cmdlets. The WMI cmdlets are not available in PowerShell Core, but the type accelerators are.

The WMI commands are as follows:

	Get-WmiObject

	Invoke-WmiMethod

	Register-WmiEvent

	Remove-WmiObject

	Set-WmiInstance

In addition to the commands, three type accelerators are available:

	[Wmi]: System.Management.ManagementObject

	[WmiClass]: System.Management.ManagementClass

	[WmiSearcher]: System.Management.ManagementObjectSearcher

Each of the WMI cmdlets uses the ComputerName parameter to aim the operation at another computer. The WMI cmdlets also support a credential parameter and other authentication options affecting the authentication method.

Both the Wmi and WmiClass type accelerators can be written to use a remote computer by including the computer name an example is as follows:

[Wmi]"\\RemoteComputer\root\cimv2:Win32_Process.Handle=$PID"
[WmiClass]"\\RemoteComputer\root\cimv2:Win32_Process"

 Getting instances

The Get-WmiObject command is used to execute queries for instances of WMI objects an example is as follows:

Get-WmiObject -Class Win32_ComputerSystem

The type accelerator, WmiSearcher, may also be used to execute queries:

([WmiSearcher]"SELECT * FROM Win32_Process").Get()

 Working with dates

The WMI cmdlets do not convert date-time properties found in WMI. Querying the Win32_Process class for the creation date of a process returns the date-time property as a long string:

PS> Get-WmiObject Win32_Process -Filter "ProcessId=$PID" | Select-Object Name, CreationDate

Name CreationDate
---- ------------
powershell_ise.exe 20170209120229.941677+000

The .NET namespace used by the WMI cmdlet, System.Management, includes a class called ManagementDateTimeConverter, dedicated to converting date and time formats found in WMI.

The string in the preceding example may be converted, as follows:

Get-WmiObject Win32_Process -Filter "ProcessId=$PID" |
 Select-Object Name, @{Name='CreationDate'; Expression={
 [System.Management.ManagementDateTimeConverter]::ToDateTime($_.CreationDate)
 }}

 Getting classes

The Get-WmiObject command is used to get classes:

Get-WmiObject Win32_Process -List

The WMI cmdlets are able to recursively list classes in namespaces. The following command lists the classes in root\cimv2 and any child namespaces:

Get-WmiObject -List -Recurse

In addition to the list parameter, the WmiClass type accelerator can be used:

[WmiClass]"Win32_Process"

 Calling methods

Calling a method on an existing instance of an object found using Get-WmiObject is similar to any .NET method call.

The following example gets and restarts the DNS Client service. The following operation requires administrative access:

$service = Get-WmiObject Win32_Service -Filter "DisplayName='DNS Client'"
$service.StopService() # Call the StopService method
$service.StartService() # Call the StartService method

The WMI class can be used to find the details of a method; for example, the Create method of Win32_Share, as follows:

PS> (Get-WmiObject Win32_Share -List).Methods['Create']

Name : Create
InParameters : System.Management.ManagementBaseObject
OutParameters : System.Management.ManagementBaseObject
Origin : Win32_Share
Qualifiers : {Constructor, Implemented, MappingStrings, Static}

Where the Invoke-CimMethod command accepts a hashtable, the Invoke-WmiMethod command expects arguments to be passed as an array, in a specific order. The order can be retrieved by using the GetMethodParameters method of the WMI class:

PS> (Get-WmiObject Win32_Share -List).GetMethodParameters('Create')

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 7
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Access :
Description :
MaximumAllowed :
Name :
Password :
Path :
Type :
PSComputerName :

To create a share, the argument list must therefore contain an argument for Access, then Description, then MaximumAllowed, and so on. If the argument is optional, it can be set to null; however, PowerShell is unable to say which are mandatory, so a trip to MSDN is required: https://msdn.microsoft.com/en-us/library/aa389393(v=vs.85).aspx.

Having established that Path, Name, and Type are mandatory; an array of arguments can be created in the order described by GetMethodParameters:

$argumentList = $null, # Access
 $null, # Description
 $null, # MaximumAllowed
 'Share1', # Name
 $null, # Password
 'C:\Temp\Share1', # Path
 0 # Type (Disk Drive)
Invoke-WmiMethod Win32_Share -Name Create -ArgumentList $argumentList

The return value describes the result of the operation; a ReturnValue of 0 indicates success. As this operation requires administrator privileges (run as administrator), a return value of 2 is used to indicate that it was run without sufficient rights.

If the folder used in the previous example does not exist, the ReturnValue will be set to 24.

Adding the ComputerName parameter to Invoke-WmiMethod will create a share on a remote machine.

Arrays of null values are messy

 This method of supplying arguments to execute a method is difficult to work with for all but the simplest of methods. An alternative is to use the .NET method InvokeMethod on the class object:

$class = Get-WmiObject Win32_Share -List

$inParams = $class.GetMethodParameters('Create')

$inParams.Name = 'Share1'

$inParams.Path = 'C:\Temp\Share1'

$inParams.Type = 0

$return = $class.InvokeMethod('Create', $inParams, $null)

The last argument, set to null here, is InvokeMethodOptions, which is most often used to define a timeout for the operation. Doing so is beyond the scope of this chapter.

To create a share on a remote computer, use the ComputerName parameter with Get-WmiObject.

 Creating instances

An instance of a WMI class can be created using the CreateInstance method of the class. The following example creates an instance of Win32_Trustee:

(Get-WmiObject Win32_Trustee -List).CreateInstance()

 Associated classes

Objects returned by Get-WmiObject have a GetRelated method that can be used to find associated instances.

The GetRelated method accepts arguments that can be used to filter the results. The first argument, relatedClass, is used to limit the instances returned to specific classes, as shown here:

Get-WmiObject Win32_LogonSession | ForEach-Object {
 [PSCustomObject]@{
 LogonName = $_.GetRelated('Win32_Account').Caption
 SessionStarted = [System.Management.ManagementDateTimeConverter]::ToDateTime($_.StartTime)
 }
}

 Permissions

Working with permissions in WMI is more difficult than in .NET as the values in use are not given friendly names. However, the .NET classes can still be used, even if not quite as intended.

The following working examples demonstrate configuring the permissions.

 Sharing permissions

Get-Acl and Set-Acl are fantastic tools for working with filesystem permissions, or permissions under other providers. However, these commands cannot be used to affect sharing permissions.

The SmbShare module

The SmbShare module has commands that affect share permissions. This example uses the older WMI classes to modify permissions. It might be used if the SmbShare module cannot be.

The Get-SmbShareAccess command might be used to verify the outcome of this example.

The following operations require administrative privileges; run ISE or PowerShell as an administrator if attempting to use the examples.

 Creating a shared directory

The following snippet creates a directory and shares that directory:

$path = 'C:\Temp\WmiPermissions'
New-Item $path -ItemType Directory

$params = @{
 ClassName = 'Win32_Share'
 MethodName = 'Create'
 Arguments = @{
 Name = 'WmiPerms'
 Path = $path
 Type = [UInt32]0
 }
}
Invoke-CimMethod @params

The Create method used here will fail if the argument for Type is not correctly defined as a UInt32 value. PowerShell will otherwise use Int32 for a value of 0.

The requirement for UInt32, in this case, may be viewed by exploring the parameters required for the method:

PS> (Get-CimClass Win32_Share).CimClassMethods['Create'].Parameters | Where-Object Name -eq Type

Name CimType Qualifiers ReferenceClassName
---- ------- ---------- ------------------
Type UInt32 {ID, In, MappingStrings}

 Getting a security descriptor

When Get-Acl is used, the object that it gets is a security descriptor. The security descriptor includes a set of control information (ownership, and so on), along with the discretionary and system access control lists.

The WMI class Win32_LogicalShareSecuritySetting is used to represent the security for each of the shares on a computer:

$security = Get-CimInstance Win32_LogicalShareSecuritySetting -Filter "Name='WmiPerms'"

The security settings object can be used to retrieve a security descriptor by calling the GetSecurityDescriptor method:

$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

The security descriptor held in the aclObject variable is very different from the result returned by Get-Acl:

PS> $aclObject

ControlFlags : 32772
DACL : {Win32_ACE}
Group :
Owner :
SACL :
TIME_CREATED :
PSComputerName :

The DACL, or discretionary access control list, is used to describe the permission levels for each security principal (a user, group, or computer account). Each entry in this list is an instance of Win32_ACE:

PS> $aclObject.DACL

AccessMask : 1179817
AceFlags : 0
AceType : 0
GuidInheritedObjectType :
GuidObjectType :
TIME_CREATED :
Trustee : Win32_Trustee
PSComputerName :

The Win32_ACE object has a Trustee property that holds the Name, Domain, and SID of the security principal (in this case, the Everyone principal):

PS> $aclObject.DACL.Trustee

Domain :
Name : Everyone
SID : {1, 1, 0, 0...}
SidLength : 12
SIDString : S-1-1-0
TIME_CREATED :
PSComputerName :

AceFlags describes how an ACE is to be inherited. As this is a share, the AceFlags property will always be 0. Nothing can, or will, inherit this entry; .NET can be used to confirm this:

PS> [System.Security.AccessControl.AceFlags]0
None

The AceType is either AccessAllowed (0) or AccessDenied (1). Again, .NET can be used to confirm this:

PS> [System.Security.AccessControl.AceType]0
AccessAllowed

Finally, the AccessMask property can be converted into a meaningful value with .NET, as well. The access rights that can be granted on a share are a subset of those that might be assigned to a file or directory:

PS> [System.Security.AccessControl.FileSystemRights]1179817
ReadAndExecute, Synchronize

Putting this together, the entries in a shared DACL can be made much easier to understand:

using namespace System.Security.AccessControl

$aclObject.DACL | ForEach-Object {
 [PSCustomObject]@{
 Rights = [FileSystemRights]$_.AccessMask
 Type = [AceType]$_.AceType
 Flags = [AceFlags]$_.AceFlags
 Identity = $_.Trustee.Name
 }
}

In the preceding example, the domain of the trustee is ignored. If this is something other than Everyone, it should be included.

 Adding an access control entry

To add an access control entry (ACE) to this existing list, an entry must be created. Creating an ACE requires a Win32_Trustee. The following trustee is created from the current user:

$trustee = New-CimInstance (Get-CimClass Win32_Trustee) -ClientOnly
$trustee.Domain = $env:USERDOMAIN
$trustee.Name = $env:USERNAME

The SID does not need to be set on the trustee object, but if the security principal is invalid, the attempt to apply the change to security will fail.

Then, the Win32_ACE can be created. The following ACE grants full control of the share to the trustee:

$ace = New-CimInstance (Get-CimClass Win32_ACE) -ClientOnly
$ace.AccessMask = [UInt32][FileSystemRights]'FullControl'
$ace.AceType = [UInt32][AceType]'AccessAllowed'
$ace.AceFlags = [UInt32]0
$ace.Trustee = $trustee

The ACE is added to the DACL by using the += operator:

$aclObject.DACL += $ace

 Setting the security descriptor

Once the ACL has been changed, the modified security descriptor must be set. The instance returned by Win32_LogicalShareSecuritySetting contains a SetSecurityDescriptor method:

$security | Invoke-CimMethod -MethodName SetSecurityDescriptor -Arguments @{
 Descriptor = $aclObject
}

 WMI permissions

Getting and setting WMI security in PowerShell uses the same approach as share security. WMI permissions might be set using wmimgmt.msc if the GUI is used. The content of the DACL differs slightly.

The __SystemSecurity class is used to access the security descriptor. Each WMI namespace has its own instance of the __SystemSecurity class; an example is as follows:

Get-CimClass __SystemSecurity -Namespace root
Get-CimClass __SystemSecurity -Namespace root\cimv2

 Getting a security descriptor

The security descriptor for a given namespace can be retrieved from the __SystemSecurity class. By default, administrator privileges are required to get the security descriptor:

$security = Get-CimInstance __SystemSecurity -Namespace root\cimv2
$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

 The access mask

The values of the access mask in the DACL are documented on MSDN: https://msdn.microsoft.com/en-us/library/aa392710(v=vs.85).aspx.

The standard access rights ReadSecurity and WriteSecurity are also relevant. The access mask is a composite of the values listed here:

	EnableAccount: 1

	ExecuteMethods: 2

	FullWrite: 4

	PartialWrite: 8

	WriteProvider: 16

	RemoteEnable: 32

	ReadSecurity: 131072

	WriteSecurity: 262144

 WMI and SDDL

Security descriptor definition language (SDDL) is used to describe the content of a security descriptor as a string.

A security descriptor returned by Get-Acl has a method that can convert the entire security descriptor to a string, as follows:

PS> (Get-Acl C:\).GetSecurityDescriptorSddlForm('All')
O:S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464G:S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464D:PAI(A;;LC;;;AU)(A;OICIIO;SDGXGWGR;;;AU)(A;;FA;
;;SY)(A;OICIIO;GA;;;SY)(A;OICIIO;GA;;;BA)(A;;FA;;;BA)(A;OICI;0x1200a9;;;BU)

A security descriptor defined using SDDL can also be imported. If the sddlString variable is assumed to hold a valid security descriptor, the following command might be used:

$acl = Get-Acl C:\
$acl.SetSecurityDescriptorSddlForm($sddlString)

The imported security descriptor will not apply to the directory until Set-Acl is used.

WMI security descriptors can be converted to and from different formats, including SDDL. WMI has a specialized class for this: Win32_SecurityDescriptorHelper. The methods for the class are shown here:

PS> (Get-CimClass Win32_SecurityDescriptorHelper).CimClassMethods

Name ReturnType Parameters Qualifiers
---- ---------- ---------- ----------
Win32SDToSDDL UInt32 {Descriptor, SDDL} {implemented, static}
Win32SDToBinarySD UInt32 {Descriptor, BinarySD} {implemented, static}
SDDLToWin32SD UInt32 {SDDL, Descriptor} {implemented, static}
SDDLToBinarySD UInt32 {SDDL, BinarySD} {implemented, static}
BinarySDToWin32SD UInt32 {BinarySD, Descriptor} {implemented, static}
BinarySDToSDDL UInt32 {BinarySD, SDDL} {implemented, static}

A WMI security descriptor might be converted to SDDL to create a backup before making a change, as follows:

$security = Get-CimInstance __SystemSecurity -Namespace root\cimv2
$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

$params = @{
 ClassName = 'Win32_SecurityDescriptorHelper'
 MethodName = 'Win32SDToSDDL'
 Arguments = @{
 Descriptor = $aclObject
 }
}
$return = Invoke-CimMethod @params

If the operation succeeds (that is, if the ReturnValue is 0), the security descriptor in the SDDL form will be available:

PS> $return.SDDL
O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(A;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP;;;AU)

A security descriptor expressed as an SDDL string can be imported:

$params = @{
 ClassName = 'Win32_SecurityDescriptorHelper'
 MethodName = 'SDDLToWin32SD'
 Arguments = @{
 SDDL = 'O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(A;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP;;;AU)'
 }
}
$return = Invoke-CimMethod @params
$aclObject = $return.Descriptor

If the ReturnValue is 0, the aclObject variable will contain the imported security descriptor:

PS> $aclObject

ControlFlags : 33028
DACL : {Win32_ACE, Win32_ACE, Win32_ACE, Win32_ACE...}
Group : Win32_Trustee
Owner : Win32_Trustee
SACL :
TIME_CREATED :
PSComputerName :

 Summary

In this chapter, we explored working with WMI classes, the different commands that are available, and the WMI query language. Both the CIM and WMI cmdlets were explored as a means of working with WMI. We explored getting and setting permissions with WMI, using shared security and WMI security as examples.

Chapter 12, HTML, XML, and JSON, will explore working with generating and consuming data from a variety of different text-based formats.

 HTML, XML, and JSON

PowerShell has a number of commands for working with HTML, XML, and JavaScript Object Notation (JSON). These commands, combined with some of the available .NET classes, provide a rich set of tools for creating or modifying these formats.

In this chapter, the following topics will be covered:

	HTML

	XML

	System.Xml

	System.Xml.Linq

	JSON

 HTML

HTML is frequently used in PowerShell as a means of generating reports by email. PowerShell includes ConvertTo-Html, which may be used to generate HTML content.

 ConvertTo-Html

ConvertTo-Html generates an HTML document with a table based on an input object. The following example generates a table based on the output from Get-Process:

Get-Process | ConvertTo-Html -Property Name, Id, WorkingSet

 Multiple tables

ConvertTo-Html may be used to build more complex documents by using the Fragment parameter. The Fragment parameter generates an HTML table only (instead of a full document). Tables may be combined to create a larger document:

Create the body
$body = '<h1>Services</h1>'
$body += Get-Service |
 Where-Object Status -eq 'Running' |
 ConvertTo-Html -Property Name, DisplayName -Fragment
$body += '<h1>Processes</h1>'
$body += Get-Process |
 Where-Object WorkingSet -gt 50MB |
 ConvertTo-Html -Property Name, Id, WorkingSet-Fragment
Create a document with the merged body
ConvertTo-Html -Body $body -Title Report | Set-Content report.html

 Adding style

HTML content can be enhanced by adding a Cascading Style Sheet (CSS) fragment. When CSS is embedded in an HTML document, it is added between style tags in the head element.

The following style uses CSS to change the font, color the table headers, define the table borders, and justify the table content:

$css = @'
<style>
 body { font-family: Arial; }
 table {
 width: 100%;
 border-collapse: collapse;
 }
 table, th, td {
 border: 1px solid Black;
 padding: 5px;
 }
 th {
 text-align: left;
 background-color: LightBlue;
 }
 tr:nth-child(even) {
 background-color: GainsBoro;
 }
</style>
'@

The Head parameter of ConvertTo-Html is used to add the element to the document:

Get-Process |
 ConvertTo-Html -Property Name, Id, WorkingSet -Head $css |
 Set-Content report.html

The CSS language is complex and very capable. The elements that are used in the preceding code, and many more, are documented with examples on the W3schools website: https://www.w3schools.com/css/.

Different browsers support different parts of the CSS language, and email clients tend to support a smaller set still. Testing in the expected client is an important part of developing content.

ConvertTo-Html and Send-MailMessage

ConvertTo-Html outputs an array of strings, while Send-MailMessage will only accept a body as a string. Attempting to use the output from ConvertTo-Html with Send-MailMessage directly will raise an error.

The Out-String command may be added to ensure the output from ConvertTo-Html is a string:

$messageBody = Get-Process |

 ConvertTo-Html Name, Id, WorkingSet -Head $css |

 Out-String

 HTML and special characters

HTML defines a number of special characters; for example, a literal ampersand (&) in HTML must be written as &.

ConvertTo-Html will handle the conversion of special characters in input objects, but it will not work with special characters in raw HTML that are added using the Body, Head, PreContent, or PostContent parameters.

The Sytem.Web.HttpUtility class includes methods that are able to convert strings containing such characters.

Before System.Web.HttpUtility can be used, the assembly must be added:

Add-Type -AssemblyName System.Web

The HtmlEncode static method will take a string and replace any reserved characters with HTML code. For example, the following snippet will replace > with >:

PS>'<h1>{0}</h1>' -f [System.Web.HttpUtility]::HtmlEncode('Files > 100MB')
<h1>Files > 100MB</h1>

The HtmlDecode static method can be used to reverse the process:

PS> [System.Web.HttpUtility]::HtmlDecode("<h1>Files > 100MB</h1>")
<h1>Files > 100MB</h1>

 XML

Extensible Markup Language (XML) is a plain text format that's used to store structured data. XML is written to be both human and machine readable.

XML documents often begin with a declaration, as shown here:

<?xml version="1.0"?>

This declaration has three possible attributes. The version attribute is mandatory when a declaration is included:

	version: The XML version, 1.0 or 1.1

	encoding: The file encoding, most frequently utf-8 or utf-16

	standalone: Whether or not the XML file uses an internal or external Document Type Definition (DTD); permissible values are yes or no

 Elements and attributes

XML is similar in appearance to HTML. Elements begin and end with a tag name. The tag name describes the name of an element, for example:

<?xml version="1.0"?>
<rootElement>value</rootElement>

An XML document can only have one root element, but an element may have many descendants:

<?xml version="1.0"?>
<rootElement>
 <firstChild>1</firstChild>
 <secondChild>2</secondChild>
</rootElement>

An element may also have attributes. The rootElement element in the following example has an attribute named attr:

<?xml version="1.0"?>
<rootElement attr="value">
 <child>1</child>
</rootElement>

 Namespaces

XML documents can use one or more namespaces, which can be used to provide uniquely named elements within a document.

XML namespaces are declared in an attribute with a name prefixed by xmlns:, for example:

<?xml version="1.0"?>
<rootElement xmlns:item="http://namespaces/item">
 <item:child>1</item:child>
</rootElement>

The XML namespace uses a URL as a unique identifier. The identifier is often used to describe an element as belonging to a schema.

 Schemas

An XML schema can be used to describe and constrain the elements, attributes, and values within an XML document.

About DTD

 A document type definition, or DTD, may be used to constrain the content of an XML file. As a DTD has little bearing on the use of XML in PowerShell, it is considered beyond the scope of this book.

XML schema definitions are saved with an XSD extension. Schema files can be used to validate the content of an XML file.

The following is a simple schema that validates the item namespace:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces/item"
 xmlns="https://www.w3schools.com"
 elementFormDefault="qualified">
 <xs:element name="rootElement">
 <xs:element name="child" type="xs:string" />
 </xs:element>
</xs:schema>

 System.Xml

PowerShell primarily uses the System.Xml.XmlDocument type to work with XML content. A number of commands are available to work with XML documents based on this type.

 ConvertTo-Xml

The ConvertTo-XML command creates an XML representation of an object as an XmlDocument. For example, the current PowerShell process object might be converted into XML:

Get-Process -Id $pid | ConvertTo-Xml

XML is text

 The command that we used in the previous code creates an XML representation of the object. All numeric values are stored as strings. The following example shows that the WorkingSet property, normally an integer, is held as a string:

$xml = Get-Process -Id $pid | ConvertTo-Xml

$property = $xml.Objects.Object.Property | Where-Object Name -eq WorkingSet

$property.'#text'.GetType()

 XML type accelerator

The XML type accelerator ([Xml]) can be used to create instances of XmlDocument, as shown in the following code:

[Xml]$xml = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>
 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@

Elements and attributes of an XmlDocument object may be accessed as if they were properties. This is a feature of the PowerShell language rather than the .NET object:

PS> $xml.cars.car

type : Saloon
colour : Green
doors : 4
transmission : Automatic
engine : engine

If the document contains more than one car element, each of the instances will be returned.

 XPath and Select-Xml

XPath can be used to navigate or search an XML document. PowerShell (and .NET) uses XPath 1.0.

The structure and format of XPath queries are beyond the scope of this chapter. However, a number of web resources are available, including https://msdn.microsoft.com/en-us/library/ms256115(v=vs.110).aspx.

Terms and values used in XPath queries, and XML in general, are case-sensitive.

Given the following XML snippet, Select-Xml might use an XPath expression to select the engines of green cars:

$string = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>
 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@

The -XPath expression and the result are shown here:

PS> Select-Xml -XPath '//car[colour="Green"]/engine' -Content $string |
 Select-Object -ExpandProperty Node

size cylinders
---- ---------
2.0 4

A similar result can be achieved using the SelectNodes method of an XML document:

([Xml]$string).SelectNodes('//car[colour="Green"]/engine')

Select-Xml has an advantage, in that it can be used to work against files directly using the Path parameter:

SelectNodes and XPathNodeList

 If the SelectNodes method is called, and there are no results, an empty XPathNodeList object is returned. The following condition is flawed:

$nodes = $xml.SelectNodes('//car[colour="Blue"]')

if ($nodes) {

 Write-Host "A blue car record exists"

}

In this case, using the Count property is a better approach:

if ($nodes.Count -gt 1) {

 Write-Host "A blue car record exists"

}

If the search is only concerned with the first matching entry, or the search always returns a unique result, the SelectSingleNode method can be used instead.

 Working with namespaces

If an XML document includes a namespace, then queries for elements within the document are more difficult. Not only must the namespace tag be included, but XmlNamespaceManager must be defined.

Select-Xml builds a namespace manager based on the content of a hashtable when the Namespace parameter is used:

[Xml]$xml = @"
<?xml version="1.0"?>
<cars xmlns:c="http://example/cars">
 <car type="Saloon">
 <c:colour>Green</c:colour>
 <c:doors>4</c:doors>
 <c:transmission>Automatic</c:transmission>
 <c:engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </c:engine>
 </car>
</cars>
"@
Select-Xml '//car/c:engine' -Namespace @{c='http://example/cars'} -Xml $xml

If the SelectNodes method is being used, XmlNamespaceManager must be built first and passed as an argument:

$namespaceManager = New-Object System.Xml.XmlNamespaceManager($xml.NameTable)
$namespaceManager.AddNamespace('c', 'http://example/cars')
$xml.SelectNodes(
 '//car[c:colour="Green"]/c:engine',
 $namespaceManager
)

XML documents, such as group policy reports, are difficult to work with as they often contain many different namespaces. Each of the possible namespaces must be added to a namespace manager.

 Creating documents

PowerShell can be used to create XML documents from scratch. One possible way to do this is by using the XmlWriter class:

$writer = [System.Xml.XmlWriter]::Create("$pwd\newfile.xml")
$writer.WriteStartDocument()
$writer.WriteStartElement('cars')
$writer.WriteStartElement('car')
$writer.WriteAttributeString('type', 'Saloon')
$writer.WriteElementString('colour', 'Green')
$writer.WriteEndElement()
$writer.WriteEndElement()
$writer.Flush()
$writer.Close()

Elements opened by WriteStartElement must be closed to maintain a consistent document.

The XmlWriter class is a buffered writer. The Flush method is called at the end to push the content of the buffer back to the file.

The format of generated XML can be changed by supplying an XmlWriterSettings object when calling the Create method. For example, it might be desirable to write line breaks and indent elements, as shown in the following example:

$writerSettings = New-Object System.Xml.XmlWriterSettings
$writerSettings.Indent = $true
$writer = [System.Xml.XmlWriter]::Create(
 "$pwd\newfile.xml",
 $writerSettings
)
$writer.WriteStartDocument()
$writer.WriteStartElement('cars')
$writer.WriteStartElement('car')
$writer.WriteAttributeString('type', 'Saloon')
$writer.WriteElementString('colour', 'Green')
$writer.WriteEndElement()
$writer.WriteEndElement()
$writer.Flush()
$writer.Close()

 Modifying element and attribute values

Existing elements in an XML document can be modified by assigning a new value. For example, the misspelling of Appliances could be corrected:

[Xml]$xml = @"
<?xml version="1.0"?>
<items>
 <item name='Fridge'>
 <category>Appliancse</category>
 </item>
 <item name='Cooker'>
 <category>Appliances</category>
 </item>
</items>
"@
($xml.items.item | Where-Object name -eq 'Fridge').category = 'Appliances'

Attributes may be changed in the same way; the interface does not distinguish between the two value types.

A direct assignment of a new value cannot be used if the XML document contains more than one element or attribute with the same name (at the same level). For example, the following XML snippet has two values with the same name:

[Xml]$xml = @"
<?xml version="1.0"?>
<list>
 <name>one</name>
 <name>two</name>
</list>
"@

The first value may be changed if it is uniquely identified and selected:

$xml.list.SelectSingleNode('./name[.="one"]').'#text' = 'three'

The following example shows a similar change being made to the value of an attribute:

[Xml]$xml = @"
<?xml version="1.0"?>
<list name='letters'>
<name>1</name>
</list>
"@
$xml.SelectSingleNode('/list[@name="letters"]').SetAttribute('name', 'numbers')

The @ symbol preceding name in the XPath expression denotes that the value type is an attribute. If the attribute referred to by the SetAttribute method does not exist, it will be created.

 Adding elements

Elements must be created before they can be added to an existing document. Elements are created in the context of a document:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
$newElement = $xml.CreateElement('name')
$newElement.InnerText = 2
$xml.list.AppendChild($newElement)

Complex elements may be built up by repeatedly using the Create method of the XmlDocument (held in the $xml variable).

If the new node is substantial, it may be easier to treat the new node set as a separate document and merge one into the other.

 Copying nodes between documents

Nodes (elements, attributes, and so on) may be copied and moved between different XML documents. To bring a node from an external document into another, it must first be imported.

The following example creates two simple XML documents. The first (the xml variable) is the intended destination. The newNodes variable contains a set of elements that should be copied:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
[Xml]$newNodes = @"
<root>
 <name>2</name>
 <name>3</name>
 <name>4</name>
</root>
"@

Copying the name nodes requires each node to be selected in turn, imported into the original document, and added to the desired node:

foreach ($node in $newNodes.SelectNodes('/root/name')) {
 $newNode = $xml.ImportNode($node, $true)
 $null = $xml.list.AppendChild($newNode)
}

The ImportNode method requires two parameters: the node from the foreign document (newNodes) and whether or not the import is deep (one level or fully recursive).

The resulting XML can be viewed by inspecting the OuterXml property of the xml variable:

PS> $xml.OuterXml
<?xml version="1.0"?><list type="numbers"><name>1</name><name>2</name><name>3</name><name>4</name></list>

 Removing elements and attributes

Elements may be removed from a document by selecting the node, then calling the RemoveChild method on the parent:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>
"@
$node = $xml.SelectSingleNode('/list/*[.="3"]')
$null = $node.ParentNode.RemoveChild($node)

The RemoveAll method is also available; however, this removes all children (and attributes) of the selected node.

Attributes are also easy to remove from a document:

$xml.list.RemoveAttribute('type')

 Schema validation

XML documents that reference a schema can be validated.

.NET Core and schema validation

 .NET Core appears to be unwilling to expand include references in an XML schema. This apparent bug is exhibited in PowerShell Core. Windows PowerShell will produce schema validation errors; PowerShell Core will not at this time.

Windows PowerShell comes with a number of XML files with associated schema in the help files. For example, the help file for ISE is available:

PS> Get-Item C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-help.xml

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 29/11/16 07:57 33969 ISE-help.xml

The schema documents used by the help content are saved in C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml.

The following snippet may be used to load the schema files and then test the content of the document:

$path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-help.xml'

$document = [Xml]::new()
$document.Load($path)

Add the schema to the XmlDocument
$document.Schemas.Add(
 'http://schemas.microsoft.com/maml/2004/10',
 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'
)

Validate the document
$ErrorsAndWarnings = [System.Collections.Generic.List[String]]::new()
$document.Validate({
 param ($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {
 $Global:ErrorsAndWarnings.Add($eventArgs.Message)
 }
})

The argument for Validate is a script block that is executed each time an error is encountered. Write-Host is used to print a message to the console. A value cannot be directly returned as the script block is executed in the background.

Line number and line position information is not available using this technique for a number of reasons. The XmlDocument object is built from a string (returned by Get-Content) and not attached to the file.

 System.Xml.Linq

The System.Xml.Linq namespace was added with .NET 3.5. This is known as LINQ to XML. Language Integrated Query (LINQ) is used to describe a query in the same language as the rest of a program. Therefore, interacting with a complex XML document does not require the use of XPath queries.

System.Xml.Linq is loaded by default in PowerShell Core. Windows PowerShell can make use of System.Xml.Linq once the required assembly has been added:

Add-Type -AssemblyName System.Xml.Linq

This can also be phrased as follows:

using assembly System.Xml.Linq

As a newer interface, System.Xml.Linq tends to be more consistent. The same syntax is used to create a document from scratch that is used to add elements and so on.

 Opening documents

The XDocument class is used to load or parse a document. XML content may be cast to an XDocument in the same way that content is cast using the [Xml] type accelerator:

[System.Xml.Linq.XDocument]$xDocument = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>
 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@
$xDocument.Save("$pwd\cars.xml")

If the content has been saved to a file, the Load method may be used with a filename:

$xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")

 Selecting nodes

LINQ to XML uses PowerShell to query the content of XML files. This is achieved by combining the methods that are made available through an XDocument (or XContainer or XElement). Methods are available to find attributes and elements, either as immediate children or deeper within a document:

$xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")
$xDocument.Descendants('car').
 Where({ $_.Element('colour').Value -eq 'Green' }).
 Element('engine')

The XML-specific methods are supplemented by .Linq extension methods, such as the Where method, to filter content.

As the query a script block encapsulated by the Where method—is native PowerShell, the comparison operation (-eq) is case insensitive. The selection of the element by name is case-sensitive.

Although it is not the preferred approach, XPath can still be used by calling the XPathSelectElements static method, as shown here:

[System.Xml.XPath.Extensions]::XPathSelectElements(
 $xDocument,
 '//car[colour="Green"]/engine'
)

 Creating documents

System.Xml.Linq can be used to create a document from scratch, for example:

using namespace System.Xml.Linq

$xDocument = [XDocument]::new(
 [XDeclaration]::new('1.0', 'utf-8', 'yes'),
 [XElement]::new('list', @(
 [XAttribute]::new('type', 'numbers'),
 [XElement]::new('name', 1),
 [XElement]::new('name', 2),
 [XElement]::new('name', 3)
))
)

Converting the xDocument object into a string shows the document without the declaration:

PS> $xDocument.ToString()

<list type="numbers">
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>

The Save method may be used to write the document to a file:

$xDocument.Save("$pwd\test.xml")

Reviewing the document shows the declaration:

PS> Get-Content test.xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<list type="numbers">
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>

 Working with namespaces

LINQ to XML handles the specification of namespaces by adding an XNamespace object to an XName object, for example:

PS> [XNameSpace]'http://example/cars' + [XName]'engine'

LocalName Namespace NamespaceName
--------- --------- -------------
engine http://example/cars http://example/cars

As XNamespace expects to have an XName added to it, casting to that type can be skipped, simplifying the expression:

[XNamespace]'http://example/cars' + 'engine'

A query for an element in a specific namespace will use the following format:

using namespace System.Xml.Linq

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<cars xmlns:c="http://example/cars">
 <car type="Saloon">
 <c:colour>Green</c:colour>
 <c:doors>4</c:doors>
 <c:transmission>Automatic</c:transmission>
 <c:engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </c:engine>
 </car>
</cars>
"@

$xNScars = [XNameSpace]'http://example/cars'
$xDocument.Descendants('car').ForEach({
 $_.Element($xNScars + 'engine')
})

 Modifying element and attribute values

Modifying an existing node, whether it is an attribute or an element value, can be done by assigning a new value:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<items>
 <item name='Fridge'>
 <category>Appliancse</category>
 </item>
 <item name='Cooker'>
 <category>Appliances</category>
 </item>
</items>
"@

$xDocument.Element('items').
 Elements('item').
 Where({ $_.Attribute('name').Value -eq 'Fridge' }).
 ForEach({ $_.Element('category').Value = 'Appliances' })

Modifying the value of an attribute uses the same syntax:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list name='letters'>
 <name>1</name>
</list>
"@
$xDocument.Element('list').Attribute('name').Value = 'numbers'

If the attribute does not exist, an error will be thrown:

PS> $xDocument.Element('list').Attribute('other').Value = 'numbers'

The property 'Value' cannot be found on this object. Verify that the property exists and can be set.
At line:1 char:1
+ $xDocument.Element('list').Attribute('other').Value = 'numbers'
+ ~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId :PropertyNotFound

 Adding nodes

Nodes can be added by using the Add methods, which include Add, AddAfterSelf, AddBeforeSelf, and AddFirst, for example:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
$xDocument.Element('list').
 Element('name').
 AddAfterSelf(@(
 [XElement]::new('name', 2),
 [XElement]::new('name', 3),
 [XElement]::new('name', 4)
))

The different Add methods afford a great deal of flexibility over the content of a document; in this case, the new elements appear after the <name>1</name> element.

 Removing nodes

The Remove method of XElement or XAttribute is used to remove the current node.

In the following example, the first name element is removed from the document:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>
"@
$xDocument.Element('list').FirstNode.Remove()

 Schema validation

LINQ to XML can be used to validate an XML document against a schema file.

.NET Core and schema validation

.NET Core appears to be unwilling to expand include references in an XML schema. This apparent bug is exhibited in PowerShell Core. Windows PowerShell will produce schema validation errors; PowerShell Core will not at this time.

The ISE-help.xml XML document is validated against its schema in the following example:

using namespace System.Xml.Linq

$path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\PSISE-help.xml'
$xDocument = [XDocument]::Load(
 $path,
 [LoadOptions]::SetLineInfo
)

$xmlSchemaSet = [System.Xml.Schema.XmlSchemaSet]::new()
$null = $xmlSchemaSet.Add(
 'http://schemas.microsoft.com/maml/2004/10',
 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'
)
[System.Xml.Schema.Extensions]::Validate(
 $xDocument,
 $xmlSchemaSet,
 {
 param($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {
 Write-Host $eventArgs.Message
 Write-Host (' At {0} column {1}' -f
 $sender.LineNumber,
 $sender.LinePosition
)
 }
 }
)

Positional information is made available by loading XDocument with the SetLineInfo option.

 JSON

JSON is similar to XML in some respects. It is intended to be both human and machine readable, and is written in plain text.

Very similar to a hashtable, JSON-formatted objects are made up of key and value pairs, for example:

{
 "key1": "value1",
 "key2": "value2"
}

 ConvertTo-Json

The ConvertTo-Json command can be used to convert a PowerShell object (or hashtable) into JSON:

PS> Get-Process -Id $PID |
 Select-Object Name, Id, Path |
 ConvertTo-Json

{
 "Name": "powershell_ise",
 "Id": 3944,
 "Path": "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell_ise.exe"
}

By default, ConvertTo-Json will convert objects into a depth of two. Running the following code will show how the value for three is simplified as a string:

@{
 one = @{ # 1st iteration
 two = @{ # 2nd iteration
 three = @{
 four = 'value'
 }
 }
 }
} | ConvertTo-Json

The three property is present, but the value is listed as System.Collections.Hashtable, as acquiring the value would need a third iteration. Setting the value of the Depth parameter to three allows ConvertTo-Json to fully inspect the properties of three.

Going too deep

 JSON serialization is a recursive operation. The depth may be increased, which is useful when converting a complex object.

Some value types may cause ConvertTo-Json to apparently hang. This is caused by the complexity of those value types. Such value types may include circular references.

A ScriptBlock object, for example, cannot be effectively serialized as JSON. The following command takes over 15 seconds to complete and results in a string that's over 50 million characters long:

Measure-Command { { 'ScriptBlock' } | ConvertTo-Json -Depth 6 -Compress }

Increasing the recursion depth to 7 results in an error as keys (property names) begin to duplicate.

 ConvertFrom-Json

The ConvertFrom-Json command is used to turn a JSON document into an object, for example:

'{ "Property": "Value" }' | ConvertFrom-Json

ConvertFrom-Json creates a PSCustomObject.

JSON understands a number of different data types, and each of these types is converted into an equivalent .NET type. The following example shows how each different type might be represented:

$object = @"
{
 "Decimal": 1.23,
 "String": "string",
 "Int32": 1,
 "Int64": 2147483648,
 "Boolean": true
}
"@ | ConvertFrom-Json

Inspecting individual elements after conversion reflects the type, as demonstrated in the following example:

PS> $object.Int64.GetType()
PS> $object.Boolean.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int64 System.ValueType
True True Boolean System.ValueType

JSON serialization within PowerShell is useful, but it is not perfect. For example, consider the result of converting Get-Date:

PS> Get-Date | ConvertTo-Json
{
 "value": "\/Date(1489321529249)\/",
 "DisplayHint": 2,
 "DateTime": "12 March 2017 12:25:29"
}

The value includes a DisplayHintNoteProperty and a DateTimeScriptProperty, added to the DateTime object. These add an extra layer of properties when converting back from JSON:

PS> Get-Date | ConvertTo-Json | ConvertFrom-Json

value DisplayHint DateTime ----- ----------- -------- 12/03/2017 12:27:25 2 12 March 2017 12:27:25

The DateTime property can be removed using the following code:

Get-TypeData System.DateTime | Remove-TypeData

Dates without type data

 Get-Date will appear to return nothing after running the previous command. The date is still present; this is an aesthetic problem only. Without the type data, PowerShell does not know how to display the date, which is ordinarily composed as follows:

 $date = Get-Date

'{0} {1}' -f $date.ToLongDateString(), $date.ToLongTimeString()

DisplayHint is added by Get-Date, and therefore the command cannot be used in this context.

Any extraneous members such as this would have to be tested for invalid members prior to conversion, which makes the solution more of a problem:

PS> Get-TypeData System.DateTime | Remove-TypeData
PS> [DateTime]::Now | ConvertTo-Json | ConvertFrom-Json | Select-Object *

Date : 12/03/2017 00:00:00
Day : 12
DayOfWeek : Sunday
DayOfYear : 71
Hour : 12
Kind : Utc
Millisecond : 58
Minute : 32
Month : 3
Second : 41
Ticks : 636249187610580000
TimeOfDay : 12:32:41.0580000
Year : 2017

 Summary

This chapter took a brief look at working with HTML content, and how HTML content is formatted.

Working with XML content is a common requirement. This chapter introduced the structure of XML, along with two different approaches to working with XML.

Finally, JSON serialization was introduced, along with the ConvertTo-Json and ConvertFrom-Json commands.

Chapter 13, Web Requests and Web Services, explores working with Representational State Transfer (REST) and Simple Object Access Protocol (SOAP)-based web services in PowerShell.

 Web Requests and Web Services

Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) are often used as labels to refer two different approaches to implementing a web-based Application Programming Interface (API).

The growth of cloud-based services in recent years has pushed the chances of working with such interfaces from rare to almost certain.

In this chapter, we are going to cover the following topics:

	Web requests

	Working with REST

	Working with SOAP

SOAP interfaces typically use the New-WebServiceProxy command in Windows PowerShell. This command is not available in PowerShell Core as the assembly it depends on is not available. The command is unlikely to be available in PowerShell Core unless it is rewritten.

 Technical requirements

In addition to PowerShell and PowerShell Core, Visual Studio 2015 or 2017 Community Edition or better is required to use the SOAP service example.

 Web requests

A background in web requests is valuable before delving into interfaces that run over the top of Hyper-Text Transfer Protocol (HTTP).

PowerShell can use Invoke-WebRequest to send HTTP requests. For example, the following command will return the response to a GET request for the Hey, Scripting Guy blog:

Invoke-WebRequest https://blogs.technet.microsoft.com/heyscriptingguy/ -UseBasicParsing

Parsing requires Internet Explorer

In Windows PowerShell, UseBasicParsing was an important parameter. Use was mandatory when working on Core installations of Windows server as Internet Explorer is not installed. It was also often used to improve the performance of the command where parsing was not actually required.

In PowerShell Core, all requests use basic parsing. The parameter is deprecated and present to support backward compatibility only. The parameter does not affect the output of the command.

 HTTP methods

HTTP supports a number of different methods, including the following:

	GET

	HEAD

	POST

	PUT

	DELETE

	CONNECT

	OPTIONS

	TRACE

	PATCH

These methods are defined in the HTTP 1.1 specification: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

It is common to find that a web server only supports a subset of these. In many cases, supporting too many methods is deemed to be a security risk. The Invoke-WebRequest command can be used to verify the list of HTTP methods supported by a site, for example:

PS> Invoke-WebRequest www.indented.co.uk -Method OPTIONS |
>> Select-Object -ExpandProperty Headers

Key Value
--- -----
Allow GET, HEAD

 HTTPS

If a connection to a web service uses HTTPS (HTTP over Secure Sockets Layer (SSL)), the certificate must be validated before a connection can complete and a request can be completed. If a web service has an invalid certificate, an error will be returned.

How PowerShell reacts to different scenarios can be tested. The badssl site can be used to test how PowerShell might react to different SSL scenarios: https://badssl.com/.

For example, when attempting to connect to a site with an expired certificate (using Invoke-WebRequest), the following message will be displayed in Windows PowerShell:

PS> Invoke-WebRequest https://expired.badssl.com/

Invoke-WebRequest : The underlying connection was closed: Could not establish trust relationship for the SSL/TLS secure channel.
At line:1 char:1
+ Invoke-WebRequest https://expired.badssl.com/
+ ~~~
 + CategoryInfo : InvalidOperation: (System.Net.HttpWebRequest:HttpWebRequest) [Invoke-WebRequest], WebException
 + FullyQualifiedErrorId : WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeWebRequestCommand

In PowerShell Core, this message changes to The remote certificate is invalid according to the validation procedure.

In Windows PowerShell, Invoke-WebRequest cannot bypass or ignore an invalid certificate on its own (using a parameter). Certificate validation behavior may be changed by adjusting the CertificatePolicy on the ServicePointManager: https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx.

In PowerShell Core, Invoke-WebRequest has a new parameter allowing certificate errors to be ignored, as shown here:

Invoke-WebRequest https://expired.badssl.com/ -SkipCertificateCheck

Chain of trust

Certificates are based on a chain of trust. Authorities are trusted to carry out sufficient checks to prove the identity of the certificate holder. Skipping certificate validation is insecure and should only be used against known hosts which can be trusted.

 Bypassing SSL errors in Windows PowerShell

If a service has an invalid certificate, the best response is to fix the problem. When it is not possible or practical to address the real problem, a workaround can be created.

The approach described here applies to Windows PowerShell only. PowerShell Core does not include the ICertificatePolicy type.

This modification applies to the current PowerShell session and will reset to default behavior every time a new PowerShell session is opened.

The certificate policy used by the ServicePointManager may be replaced with a customized handler by writing a class (PowerShell, version 5) that replaces the CheckValidationResult method:

Class AcceptAllPolicy: System.Net.ICertificatePolicy {
 [Boolean] CheckValidationResult(
 [System.Net.ServicePoint] $servicePoint,
 [System.Security.Cryptography.X509Certificates.X509Certificate] $certificate,
 [System.Net.WebRequest] $webRequest,
 [Int32] $problem
) {
 return $true
 }
}
[System.Net.ServicePointManager]::CertificatePolicy = [AcceptAllPolicy]::new()

Once the policy is in place, certificate errors will be ignored as the previous method returns true no matter its state:

PS> Invoke-WebRequest "https://expired.badssl.com/"

StatusCode : 200
StatusDescription : OK
...

CertificatePolicy is obsolete

The CertificatePolicy property is marked as obsolete in the documentation on MSDN.

Until recently, adjusting ServerCertificateValidationCallback was sufficient. However, with PowerShell 5 this appears to only fix part of the problem for Invoke-WebRequest.

Requests made by System.Net.WebClient in Windows PowerShell are satisfied by this simpler approach, which trusts all certificates:

[System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }

This approach is not feasible with PowerShell Core. Requests made using WebClient may either by replaced by Invoke-WebRequest or the HttpClient.

 Capturing SSL errors

The ServerCertificateValidationCallback property of ServicePointManager does not work as expected in PowerShell Core. Attempts to assign and use a script block may result in an error being displayed, as shown here, when making a web request:

PS> [System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }
PS> [System.Net.WebClient]::new().DownloadString('https://expired.badssl.com/')
Exception calling "DownloadString" with "1" argument(s): "The SSL connection could not be established, see inner exception. There is no Runspace available to run scripts in this thread. You can provide one in the DefaultRunspace property of the System.Management.Automation.Runspaces.Runspace type. The script block you attempted to invoke was: $true "
At line:1 char:1
+ [System.Net.WebClient]::new().DownloadString('https://expired.badssl. ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [], MethodInvocationException
+ FullyQualifiedErrorId : WebException

The SslStream type (System.Net.Security.SslStream) offers a potential alternative for capturing detailed certificate validation information. The method used in the following example works in both Windows PowerShell and PowerShell Core.

This example converts certificate validation information using Export-CliXml. Assigning the parameters to a global variable is possible, but certain information is discarded when the callback ends, including the elements of the certificate chain:

$remoteCertificateValidationCallback = {
 param (
 [Object]$sender,
 [System.Security.Cryptography.X509Certificates.X509Certificate2]$certificate,
 [System.Security.Cryptography.X509Certificates.X509Chain]$chain,
 [System.Net.Security.SslPolicyErrors]$sslPolicyErrors
)

 $psboundparameters | Export-CliXml C:\temp\CertValidation.xml
 # Always indicate SSL negotiation was successful
 $true
}

try {
 [Uri]$uri = 'https://expired.badssl.com/'

 $tcpClient = [System.Net.Sockets.TcpClient]::new()
 $tcpClient.Connect($Uri.Host, $Uri.Port)
 $sslStream = [System.Net.Security.SslStream]::new(
 $tcpClient.GetStream(),
 $false, # leaveInnerStreamOpen: Close the inner stream when complete
 $remoteCertificateValidationCallback
)
 $sslStream.AuthenticateAsClient($Uri.Host)
} catch {
 throw
} finally {
 if ($tcpClient.Connected) {
 $tcpClient.Close()
 }
}

$certValidation = Import-CliXml C:\temp\CertValidation.xml

Once the content of the XML file has been loaded, the content may be investigated. For example, the certificate that was exchanged can be viewed:

$certValidation.Certificate

Or, the response can be used to inspect all of the certificates in the key chain:

$certValidation.Chain.ChainElements | Select-Object -ExpandProperty Certificate

The ChainStatus property exposes details of any errors during chain validation:

$certValidation.Chain.ChainStatus

ChainStatus is summarized by the SslPolicyErrors property.

Removing the policy

PowerShell should be restarted to reset the certificate policies to system defaults.

 Working with REST

REST is a compliant web service that allows a client to interact with the service using a set of predefined stateless operations. REST is not a protocol, it is an architectural style.

Whether or not an interface is truly REST compliant is not particularly relevant when the goal is to use one in PowerShell. Interfaces must be used according to any documentation that has been published.

 Invoke-RestMethod

The Invoke-RestMethod command is able to execute methods exposed by web services. The name of a method is part of the Uniform Resource Identifier (URI); it is important not to confuse this with the Method parameter. The Method parameter is used to describe the HTTP method. By default, Invoke-RestMethod uses HTTP GET.

 Simple requests

The REST API provided by GitHub may be used to list repositories made available by the PowerShell team.

The API entry point is https://api.github.com as documented in this reference: https://developer.github.com/v3/.

When working with REST, documentation is very important. The manner in which an interface is used is common, but the manner is which it may respond is not (as this is an architectural style, not a strict protocol).

The specific method being called is documented on a different page of the following reference: https://developer.github.com/v3/repos/#list-user-repositories.

The name of the user forms part of the URI; there are no arguments for this method. Therefore, the following command will execute the method and return detailed information about the repositories owned by the PowerShell user (or organization):

Invoke-RestMethod -Uri https://api.github.com/users/powershell/repos

Windows PowerShell is likely to throw an error relating to SSL/TLS when running this command. This is because the site uses TLS 1.2 whereas, by default, Invoke-RestMethod reaches as far as TLS 1.0. PowerShell Core users should not experience this problem.

This Windows PowerShell problem can be fixed by tweaking the SecurityProtocol property of ServicePointManager as follows:

using namespace System.Net
[ServicePointManager]::SecurityProtocol = [ServicePointManager]::SecurityProtocol -bor 'Tls12'

The bitwise -bor operator is used to add TLS 1.2 to the default list, which includes Ssl3 and Tls. TLS 1.1 (Tls11) may be added in a similar manner if required.

All examples use TLS 1.2

This setting is required for the examples that follow when running Windows PowerShell.

Older versions of Windows may require a patch from Windows Update to gain support for TLS 1.2.

 Requests with arguments

The search code method of the GitHub REST API is used to demonstrate how arguments can be passed to a REST method.

The documentation for the method is found in the following API reference: https://developer.github.com/v3/search/#search-code.

The following example uses the search code method by building a query string and appending that to the end of the URL. The search looks for occurrences of the Get-Content term in PowerShell language files in the PowerShell repository. The search term is therefore the following:

Get-Content language:powershell repo:powershell/powershell

This Get-Content is not PowerShell's Get-Content.

PowerShell has a Get-Content command. The Get-Content term used in the previous string should not be confused with the PowerShell command.

Converting the example from the documentation, the URL required is as follows. Spaces may be replaced by + when encoding the URL:

https://api.github.com/search/code?q=Get-Content+language:powershell+repo:powershell/powershell

In Windows PowerShell, which can use the HttpUtility type within the System.Web assembly, the task of encoding the URL can be simplified:

using assembly System.Web

$queryString = [System.Web.HttpUtility]::ParseQueryString('')
$queryString.Add('q', 'Get-Content language:powershell repo:powershell/powershell')
Invoke-RestMethod ('https://api.github.com/search/code?{0}' -f $queryString)

Running $queryString.ToString() will show that the colon character has been replaced by %3, and the forward slash in the repository name by %2.

PowerShell Core cannot use the HttpUtility type, which would leave an author trying to find a means of properly encoding the URL. However, the arguments for the search do not necessarily have to be passed as a query string. Instead, a body for the request may be set, as shown here:

Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
 q = 'Get-Content language:powershell repo:powershell/powershell'
}

Invoke-RestMethod converts the body (a hashtable) to JSON and handles any encoding required. The result of the search is the same whether the body is set or a query string is used.

In both cases, details of issues are held within the items property of the response:

Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
 q = 'Get-Content language:powershell repo:powershell/powershell'
} | Select-Object -ExpandProperty items | Select-Object number, title

This pattern, where the actual results are nested under a property in the response, is frequently seen with REST interfaces. Exploration is often required.

It is critical to note that REST interfaces are case-sensitive; using a parameter named Q would result in an error message, as shown here:

PS> Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
>> Q = 'Get-Content language:powershell repo:powershell/powershell'
>> }
Invoke-RestMethod : {"message":"Validation Failed","errors":[{"resource":"Search","field":"q","code":"missing"}],"documentation_url":"https://developer.github.com/v3/search"}
At line:1 char:1
+ Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
+ ~~
+ CategoryInfo : InvalidOperation: (Method: GET, Re...rShell/6.1.0
}:HttpRequestMessage) [Invoke-RestMethod], HttpResponseException
+ FullyQualifiedErrorId : WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeRestMethodCommand

The GitHub API returns an easily understood error message in this case. This will not be true of all REST APIs; it is not uncommon to see a generic error returned by an API. An API may return a simple HTTP 400 error and leave it to the user or developer to figure out what went wrong.

 Working with paging

Many REST interfaces will return large result sets from searches in pages, a sub-set of the results. The techniques used to retrieve each subsequent page can vary from one API to another.

The GitHub API exposes the link to the next page in the HTTP header. This is consistent with RFC 5988 (https://tools.ietf.org/html/rfc5988#page-6).

In PowerShell Core, it is easy to retrieve and view the header when using Invoke-RestMethod:

$params = @{
 Uri = 'https://api.github.com/search/issues'
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 ResponseHeadersVariable = 'httpHeader'
}
Invoke-RestMethod @params | Select-Object -ExpandProperty items

Once run, the link field of the header may be inspected via the httpHeader variable:

PS> $httpHeader['link']
 <https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3Apowershell%2Fpowershell&page=2>; rel="next",
 <https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3Apowershell%2Fpowershell&page=34>; rel="last"

PowerShell Core can also automatically follow this link by using the FollowRelLink parameter. This might be used in conjunction with the MaximumFollowRelLink parameter to ensure a request stays within any rate limiting imposed by the web service. See https://developer.github.com/v3/#rate-limiting for the GitHub API, for example:

$params = @{
 Uri = 'https://api.github.com/search/issues'
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 FollowRelLink = $true
 MaximumFollowRelLink = 2
}
Invoke-RestMethod @params | Select-Object -ExpandProperty items

Windows PowerShell, unfortunately, cannot automatically follow this link. Nor does the Invoke-RestMethod command expose the header from the response. When working with complex REST interfaces in Windows PowerShell, it is often necessary to fall back to Invoke-WebRequest or even HttpWebRequest classes.

The example that follows uses Invoke-WebRequest in Windows PowerShell to follow the next link in a similar manner to Invoke-RestMethod in PowerShell Core:

Used to limit the number of times "next" is followed
$followLimit = 2
The initial set of parameters, describes the search
$params = @{
 Uri = 'https://api.github.com/search/issues'
 # PowerShell will convert this to JSON
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 ContentType = 'application/json'
}
Just a counter, works in conjunction with followLimit.
$followed = 0

do {
 # Get the next response
 $response = Invoke-WebRequest @params
 # Convert and leave the results as output
 $response.Content | ConvertFrom-Json | Select-Object -ExpandProperty items

 # Retrive the links from the header and find the next URL
 if ($response.Headers['link'] -match '<([^>]+?)>;\s*rel="next"') {
 $next = $matches[1]
 } else {
 $next = $null
 }

 # Parameters which will be used to get the next page (next loop iteration)
 $params = @{
 Uri = $next
 }

 # Increment the followed counter
 $followed++
} until (-not $next -or $followed -ge $followLimit)

Because of the flexible nature of REST, implementations of page linking may vary. For example, links may appear in the body of a response instead of the header. Exploration is a requirement when working around a web API.

 Working with authentication

There are a large number of authentication systems that might be used when working with web services.

For services that expect to use the current user account to authenticate, the UseDefaultCredential parameter may be used to pass authentication tokens without explicitly passing a username and password. A service that is integrated into an Active Directory domain, expecting to use Kerberos authentication, might be an example of such a service.

REST interfaces written to provide automation access tend to offer reasonably simple approaches to automation, often including basic authentication.

GitHub offers a number of different authentication methods, including basic and OAuth. These are shown here when attempting to request the email addresses for a user, which requires authentication.

 Using basic authentication

Basic authentication with a username and password is the simplest method available:

$params = @{
 Uri = 'https://api.github.com/user/emails'
 Credential = Get-Credential
}
Invoke-RestMethod @params

In PowerShell Core, the Authentication parameter should be added:

$params = @{
 Uri = 'https://api.github.com/user/emails'
 Credential = Get-Credential
 Authentication = 'Basic'
}
Invoke-RestMethod @params

If the account is configured to use two-factor authentication, this request may fail with the following error message:

PS> Invoke-RestMethod @params
Invoke-RestMethod : {"message":"Must specify two-factor authentication OTP code.","documentation_url":"https://developer.github.com/v3/auth#working-with-two-factor-authentication"}
At line:1 char:1
+ Invoke-RestMethod https://api.github.com/user/emails -Credential $cre ...
+ ~~~
+ CategoryInfo : InvalidOperation: (Method: GET, Re...rShell/6.1.0
}:HttpRequestMessage) [Invoke-RestMethod], HttpResponseException
+ FullyQualifiedErrorId : WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeRestMethodCommand

GitHub provides documentation showing how to add the second authentication factor, although it is not clear how SMS tokens can be requested: https://developer.github.com/v3/auth/.

In this case, it may be more appropriate to use a personal access token. Personal access tokens can be generated by visiting account settings, then developer settings. Once generated, the personal access token cannot be viewed. The personal access token is used in place of a password.

 OAuth

OAuth is offered by a wide variety of web services. The details of this process will vary slightly between different APIs. The GitHub documentation describes the process that must be followed: https://developer.github.com/v3/oauth/#web-application-flow.

OAuth needs a web browser

 It is difficult to avoid the need for a web browser willing to execute JavaScript code when working with OAuth.

The example that follows can only be used with Windows PowerShell (not PowerShell Core) as it requires a Windows Presentation Framework (WPF)-based browser to extract a code from query string in a redirected web request.

 Creating an application

Before starting with code, an application has to be registered with GitHub. This is done by visiting account settings, and then developer settings.

An application must be created to acquire a clientid and clientsecret. Creation of the application requires a homepage URL and an authorization callback URL. Both should be set to http://localhost. This does not have to be a valid web service for the purposes of this example; it is used to acquire the authorization code in a web browser.

The values from the web page will fill the following variables:

$clientId = 'FromGitHub'
$clientSecret = 'FromGitHub'

 Getting an authorization code

Once an application is registered, an authorization code is required. Obtaining the authorization code gives the end user the opportunity to grant the application access to a GitHub account. If the user is not currently logged in to GitHub, it will also prompt him/her to log on.

A URL must be created that will prompt for authorization:

$authorize = 'https://github.com/login/oauth/authorize?client_id={0}&scope={1}' -f
 $clientId,
 'user:email'

The 'user:email' scope describes the rights the application would like to have. The web API guide contains a list of possible scopes: https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/.

GitHub does not support Internet Explorer

 WPF and Windows Forms both include browser controls that can be used. However, both are based on Internet Explorer, which is not supported by GitHub. An alternative is required.

Before creating the web request, an appropriate browser control must be found. The WebView control uses the Microsoft Edge browser and is available from https://www.nuget.org/: https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/.

The following script will download and extract the package to the current directory:

$params = @{
 Uri = 'https://www.nuget.org/api/v2/package/Microsoft.Toolkit.Win32.UI.Controls/4.0.2'
 OutFile = 'Microsoft.Toolkit.Win32.UI.Controls.zip'
}
Invoke-WebRequest @params
Expand-Archive Microsoft.Toolkit.Win32.UI.Controls.zip

The downloaded assembly may be used to implement a small browser to handle the OAuth callback process:

using assembly PresentationFramework
using assembly .\Microsoft.Toolkit.Win32.UI.Controls\lib\net462\Microsoft.Toolkit.Win32.UI.Controls.dll

$window = [System.Windows.Window]@{
 Height = 650
 Width = 450
}
$browser = [Microsoft.Toolkit.Win32.UI.Controls.WPF.WebView]@{
 Height = 650
 Width = 450
}
Add an event handler to close the window when
interaction with GitHub is complete.
$browser.add_NavigationCompleted({
 param ($sender, $eventargs)

 if ($eventArgs.Uri -notmatch 'GitHub') {
 $Global:authorizationCode = $eventArgs.Uri -replace '^.+code='

 $sender.Parent.Close()
 } else {
 $Global:authorizationCode = $null
 }
})
$browser.Navigate($authorize)
$window.Content = $browser
$null = $window.ShowDialog()

The window will close as soon as it leaves the GitHub pages, when the request is redirected to the callback URL for the application.

If the application has already been authorized and the user is logged in, the window will close without prompting for user interaction.

The authroizationCode global variable should contain code that can be used to request an access token.

 Requesting an access token

The next step is to create an access token. The access token is valid for a limited time.

The clientSecret is sent with this request; if this were an application that was given to others, keeping the secret would be a challenge to overcome:

$params = @{
 Uri = 'https://github.com/login/oauth/access_token'
 Method = 'POST'
 Body = @{
 client_id = $clientId
 client_secret = $clientSecret
 code = $authorizationCode
 }
}
$response = Invoke-RestMethod @params
$token = [System.Web.HttpUtility]::ParseQueryString($response)['access_token']

The previous request used the HTTP method POST. The HTTP method, which should be used with a REST method, is documented for an interface in the Developer Guides.

Each of the requests that follow will use the access token from the previous request. The access token is placed in a HTTP header field named Authorization.

 Using a token

We can call methods that require authentication by adding a token to the HTTP header.

The format of the authorization header field is shown here:

Authorization: token OAUTH-TOKEN

OAUTH-TOKEN is replaced and the authorization head is constructed as shown here:

$headers = @{
 Authorization = 'token {0}' -f $token
}

The token can be used in subsequent requests for the extent of its lifetime:

$headers = @{
 Authorization = 'token {0}' -f $token
}
Invoke-RestMethod 'https://api.github.com/user/emails' -Headers $headers

 Working with SOAP

Unlike REST, which is an architectural style, SOAP is a protocol. It is perhaps reasonable to compare working with SOAP to importing a .NET assembly (DLL) to work with the types inside. As a result, a SOAP client is much more strongly tied to a server than is the case with a REST interface.

SOAP uses XML to exchange information between the client and server.

 Finding a SOAP service

SOAP-based web APIs are quite rare, less popular by far than REST. The examples in this section are based on a simple SOAP service I wrote for this book.

The service is available on GitHub as a Visual Studio solution: https://github.com/indented-automation/SimpleSOAP.

The solution should be downloaded, opened in Visual Studio (2015 or 2017, Community Edition or better), and debugging should be started by pressing F5. A browser page will be opened, which will show the port number the service is operating on. A 403 error may be displayed; this can be ignored.

This service is not a well designed service; it has been contrived to expose similar patterns in its method calls to those seen in real SOAP services.

A ReadMe file accompanies the project. Common problems running the project will be noted there.

Alternatives?

Alternative services include older versions of SQL Server Reporting Services, which are extensively documented: https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016. SQL Server Reporting Services 2017 and newer use a REST API.

The discovery based approaches explored in this section should be applicable to any SOAP based service.

 New-WebServiceProxy

The New-WebServiceProxy command is used to connect to a SOAP web service. This can be a service endpoint, such as a .NET service.asmx URL, or a WSDL document.

New-WebServiceProxy and PowerShell Core

The New-WebServiceProxy command has not been implemented in PowerShell Core. The examples in this section only apply when using Windows PowerShell.

The web service will include methods, and may also include other object types and enumerations.

The command accesses a service anonymously by default. If the current user should be passed on, the UseDefaultCredential parameter should be used. If explicit credentials are required, the Credential parameter can be used.

Localhost and a port

 Throughout this section, localhost and a port are used to connect to the web service. The port is set by Visual Studio when debugging the simple SOAP web service and must be updated to use these examples.

By default, New-WebServiceProxy creates as dynamic namespace. This is as follows:

PS> $params = @{
>> Uri = 'http://localhost:62369/Service.asmx'
>> }
>> $service = New-WebServiceProxy @params
>> $service.GetType().Namespace
Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy4__localhost_62369_Service_asmx

The dynamic namespace is useful as it avoids problems when multiple connections are made to the same service in the same session.

To simplify exploring the web service in, a fixed namespace might be defined:

$params = @{
 Uri = 'http://localhost:62369/Service.asmx'
 Namespace = 'SOAP'
}
$service = New-WebServiceProxy @params

The $ service object returned by New-WebServiceProxy describes the URL used to connect, the timeout, the HTTP user agent, and so on. The object is also the starting point for exploring the interface; it is used to expose web services methods.

 Methods

The methods available may be viewed in a number of ways. The URL used can be visited in a browser, or Get-Member may be used. A subset of the output from Get-Member follows:

PS> $service | Get-Member

Name MemberType Definition
---- ---------- ----------
GetElement Method SOAP.Element GetElement(string Name)
GetAtomicMass Method string GetAtomicMass(string Name)
GetAtomicNumber Method int GetAtomicNumber(string Name)
GetElements Method SOAP.Element[] GetElements()
GetElementsByGroup Method SOAP.Element[] GetElementsByGroup(SOAP.Group group)
GetElementSymbol Method string GetElementSymbol(string Name)
SearchElements Method SOAP.Element[] SearchElements(SOAP.SearchCondition[] searchConditions)

The preceding GetElements method requires no arguments and may be called immediately, as shown here:

PS> $service.GetElements() | Select-Object -First 5 | Format-Table

AtomicNumber Symbol Name AtomicMass Group
------------ ------ ---- ---------- -----
 1 H Hydrogen 1.00794(4) Nonmetal
 2 He Helium 4.002602(2) NobleGas
 3 Li Lithium 6.941(2) AlkaliMetal
 4 Be Beryllium 9.012182(3) AlkalineEarthMetal
 5 B Boron 10.811(7) Metalloid

Methods requiring string or numeric arguments may be similarly easy to call, although the value the method requires is often open to interpretation. In this case, the name argument may be either an element name or an element symbol. Documentation is difficult to replace when working with web services:

PS> $service.GetAtomicNumber('oxygen')
8

PS> $service.GetAtomicMass('H')
1.00794(4)

 Methods and enumerations

The GetElementsByGroup method shown by Get-Member requires an argument of type SOAP.Group. This is an enumeration, as indicated by the BaseType shown here:

PS> [SOAP.Group]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Group System.Enum

The values of the enumeration may be shown by running the GetEnumValues method as shown here:

PS> [SOAP.Group].GetEnumValues()

Actinoid
AlkaliMetal
AlkalineEarthMetal
Halogen
Lanthanoid
Metal
Metalloid
NobleGas
Nonmetal
PostTransitionMetal
TransitionMetal

PowerShell will help cast to enumeration values; a string value is sufficient to satisfy the method:

PS> $service.GetElementsByGroup('Nonmetal') | Format-Table

AtomicNumber Symbol Name AtomicMass Group
------------ ------ ---- ---------- -----
 1 H Hydrogen 1.00794(4) Nonmetal
 6 C Carbon 12.0107(8) Nonmetal
 7 N Nitrogen 14.0067(2) Nonmetal
 8 O Oxygen 15.9994(3) Nonmetal
 15 P Phosphorus 30.973762(2) Nonmetal
 16 S Sulfur 32.065(5) Nonmetal
 34 Se Selenium 78.96(3) Nonmetal

If the real value of the enumeration must be used, it may be referenced as a static property of the enumeration:

$service.GetElementsByGroup([SOAP.Group]::Nonmetal)

 Methods and SOAP objects

When working with SOAP interfaces, it is common to encounter methods that need instances of objects presented by the SOAP service. The SearchElements method is an example of this type.

The SearchElements method requires an array of SOAP.SearchCondition as an argument. This is shown in the following by accessing the definition of the method:

PS> $service.SearchElements

OverloadDefinitions

SOAP.Element[] SearchElements(SOAP.SearchCondition[] searchConditions)

An instance of SearchCondition may be created as follows:

$searchCondition = [SOAP.SearchCondition]::new()

Exploring the object with Get-Member shows that the operator property is another type from the SOAP service. This is an enumeration, as shown here:

PS> [SOAP.ComparisonOperator]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True ComparisonOperator System.Enum

A set of search conditions may be constructed and passed to the method:

$searchConditions = @(
 [SOAP.SearchCondition]@{
 PropertyName = 'AtomicNumber'
 Operator = 'ge'
 Value = 1
 }
 [SOAP.SearchCondition]@{
 PropertyName = 'AtomicNumber'
 Operator = 'lt'
 Value = 6
 }
)
$service.SearchElements($searchConditions)

 Overlapping services

When testing a SOAP interface, it is easy to get into a situation where New-WebServiceProxy has been called several times against the same web service. This can be problematic if using the Namespace parameter.

Consider the following example, which uses two instances of the web service:

$params = @{
 Uri = 'http://localhost:62369/Service.asmx'
 Namespace = 'SOAP'
}
Original version
$service = New-WebServiceProxy @params
New version
$service = New-WebServiceProxy @params

$searchConditions = @(
 [SOAP.SearchCondition]@{
 PropertyName = 'Symbol'
 Operator = 'eq'
 Value = 'H'
 }
)

In theory, there is nothing wrong with this example. In practice, the SOAP.SearchCondition object is created based on the original version of the service created using New-WebServiceProxy. The method is, on the other hand, executing against the newer version.

As the method being called and the type being used are in different assemblies, an error is shown; this is repeated in the following:

PS> $service.SearchElements($searchConditions)
Cannot convert argument "searchConditions", with value: "System.Object[]", for "SearchElements" to type
"SOAP.SearchCondition[]": "Cannot convert the "SOAP.SearchCondition" value of type "SOAP.SearchCondition" to type
"SOAP.SearchCondition"."
At line:1 char:1
+ $service.SearchElements($searchConditions)
+ ~~
 + CategoryInfo : NotSpecified: (:) [], MethodException
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

It is still possible to access the second version of SearchCondition by searching for the type, then creating an instance of that:

$searchCondition = ($service.GetType().Module.GetTypes() |
 Where-Object Name -eq 'SearchCondition')::new()

$searchCondition.PropertyName = 'Symbol'
$searchCondition.Operator = 'eq'
$searchCondition.Value = 'H'

$searchConditions = @($searchCondition)

$service.SearchElements($searchConditions)

However, it is generally better to avoid the problem by allowing New-WebServiceProxy to use a dynamic namespace. At which point, an instance of the SearchCondition may be created, as shown here:

('{0}.SearchCondition' -f $service.GetType().Namespace -as [Type])::new()

 Summary

This chapter explored the use of Invoke-WebRequest and how to work with and debug SSL negotiation problems.

Working with REST explored simple method calls, authentication, and OAuth negotiation, before exploring REST methods that require authenticated sessions.

SOAP is hard to find these days; a sample project was used to show how the capabilities of a SOAP service might be discovered and used.

Chapter 14, Remoting and Remote Management, explores remoting and remote management.

 Section 3: Automating with PowerShell

In this section, we will look at using PowerShell to administer and automate.

The following chapters are included in this section:

	Chapter 14, Remoting and Remote Management

	Chapter 15, Asynchronous Processing

 Remoting and Remote Management

Windows remoting came to PowerShell with the release of version 2.0. Windows remoting is a powerful feature that allows administrators to move away from RPC-based remote access.

In this chapter, we will cover the following topics:

	WS-Management

	PSSessions

	Remoting on Linux

	Remoting over SSH

	The double-hop problem

	CIM sessions

 Technical requirements

This chapter makes use of a remote Windows system named PSTest, which runs Windows 10, Windows PowerShell 5.1, and PowerShell Core 6.1.

Remoting between Windows and Linux is demonstrated using a system that runs CentOS 7, PowerShell 6.1, and the PSRP package.

 WS-Management

Windows remoting uses WS-Management as its communication protocol. Support for WS-Management and remoting were introduced with PowerShell 2.0. WS-Management uses the Simple Object Access Protocol (SOAP) to pass information between the client and the server.

 Enabling remoting

Before remoting can be used, it must be enabled. In a domain environment, remoting can be enabled using a group policy:

	Policy name: Allow remote server management through WinRM

	Path: Computer configuration\Administrative Templates\Windows Components\Windows Remote Management (WinRM)\WinRM Service

If remoting is enabled using a group policy, a firewall rule should be created to allow access to the service:

	Policy name: Define inbound port exceptions

	Path: Computer Configuration\Administrative Templates\Network\ Network Connections\Windows Firewall\Domain Profile

	Port exception example: 5985:TCP:*:enabled:WSMan

Windows remoting can be enabled on a per-machine basis using the Enable-PSRemoting command.

Remoting may be disabled in PowerShell using Disable-PSRemoting. Disabling remoting will show the following warning:

PS> Disable-PSRemoting

WARNING: Disabling the session configurations does not undo all the changes made by the Enable-PSRemoting or Enable-PSSessionConfiguration cmdlet. You might have to manually undo the changes by following these steps:
1. Stop and disable the WinRM service.
2. Delete the listener that accepts requests on any IP address.
3. Disable the firewall exceptions for WS-Management communications.
4.Restore the value of the LocalAccountTokenFilterPolicy to 0, which restricts remote access to members of the Administrators group on the computer.

If Enable-PSRemoting is run in the PowerShell 6 console, additional session configurations will be created that allow a choice of either Windows PowerShell (the default) or PowerShell Core when creating a remote session. Accessing PowerShell Core sessions is explored later in this chapter.

 Get-WSManInstance

Get-WSManInstance provides access to instances of resources at a lower level than commands such as Get-CimInstance.

For example, Get-WSManInstance can be used to get the Win32_OperatingSystem WMI class:

Get-WSManInstance -ResourceUri wmicimv2/win32_operatingsystem

The response is an XmlElement that PowerShell presents as an object with properties for each child element.

Get-WSManInstance has been superseded by Get-CimInstance, which was introduced in PowerShell 3.0.

 The WSMan drive

The WSMan drive is accessible when PowerShell is running as the administrator. The drive can be used to view and change the configuration of remoting.

For example, the provider can be used to update settings, such as MaxEnvelopeSize, which affects the maximum permissible size of SOAP messages sent and received by WSMan:

Set-Item WSMan:\localhost\MaxEnvelopeSizekb 1024

The WinRM service may need to be restarted after values are changed:

Restart-Service winrm

 Remoting and SSL

By default, Windows remoting requests are unencrypted. An HTTPS listener can be created to support encryption. Before attempting to create an HTTPS listener, a certificate is required.

Using a self-signed certificate is often the first step when configuring SSL. Windows 10 comes with a PKI module that can be used to create a certificate. The PKI module is only available in Windows PowerShell. In the following example, a self-signed certificate is created in the computer's personal store:

PS> New-SelfSignedCertificate -DnsName $env:COMPUTERNAME

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\MY

Thumbprint Subject
---------- -------
D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41 CN=SSLTEST

Once the certificate has been created, an HTTPS listener may be created using the WSMan drive:

$params = @{
 Path = 'WSMan:\localhost\Listener'
 Address = '*'
 Transport = 'HTTPS'
 CertificateThumbprint = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'
 Force = $true
}
New-Item @params

The Force parameter is used to suppress a confirmation prompt.

If Windows Firewall is running, a new rule must also be created to allow the connection:

$params = @{
 DisplayName = $name = 'Windows Remote Management (HTTPS-In)'
 Name = $name
 Profile = 'Any'
 LocalPort = 5986
 Protocol = 'TCP'
}
New-NetFirewallRule @params

 Set-WSManQuickConfig

Certificates used by remoting have the following requirements:

	The subject must contain the computer name (without a domain).

	The certificate must support the server authentication enhanced key usage.

	The certificate must not be expired, revoked, or self-signed.

If a certificate that meets these requirements is present, the Set-WSManQuickConfig command may be used:

Set-WSManQuickConfig -UseSSL

HTTPS listeners may be viewed as follows:

PS> Get-ChildItem WSMan:\localhost\Listener* |
>> Where-Object { (Get-Item "$($_.PSPath)\Transport").Value -eq 'HTTPS' }

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Listener

Type Keys Name
---- ---- ----
Container {Transport=HTTPS, Address=*} Listener_1305953032

The preceding example may be extended by exploring the properties for the listener:

Get-ChildItem WSMan:\localhost\Listener | ForEach-Object {
 $listener = $_ | Select-Object Name
 Get-ChildItem $_.PSPath | ForEach-Object {
 $listener | Add-Member $_.Name $_.Value
 }
 $listener
} | Where-Object Transport -eq 'HTTPS'

The self-signed certificate can be assigned in this manner, but, for an SSL connection to succeed, the client must trust the certificate. Without trust, the following error is shown:

PS> Invoke-Command -ScriptBlock { Get-Process } -ComputerName $env:COMPUTERNAME -UseSSL

[SSLTEST] Connecting to remote server SSLTEST failed with the following error message : The server certificate on the destination computer (SSLTEST:5986) has the following errors:
The SSL certificate is signed by an unknown certificate authority. For more information, see the about_Remote_Troubleshooting Help topic.
+ CategoryInfo : OpenError: (SSLTEST:String) [], PSRemotingTransportException
+ FullyQualifiedErrorId : 12175,PSSessionStateBroken

A number of options are available to bypass this option:

	Disable certificate verification.

	Add the certificate from the remote server to the local root certificate store.

Disabling certificate verification can be achieved by configuring the options of a PSSession:

$options = New-PSSessionOption -SkipCACheck
$session = New-PSSession computerName -SessionOption $options

Either of the preceding options will allow the connection to complete. This can be verified using Test-WSMan:

Test-WSMan -UseSSL

If a new certificate is obtained, the certificate for the listener may be replaced by using Set-Item:

$params = @{
 Path = 'WSMan:\localhost\Listener\Listener_1305953032\CertificateThumbprint'
 Value = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'
}
Set-Item @params

 Remoting and permissions

By default, Windows remoting requires administrative access. A summary of granted permissions may be viewed using Get-PSSessionConfiguration. The summary does not include the permission level:

Get-PSSessionConfiguration Microsoft.PowerShell

 Remoting permissions GUI

Permissions can be changed using the graphical interface. The interface will be displayed when the following command is run:

Set-PSSessionConfiguration Microsoft.PowerShell -ShowSecurityDescriptorUI

The following screenshot displays a standard GUI for assigning permissions:

The session configuration defines four different permission levels:

	Full

	Read

	Write

	Execute

 Remoting permissions by script

Permissions may also be changed using a script. The following commands retrieve the current security descriptor:

using namespace System.Security.AccessControl

$sddl = Get-PSSessionConfiguration microsoft.powerShell |
 Select-Object -ExpandProperty SecurityDescriptorSddl
$acl = [CommonSecurityDescriptor]::new(
 $false,
 $false,
 $sddl
)
$acl.DiscretionaryAcl

The object created here does not translate access masks into meaningful names. There are a small number of possible values for the access mask (shown here as 32-bit integers):

	Full (All operations): 268435456

	Read (Get, Enumerate, Subscribe): -2147483648

	Write (Put, Delete, Create): 1073741824

	Execute (Invoke): 536870912

Permissions may be combined by using the -bor operator. For example, read and write may be defined using the following:

$readAndWrite = -2147483648 -bor 1073741824

Granting Read, Write, and Execute individually should be equivalent to Full Control. However, the result of binary (or the composite of all values) is -536870912, not the expected value for Full.

Understanding these values allows the current settings to be displayed in more detail than Get-PSSessionConfiguration displays. The function adds two script properties to each of the access control entries in the discretionary ACL. The first translates the SID into an account name; the second translates the access mask into a name (or set of names).

The example uses an enumeration (enum) to describe the possible access rights:

using namespace System.Security.AccessControl; using namespace System.Security.Principal

[Flags()]
enum SessionAccessRight {
 All = -536870912
 Full = 268435456
 Read = -2147483648
 Write = 1073741824
 Execute = 536870912
}

function Get-PSSessionAcl {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String[]]$Name
)

 Get-PSSessionConfiguration -Name $Name | ForEach-Object {
 [CommonSecurityDescriptor]::new(
 $false,
 $false,
 $_.SecurityDescriptorSddl
)
 }
}

function Get-PSSessionAccess {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String[]]$Name
)

 (Get-PSSessionAcl -Name $Name).DiscretionaryAcl |
 Add-Member Identity -MemberType ScriptProperty -Value {
 $this.SecurityIdentifier.Translate([NTAccount])
 } -PassThru |
 Add-Member AccessRight -MemberType ScriptProperty -Value {
 [SessionAccessRight]$this.AccessMask
 } -PassThru
}

Additional access may be granted by using the AddAccess method on DiscretionaryAcl. Granting access requires the SID of an account. The SID can be retrieved using the same Translate method that was used to get an account name from an SID. For example, the security identifier of the local administrator account may be retrieved as follows:

using namespace System.Security.Principal

([NTAccount]"Administrator").Translate([SecurityIdentifier])

Adding to the discretionary ACL may be achieved as shown in the following snippet. The example makes use of the Get-PSSessionAcl function and the SessionAccessRight enumeration created previously to grant access to the current user. The current user is identified using environment variables:

using namespace System.Security.AccessControl; using namespace System.Security.Principal

$identity = "$env:USERDOMAIN\$env:USERNAME"
$acl = Get-PSSessionAcl -Name "Microsoft.PowerShell"
$acl.DiscretionaryAcl.AddAccess(
 'Allow',
 ([NTAccount]$identity).Translate([SecurityIdentifier]),
 [Int][SessionAccessRight]'Full',
 'None', # Inheritance flags
 'None' # Propagation flags
)

The updated ACL must be converted back to an SDDL string to apply the change:

$sddl = $acl.GetSddlForm('All')
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $sddl

 User Account Control

User Account Control (UAC) restricts local (not domain) user accounts that log on using a remote connection. By default, the remote connection will be made as a standard user account, that is, a user without administrative privileges.

The Enable-PSRemoting command disables UAC remote restrictions. If another method has been used to enable remoting, and a local account is being used to connect, it is possible that remote restrictions are still in place.

The current value can be viewed using the following:

$params = @{
 Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'
 Name = 'LocalAccountTokenFilterPolicy'
}
Get-ItemPropertyValue @params

If the key or value is missing, an error will be thrown. UAC remote restrictions can be disabled as follows. Using the Force parameter will allow the creation of both the key and the value:

$params = @{
 Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'
 Name = 'LocalAccountTokenFilterPolicy'
 Value = 1
 Force = $true
}
Set-ItemProperty @params

The change used previously, and UAC remote restrictions, are described in the following Microsoft's Knowledge Base article 951016: https://support.microsoft.com/en-us/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows-vista.

 Trusted hosts

If a remote system is not part of a domain, or is part of an untrusted domain, an attempt to connect using remoting may fail. The remote system must either be listed in trusted hosts or use SSL.

Use of trusted hosts also applies when connecting from a computer on a domain to another computer that is using a local user account.

Trusted hosts are set on the client, that is, the system making the connection. The following command gets the current value:

Get-Item WSMan:\localhost\Client\TrustedHosts

The value is a comma-delimited list. Wildcards are supported in the list. The following function may be used to add a value to the list:

function Add-TrustedHost {
 param (
 [String]$Hostname
)

 $item = Get-Item WSMan:\localhost\Client\TrustedHosts
 $trustedHosts = @($item.Value -split ',')
 $trustedHosts = $trustedHosts + $Hostname |
 Where-Object { $_ } |
 Select-Object -Unique

 $item | Set-Item -Value ($trustedHosts -join ',')
}

 PSSessions

PSSessions use Windows remoting to communicate between servers. PSSessions can be used for anything from remote commands and script execution to providing a remote shell.

By default, PSSessions use the Microsoft.PowerShell configuration, described by the built-in $PSSessionConfigurationName variable. Administrative rights are required to view and change session-configuration information.

If you are creating a session to the local system, the -EnableNetworkAccess parameter should be added to the following commands. This parameter is only applicable to sessions that are created from and connect to the same system.

 New-PSSession

Sessions are created using the New-PSSession command. In the following example, a session is created on a computer named PSTEST:

PS> New-PSSession -ComputerName PSTEST

Id Name ComputerName State ConfigurationName Availability
-- ---- ------------ ----- ----------------- ------------
1 Session1 PSTEST Opened Microsoft.PowerShell Available

 Get-PSSession

Sessions created using New-PSSession persist until the PSSession is removed (by Remove-PSSession) or the PowerShell session ends. The following example returns sessions created in the current PowerShell session:

PS> Get-PSSession | Select-Object Id, ComputerName, State

Id ComputerName State
-- ------------ -----
 1 PSTEST Opened

If the ComputerName parameter is supplied, Get-PSSession will show sessions created on that computer. For example, imagine a session is created in one PowerShell console:

$session = New-PSSession -ComputerName PSTest -Name Example

A second administrator console session will be able to view details of that session:

PS> Get-PSSession -ComputerName PSTest | Select-Object Name, ComputerName, State

Name ComputerName State
---- ------------ -----
Example PSTest Disconnected

 Invoke-Command

Invoke-Command may be used with a PSSession to execute a command or script on a remote system:

$session = New-PSSession -ComputerName $env:COMPUTERNAME
Invoke-Command { Get-Process -Id $PID } -Session $session

$env:COMPUTERNAME is localhost

Connecting to a session requires administrative access by default. The preceding command will fail if PowerShell is not running with an administrative token (run as administrator).

A PowerShell session with the administrator token can be started using the Start-Process powershell -Verb RunAs command.

Invoke-Command has a wide variety of different uses, as shown in the command help. For example, a single command can be executed against a list of computers:

Invoke-Command { Get-Process -Id $PID } -ComputerName 'first', 'second', 'third'

This technique can be useful when combined with AsJob. Pushing the requests into the background allows each server to get on with its work, pushing it back when the work is complete.

Once the job created by the previous command has completed, any data may be retrieved using the Receive-Job command.

A number of advanced techniques may be used with Invoke-Command.

 Local functions and remote sessions

The following example executes a function created on the local machine in a remote system using positional arguments:

function Get-FreeSpace {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Name
)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)
}
Invoke-Command ${function:Get-FreeSpace} -Session $session -ArgumentList C

This technique succeeds because the body of the function is declared as a script block. ArgumentList is used to pass a positional argument into the DriveLetter parameter.

If the function depends on other locally-defined functions, the attempt will fail.

 Using splatting with ArgumentList

The ArgumentList parameter of Invoke-Command does not offer a means of passing named arguments to a command.

The following example uses splatting to pass parameters. The function is defined on the local system, and the definition of the function is passed to the remote system:

A function which exists on the current system
function Get-FreeSpace {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Name
)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)
}

Define parameters to pass to the function
$params = @{
 Name = 'c'
}

Execute the function with a named set of parameters
Invoke-Command -ScriptBlock {
 param ($definition, $params)

 & ([ScriptBlock]::Create($definition)) @params
} -ArgumentList ${function:Get-FreeSpace}, $params -ComputerName $computerName

In the preceding example, the definition of the Get-FreeSpace function is passed as an argument along with the requested parameters. The script block used with Invoke-Command converts the definition into a ScriptBlock and executes it.

 The AsJob parameter

The AsJob parameter can be used with Invoke-Command, for example:

$session = New-PSSession PSTest
Invoke-Command -Session $session -AsJob -ScriptBlock { Start-Sleep -Seconds 120 'Done sleeping' }

The command finishes immediately, and returns the job that has been created.

While the job is running, the session availability is set to Busy:

PS> $session | Select-Object Name, ComputerName, Availability

Name ComputerName Availability
---- ------------ ------------
Session1 PSTest Busy

Attempts to run another command against the same session will result in an error message.

Once the job has completed, the Receive-Job command may be used.

 Disconnected sessions

The InDisconnectedSession of Invoke-Command starts the requested script and immediately disconnects the session. This allows a script to be started and collected from a different console session or a different computer.

The session parameter cannot be used with InDisconnectedSession; Invoke-Command creates a new session for a specified computer name. The session is returned by the following command:

Invoke-Command { Start-Sleep -Seconds 120; 'Done' } -ComputerName PSTest -InDisconnectedSession

A second PowerShell session or computer is able to connect to the disconnected session to retrieve the results. The following command assumes that only one session exists with the PSTest computer:

Get-PSSession -ComputerName PSTest |
 Connect-PSSession |
 Receive-PSSession

Tasks started with AsJob will also continue to run if a session is disconnected. The following example creates a session, starts a long-running process, and disconnects the session:

$session = New-PSSession PSTest -Name 'Example'
Invoke-Command { Start-Sleep -Seconds (60 * 60) } -Session $session -AsJob
Disconnect-PSSession $session

Once the session has been created and disconnected, the PowerShell console can be closed. A second PowerShell console can find and connect to the existing session:

$session = Get-PSSession -ComputerName PSTest -Name 'Example'
Connect-PSSession $session

Reviewing the details of the session will show that it is busy running Start-Sleep:

PS> Get-PSSession | Select-Object Name, ComputerName, State, Availability

Name ComputerName State Availability
---- ------------ ----- ------------
Example PSTest Opened Busy

 The using variable scope

When working with Invoke-Command, PowerShell makes the using variable scope available.

The using variable scope allows access to variables created on a local machine within a script block used with Invoke-Command.

The following example shows the use of a variable that contains parameters for Get-Process. The local variable may contain any reasonable value:

$params = @{
 Name = 'powershell'
 IncludeUserName = $true
}
Invoke-Command -ComputerName PSTest -ScriptBlock {
 $params = $using:params
 Get-Process @params
}

The using scope is a handy alternative to the ArgumentList parameter.

 The Enter-PSSession command

Enter-PSSession may be employed to use a session as a remote console. By default, Enter-PSSession accepts a computer name as the first argument:

Enter-PSSession PSTest

In a similar way, an existing session might be used:

$session = New-PSSession -ComputerName PSTest
Enter-PSSession -Session $session

Enter-PSSession uses WS-Management as a means of exchanging information between the client and the server. Once a command is typed and the return key is pressed, the entire command is sent to the remote host. The result of the command is sent back using the same mechanism. This exchange can inject a small amount of latency into the shell.

 Import-PSSession

Import-PSSession brings commands from a remote computer into the current session. Microsoft Exchange uses this technique to provide remote access to the Exchange Management Shell.

The following example imports the NetAdapter module from a remote server into the current session:

$computerName = 'PSTest'
$session = New-PSSession -ComputerName $computerName
Import-PSSession -Session $session -Module NetAdapter

Any commands used within this module are executed against the session target, not against the local computer.

If the session is removed, the imported module and its commands will be removed from the local session.

 Export-PSSession

In the preceding example, Import-PSSession is used to immediately import commands from a remote system into a local session. Export-PSSession writes a persistent module that can be used to achieve the same goal.

The following example creates a module in the current user's module path:

$computerName = 'PSTest'
$session = New-PSSession -ComputerName $computerName
Export-PSSession -Session $session -Module NetAdapter -OutputModule "NetAdapter-$computerName"

Once the module has been created, it can be imported by name:

Import-Module "NetAdapter-$computerName"

This process replaces the need to define and import a session, and is useful for remote commands that are used on a regular basis.

 Copying items between sessions

PowerShell 5 introduced the ability to copy between sessions using the Copy-Item command.

The FromSession parameter is used to copy a file to the local system:

$session1 = New-PSSession PSTest1
Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -FromSession $session1

In the preceding example, Path is on PSTest1.

The ToSession parameter is used to copy a file to a remote system:

$session2 = New-PSSession PSTest2
Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -ToSession $session2

In the previous example, the path used for the destination parameter is on PSTest2.

The FromSession and ToSession parameters cannot be specified together; two separate commands are required to copy a file between two remote sessions.

 Remoting on Linux

Microsoft provides instructions for installing PowerShell on Linux; these should be followed before attempting to configure remoting: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6.

Once installed, it is possible to make PowerShell the default shell. This is optional and does not affect remoting. First, check that PowerShell is listed in the shells file:

Get-Content /etc/shells # Use cat or less in Bash

The native chsh (change shell) command can be used to change the default shell for the current user, as shown in the following example:

chsh -s /usr/bin/pwsh

To configure remoting using WSMan, the OMI and PSRP packages must be installed. The following example uses yum since the operating system in use is CentOS 7:

yum install omi.x86_64 omi-psrp-server.x86_64

By default, CentOS has a firewall configured. The network interface in use, in this case eth0, must be added to an appropriate zone, and WinRM must be allowed:

firewall-cmd --zone=home --change-interface=eth0
firewall-cmd --zone=home --add-port=5986/tcp

Once configured, it should be possible to connect to the remote host. SSL is required to form the connection. The certificate is self-signed so certificate validity tests must be skipped at this stage:

$params = @{
 ComputerName = 'LinuxSystemNameOrIPAddress'
 Credential = Get-Credential
 Authentication = 'Basic'
 UseSsl = $true
 SessionOption = New-PSSessionOption -SkipCACheck -SkipCNCheck
}
Enter-PSSession @params

The state of the certificate leaves the identity of the host in question, but it does ensure that traffic is encrypted. If SSL is to be used beyond testing, a valid certificate chain should be established.

At this point, the remote computer should be accessible using both Windows PowerShell and PowerShell Core.

 Remoting over SSH

PowerShell Core introduces the concept of remoting over SSH. This provides a useful alternative to remoting over HTTPS, which avoids the burden of managing certificates: https://github.com/PowerShell/PowerShell/blob/866b558771a20cca3daa47f300e830b31a24ee95/docs/new-features/remoting-over-ssh/README.md.

The SSH transport for remoting cannot be used from Windows PowerShell, only PowerShell Core.

 Connecting from Windows to Linux

If connecting from Windows, an SSH client must be installed. The following command uses the Chocolatey package manager (http://chocolatey.org) to install OpenSSH for Windows:

choco install openssh

Depending on the desired configuration, public key authentication may be enabled in the SSH daemon configuration file. A subsystem must be added to the file.

To enable public key authentication, set PubkeyAuthentication:

PubkeyAuthentication yes

An existing subsystem entry will likely exist toward the end of the file; this new entry can be added beneath the existing entry:

Subsystem powershell /opt/microsoft/powershell/6/pwsh -sshs -NoLogo -NoProfile

The sshd service should be restarted after changing the configuration file:

service sshd restart

The connection in this example uses SSH-key authentication. This requires an SSH key on Windows. If an existing key is not available, the ssh-keygen command can be used to create a new key pair. The command will prompt for any information it requires.

The private key created by this command will be used when connecting to a remote host. The public key is used to authorize a user and will be placed on the Linux system.

The public key can be obtained by running the following command on the system on which it was generated. This command assumes default filenames were used when generating the key:

Get-Content ~\.ssh\id_rsa.pub | Set-Clipboard

~ is home

 The tilde character may be used as shorthand for the path to the home directory. On Linux it is typically /home/<username>, and on Windows it is typically similar to C:\users\<username>.

~ may be replaced with the $home variable, or the $env:USERPROFILE environment variable on Windows, if desired.

The public key should be added to the authorized_keys files on Linux:

$publicKey = 'ssh-rsa AAAABG...'
New-Item ~/.ssh -ItemType Directory
Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

Once complete, a session can be created and used to interact with the Linux system:

$params = @{
 HostName = 'LinuxSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
 KeyFilePath = '~\.ssh\id_rsa'
}
Enter-PSSession @params

 Connecting from Linux to Windows

Connecting from Linux to Windows is a harder path; it is clearly undergoing rapid change and is much less mature than connections in the other direction.

Before moving on to configuring SSH, verify that WSMan functions. An HTTPS listener must be set up; HTTP connections are prohibited by newer versions of the PSRP package. If HTTPS is not already available, a self-signed certificate may be created and used as shown in the Remoting and SSL section.

If remoting is not yet configured for PowerShell Core, run the Enable-PSRemoting command in the Core console (as an administrator). Once enabled, find the name of the configuration entry using the Get-PSSessionConfiguration command.

The configuration name may be used to create a session to PowerShell Core that runs on the Windows system:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 Credential = (Get-Credential)
 Authentication = 'Basic'
 UseSSL = $true
 ConfigurationName = 'PowerShell.6.1.1'
}
Enter-PSSession @params

At the time of writing, attempting to connect from Linux to a PowerShell 5.1 session results in an "access denied" error message.

The OpenSSH package must be installed on Windows to continue, as described when configuring the connection from Windows to Linux.

The SSHD service must be installed to allow incoming connections using SSH. A service installation script is included with the OpenSSH package:

& "C:\Program Files\OpenSSH-Win64\install-sshd.ps1"
Start-Service sshd

If used, Windows Firewall must also be opened:

$params = @{
 DisplayName = $name = 'SSH Daemon (SSH-In)'
 Name = $name
 Profile = 'Any'
 LocalPort = 22
 Protocol = 'TCP'
}
New-NetFirewallRule @params

Once this step is complete, it should be possible to create an SSH connection from Linux to Windows:

ssh user@WindowsSystemNameOrIPAddress

As with configuring Linux, public key authentication may be allowed, and a subsystem must be configured, this time on the Windows system. The C:\ProgramData\ssh\sshd_config file must be edited.

To enable public key authentication, set PubkeyAuthentication:

PubkeyAuthentication yes

Add a subsystem to the file. This may be specified in addition to any existing subsystem:

Subsystem powershell C:/progra~1/PowerShell/6/pwsh.exe -sshs -NoLogo -NoProfile

The sshd service should be restarted after changing the configuration file:

Restart-Service sshd

At this point, it will be possible to create a remoting session using SSH, by entering a password when prompted:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
}
Enter-PSSession @params

Public key authentication may be configured in the same way as was done for Linux. A key can be generated on Linux using the ssh-keygen command.

The public key, by default ~/.ssh/id_rsa.pub, may be added to an authorized_keys file on Windows. The following command, when run on Linux, displays the public key:

Get-Content ~/.ssh/id_rsa.pub

This public key may be added to an authorized_keys file for a user on the Windows system:

$publicKey = 'ssh-rsa AAAABG...'
Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

At this point, the Linux system will be able to use public key authentication to access the Windows system:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
 KeyFilePath = '~\.ssh\id_rsa'
}
Enter-PSSession @params

Extending this further, Windows systems running PowerShell Core and the SSH daemon may use SSH as a remoting transport to access other Windows systems.

 The double-hop problem

The double-hop problem describes a scenario in PowerShell where remoting is used to connect to a host and the remote host tries to connect to another resource. In this scenario, the second connection, the second hop, fails because authentication cannot be implicitly passed.

Over the years, there have been numerous articles that discuss this problem. Ashley McGlone published a blog post in 2016 that describes the problem and the possible solutions: https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/.

This section briefly explores using CredSSP, as well as how to pass explicit credentials to a remote system. Neither of these options is considered secure, but they require the least amount of work to implement.

These two options are useful in the following situations:

	The remote endpoint is trusted and has not been compromised.

	Critical authentication tokens can be extracted by any administrator on the remote system.

	They are not used for wide-scale regular or scheduled automation, as the methods significantly increase exposure.

 CredSSP

A session can be created using CredSSP as the authentication provider:

New-PSSession -ComputerName PSTest -Credential (Get-Credential) -Authentication CredSSP

CredSSP must be enabled on the client to support passing credentials to a remote system. The DelegateComputer parameter can be used with either a specific name or a wildcard (*):

Enable-WSManCredSSP -Role Client -DelegateComputer PSTest

CredSSP must also be enabled on the server to receive credentials:

Enable-WSManCredSSP -Role Server

If this approach is used as a temporary measure, the CredSSP roles might be removed afterward.

On the server making the connection, the Client role can be disabled:

Disable-WSManCredSSP -Role Client

On the remote system, the Server role can be disabled:

Disable-WSManCredSSP -Role Server

 Passing credentials

Passing credentials into a remote session means the second hop can authenticate without being dependent on authentication tokens from the original system.

In this example, the using variable scope is used to access a credential variable. The credential is used to run a query against Active Directory from a remote system:

$Credential = Get-Credential
Invoke-Command -ComputerName PSTest -ScriptBlock {
 Get-ADUser -Filter * -Credential $using:Credential
}

 CIM sessions

CIM sessions are used to work with CIM services, predominantly WMI or commands that base their functionality on WMI. Such commands include those in the NetAdapter and Storage modules available on Windows 2012 and Windows 8. A list of commands that support CIM sessions may be viewed by entering the following:

Get-Command -ParameterName CimSession

The list will only include commands from modules that have been imported.

 New-CimSession

CIM sessions are created using the New-CimSession command. The following example creates a CIM session using the current system as the computer name using WSMan as the protocol:

PS> New-CimSession -ComputerName $env:COMPUTERNAME

Id : 1
Name : CimSession1
InstanceId : bc03b547-1051-4af1-a41d-4d16b0ec0402
ComputerName : PSTEST
Protocol : WSMAN

If the computer name parameter is omitted, the protocol will be set to DCOM:

PS> New-CimSession

Id : 2
Name : CimSession2
InstanceId : 804595f4-0144-4590-990a-92b2f22f894f
ComputerName : localhost
Protocol : DCOM

New-CimSession can be used to configure operation timeout settings and whether or not an initial network test should be performed.

The protocol used by New-CimSession can be changed using New-CimSessionOption. Changing the protocol can be useful if there is a need to interact with systems where WinRM is not running or configured:

PS> New-CimSession -ComputerName $env:COMPUTERNAME -SessionOption (New-CimSessionOption -Protocol Dcom)

Id : 3
Name : CimSession3
InstanceId : 29bba117-c899-4389-b874-5afe43962a1e
ComputerName : PSTEST
Protocol : DCOM

 Get-CimSession

Sessions created using New-CimSession persist until the CIM session is removed (by Remove-CimSession) or the PowerShell session ends:

PS> Get-CimSession | Select-Object Id, ComputerName, Protocol

Id ComputerName Protocol
-- ------------ --------
 1 PSTEST WSMAN
 2 localhost DCOM
 3 PSTEST DCOM

 Using CIM sessions

Once a CIM session has been created, it can be used for one or more requests. In the following example, a CIM session is created and then used to gather disk and partition information:

$ErrorActionPreference = 'Stop'
try {
 $session = New-CimSession -ComputerName $env:COMPUTERNAME
 Get-Disk -CimSession $session
 Get-Partition -CimSession $session
} catch {
 throw
}

In the preceding script, if the attempt to create the session succeeds, the session will be used to get disk and partition information.

Error handling with try and catch is discussed in Chapter 21, Error Handling. The block is treated as a transaction; if a single command fails, the block will stop running. If the attempt to create a new session fails, Get-Disk and Get-Partition will not run.

 Summary

In this chapter, we explored remoting in PowerShell, starting with WS-Management, and took a look at the new SSH-transport features introduced with PowerShell Core. We discussed the double-hop problem, along with a number of possible ways to work around the issue. Finally, we covered CIM sessions briefly.

In the next chapter, we'll explore systems management using a number of the more common Microsoft systems.

 Asynchronous Processing

PowerShell prefers to run things synchronously, that is, sequentially, or one after another. However, it is frequently necessary to run many things simultaneously, without waiting for another command to complete. This is known as an asynchronous operation.

Operations of this nature may be local to the current machine, or might be used to run queries or code against remote systems.

PowerShell includes a number of different commands and classes that can be used to do more than one thing at a time. The most obvious of these are the job commands.

In addition to the job commands, PowerShell can react to .NET events, and can use Runspaces and Runspace pools.

This chapter explores the following topics:

	Working with jobs

	Reacting to events

	Using Runspaces and Runspace pools

 Working with jobs

The job commands in PowerShell provide a means of executing code asynchronously by creating a new PowerShell process for each job.

As each job executes within a new process, data cannot be shared between jobs. Any required modules, functions, or variables all need to be imported into each job.

In addition, jobs might be considered resource heavy as each job must start both a PowerShell process and a console window's host process.

PowerShell provides a number of commands to create and interact with jobs. In addition to the following commands, Invoke-Command with the AsJob parameter might be used when acting against remote systems.

 The Start-Job, Get-Job, and Remove-Job commands

The Start-Job command is most commonly used to execute a script block in a very similar manner to Invoke-Command. Start-Job may also be used to execute a script using the FilePath parameter.

When Start-Job is executed, a job object, System.Management.Automation.PSRemotingJob is created. The job object continues to be available using the Get-Job command regardless of whether the output from Start-Job is assigned. This is shown as follows:

PS> Start-Job -ScriptBlock { Start-Sleep -Seconds 10 }

Id Name PSJobTypeName State HasMoreData Location Command
-- ---- ------------- ----- ----------- -------- -------
 1 Job1 BackgroundJob Running True localhost Start-Sleep -Seconds 10

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command
-- ---- ------------- ----- ----------- -------- -------
 1 Job1 BackgroundJob Running True localhost Start-Sleep -Seconds 10

When a script is using jobs, the common practice is to capture the jobs created instead of relying entirely on Get-Job. This avoids problems if module used in a script also creates jobs. The state of the job is reflected on the job object; Get-Job is not required to update the status.

Job objects and any data the job has returned remain available until they are removed using the Remove-Job command.

Start-Job includes a RunAs32 parameter to run code under the 32-bit version of PowerShell if required.

The InitializationScript parameter of Start-Job may be used to isolate setup steps, such as importing modules, creating functions, and setting up variables. Each job executes in a separate thread, which means that values cannot be automatically shared.

Start-Job does not offer a throttling capability. PowerShell will simultaneously execute every job. Each job will compete for system resources. A while or do loop may be implemented to maintain a pool of running jobs:

$listOfJobs = 1..50
foreach ($job in $listOfJobs) {
 while (@(Get-Job -State Running).Count -gt 10) {
 Start-Sleep -Seconds 10
 }
 Start-Job { Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121) }
}

The jobs created here do not return any data and can therefore be removed as soon as they have completed. Data must be retrieved from a job before is it removed.

 The Receive-Job command

Receive-Job is used to retrieve data from a job. Receive-Job may be both as a script runs and when the script is finished. If Receive-Job is run before a job is finished, any existing values will be returned. Running Receive-Job again will get any new values that have been added, not previously filesystem, which retrieved values. This is shown in the following example:

PS> $job = Start-Job { 1..10 | ForEach-Object { $_; Start-Sleep -Seconds 2 } }
>> Write-Host 'Sleeping 2'
>> Start-Sleep -Seconds 2
>> $job | Receive-Job
>> Write-Host 'Sleeping 5'
>> Start-Sleep -Seconds 5
>> $job | Receive-Job

Sleeping 2
1
Sleeping 5
2
3
4

The remaining results will be available to Receive-Job as they are returned, or when the job has completed.

The Wait parameter of Receive-Job will receive data from the job as it becomes available and send it to the output pipeline. Receive-Job, along with the Wait parameter, may be useful when Start-Job is running a 32-bit process.

 The Wait-Job command

The Wait-Job command waits for all of the jobs in the input pipeline to complete. Wait-Job supports a degree of filtering and offers a timeout to define jobs to wait for.

In some cases, it is desirable to pull off output from jobs as they complete. This can be solved by creating a while or do loop in PowerShell, reacting to jobs as the state changes:

while (Get-Job -State Running) {
 $jobs = Get-Job -State Completed
 $jobs | Receive-Job
 $jobs | Remove-Job
 Start-Sleep -Seconds 1
}

A while loop does not have an output pipeline, if output is to be piped to another command it would need to be piped within the loop. For example, if the job output were filling a CSV file, Export-Csv would be added inside the loop and the Append parameter would be used:

while (Get-Job -State Running) {
 $jobs = Get-Job -State Completed
 $jobs | Receive-Job | Export-Csv output.csv -Append
 $jobs | Remove-Job
 Start-Sleep -Seconds 1
}

This technique is useful if the job is returning a large amount of data. Streaming output to a file as jobs complete will potentially help manage memory usage across a larger number of jobs.

This approach can be combined with the snippet, which limits the number of concurrent jobs. The tweak is shown as follows:

$listOfJobs = 1..50
$jobs = foreach ($job in $listOfJobs) {
 while (@(Get-Job -State Running).Count -gt 10) {
 Start-Sleep -Seconds 10
 }

 Start-Job { Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121) }
 Get-Job -State Completed | Receive-Job | Export-Csv output.csv -Append
}

$jobs | Wait-Job | Receive-Job | Export-Csv output.csv -Append

The final line is required to wait for and then receive the jobs that were still running when the last job was started.

 Reacting to events

Events in .NET occur when something of interest happens to an object. For instance, System.IO.FileSystemWatcher can be used to monitor a filesystem for changes; when something changes, an event will be raised.

Many different types of objects raise events when changes occur. Get-Member can be used to explore an instance of an object for Event members. For example, a Process object returned by the Get-Process command includes a number of events, shown as follows:

PS> Get-Process | Get-Member -MemberType Event

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Disposed Event System.EventHandler Disposed(System.Object, System.EventArgs)
ErrorDataReceived Event System.Diagnostics.DataReceivedEventHandler ErrorDataReceived(S...
Exited Event System.EventHandler Exited(System.Object, System.EventArgs)
OutputDataReceived Event System.Diagnostics.DataReceivedEventHandler OutputDataReceived(...

PowerShell can react to these events, executing code when an event occurs.

This section uses the events raised by FileSystemWatcher to demonstrate working with events. FileSystemWatcher is able to react to a number of different events, shown as follows:

PS> [System.IO.FileSystemWatcher]::new() | Get-Member -MemberType Event | Select-Object Name

Name

Changed
Created
Deleted
Disposed
Error
Renamed

The Changed and Created events will be used in the following examples.

 The Register-ObjectEvent and *-Event commands

Register-ObjectEvent is used to register interest in an event raised by a .NET object. The command creates a PSEventSubscriber object.

The Register-ObjectEvent command expects at least the name of the object that will be raising the event and the name of the event.

The following FileSystemWatcher instance watches the C:\Data folder. By default, the watcher will only watch for changes at that level, the IncludeSubDirectories property might be changed if this must change. Subscribers are created for the Changed and Created events in the following example:

$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
Register-ObjectEvent -InputObject $watcher -EventName Changed
Register-ObjectEvent -InputObject $watcher -EventName Created

If a file is created in the folder specified, an event will be raised. The Get-Event command can be used to view the event data:

PS> New-Item C:\Data\new.txt | Out-Null
PS> Get-Event

ComputerName :
RunspaceId : 46d2a562-2d07-4c58-9416-f82a3e9da5b8
EventIdentifier : 3
Sender : System.IO.FileSystemWatcher
SourceEventArgs : System.IO.FileSystemEventArgs
SourceArgs : {System.IO.FileSystemWatcher, new.txt}
SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e
TimeGenerated : 19/02/2019 17:29:53
MessageData :

The SourceEventArgs property contains a FileSystemEventArgs object. This object includes the type of change, the path, and the filename.

The event remains until it is removed using Remove-Event. If another event is raised, it will be returned by Get-Event in addition to the existing event.

Depending on the operation performed, FileSystemWatcher may return more than one event. When using Add-Content, a single event will be raised as follows:

PS> Get-Event | Remove-Event
PS> Add-Content C:\Data\new.txt -Value value
PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name
---------- -------- ----
 Changed C:\Data\new.txt new.txt

Set-Content is used when two events are raised. Set-Content makes two changes to the file, directly or indirectly. This will often be the case, depending on how an application interacts with the filesystem which is shown as follows:

PS> Get-Event | Remove-Event
PS> Set-Content C:\Data\new.txt -Value value
PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name
---------- -------- ----
 Changed C:\Data\new.txt new.txt
 Changed C:\Data\new.txt new.txt

Whether an event will trigger once or twice depends on the type in use, the event raised, and the subsystem that caused the event to be raised in the first place.

If events are being handled in the foreground using Get-Event, Wait-Event might be used to wait until an event is raised.

Wait-Event does not return any output

 Wait-Event stops as soon as an event is raised. Wait-Event does not return the event; any raised events must be retrieved using Get-Event.

 The Get-EventSubscriber and Unregister-Event commands

The Get-EventSubscriber command may be used to view any existing event handlers created using Register-ObjectEvent. For example, Get-EventSubscriber will display the subscribers created for FileSystemWatcher:

PS> Get-EventSubscriber

SubscriptionId : 4
SourceObject : System.IO.FileSystemWatcher
EventName : Changed
SourceIdentifier : 6516aebc-d191-44b5-a38f-60314f606102
Action :
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

SubscriptionId : 5
SourceObject : System.IO.FileSystemWatcher
EventName : Created
SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e
Action :
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

If the subscribers are no longer required, they can be removed using the Unregister-Event command. The following command removes all registered event subscribers:

Get-EventSubscriber | Unregister-Event

 The Action, Event, EventArgs, and MessageData parameters

The Action parameter of Register-ObjectEvent allows a script block to be automatically triggered when an event is raised.

The script block can use a reserved variable, $event, which is equivalent to the output from Get-Event. In the following example, the event subscriber includes an action, which creates a log message. The log messages are written to file in a different folder; if they were written to the same folder, a loop would be created:

New-Item C:\Audit -ItemType Directory
$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
$params = @{
 InputObject = $watcher
 EventName = 'Changed'
 Action = {
 $event.SourceEventArgs | Export-Csv C:\Audit\DataActivity.log -Append
 }
}
Register-ObjectEvent @params

If a file is created in the C:\Data folder, an event will be raised and an entry will be created in C:\Audit\DataActivity.log:

PS> Set-Content C:\Data\new.txt -Value new
PS> Import-Csv C:\Audit\DataActivity.log

ChangeType FullPath Name
---------- -------- ----
Changed C:\Data\new.txt new.txt
Changed C:\Data\new.txt new.txt

Additional information can be passed to the Action script block using the MessageData parameter. MessageData is an arbitrary object that contains user-defined information. Before continuing to the example, the event subscriber we just created should be removed. The log file is also deleted as the format of the file will be changed:

Get-EventSubscriber | Unregister-Event
Remove-Item C:\Audit\DataActivity.log

The following example adds a date stamp to the log entry, and a custom message which is supplied via MessageData. The values passed in using the MessageData parameter are made available as a MessageData property on the $event variable:

$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
$params = @{
 InputObject = $watcher
 EventName = 'Changed'
 Action = {
 $user = $event.MessageData |
 Where-Object { $event.SourceEventArgs.Name -match $_.Expression } |
 Select-Object -ExpandProperty User -First 1

 $event.SourceEventArgs |
 Select-Object @(
 @{Name = 'Date'; Expression = { Get-Date -Format u }}
 'ChangeType'
 'FullPath'
 @{Name = 'Responsible Person'; Expression = { $user }}
) |
 Export-Csv C:\Audit\DataActivity.log -Append
 }
 MessageData = @(
 [PSCustomObject]@{ Expression = '\.txt$'; User = 'Sarah' }
 [PSCustomObject]@{ Expression = '\.mdb'; User = 'Phil' }
)
}
Register-ObjectEvent @params

Setting the content of a file in the C:\Data folder will trigger the event subscriber. An entry will be written to the log file using the entry from MessageData:

PS> Set-Content C:\Data\test.mdb 1
PS> Import-Csv C:\Audit\DataActivity.log

Date ChangeType FullPath Responsible Person
---- ---------- -------- ------------------
2019-02-19 18:30:04Z Changed C:\Data\test.mdb Phil

The event subscribers should be removed if they are no longer required. Closing the PowerShell session will remove all event subscribers.

 Using Runspaces and Runspace pools

Runspaces and Runspace pools are an efficient way of asynchronously executing PowerShell code. Runspaces are far more efficient than jobs as they execute in the same process. The main disadvantage is complexity: PowerShell does not include native commands to simplify working with these classes.

Fortunately, PowerShell is highly extensible. Two third-party modules have been created to work with Runspaces:

	PoshRSJob: https://www.powershellgallery.com/packages/PoshRSJob

	ThreadJob: https://www.powershellgallery.com/packages/ThreadJob

Both modules work with Windows PowerShell and PowerShell Core.

The PoshRSJob module is very mature and has a rich set of features. It is the most frequently recommended module, providing an alternative to the Start-Job command.

ThreadJob has promise; it interacts with the existing job commands, such as Get-Job, Wait-Job, and Receive-Job. However, the module is far less mature than PoshRSJob and does not include documentation.

When you need a bit more flexibility or efficiency, it's helpful to understand how PowerShell uses these component modules.

 Creating a PowerShell instance

PowerShell instances are created using the Create static method of the System.Management.Automation.PowerShell type. A type accelerator exists for this type and the name can be shortened:

$psInstance = [PowerShell]::Create()

System.Management.Automation.PowerShell or PowerShell

The usage is slightly confusing as both the console host and the type used here are normally referred to as PowerShell.

References to instances of System.Management.Automation.PowerShell as PowerShell are highlighted in this section.

The object created by the Create method has a fluent interface. Methods can be chained one after another without assigning a value. The following example adds a single command and a parameter, and then runs the command:

[PowerShell]::Create().AddCommand('Get-Process').AddParameter('Name', 'powershell').Invoke()

A complex script can be built in this manner. If two commands are chained together, they are assumed to be part of the same statement, implementing a pipeline. The AddStatement method is used to start a new statement, ending the current command pipeline:

[PowerShell]::Create().AddCommand('Get-Process').AddParameter('Name', 'powershell').
 AddStatement().
 AddCommand('Get-Service').
 AddCommand('Select-Object').AddParameter('First', 1).
 Invoke()

The result of the preceding example is equivalent to the following script:

Get-Process -Name powershell
Get-Service | Select-Object -First 1

The AddCommand, AddParameter, and AddStatement methods demonstrated so far are particularly useful when assembling a script programmatically. If the script content is already known, the script can be added using the AddScript method:

$script = @'
 Get-Process -Name powershell
 Get-Service | Select-Object -First 1
'@
[PowerShell]::Create().AddScript($script).Invoke()

The script is added as a string, not as a script block. When creating the script, be mindful of variable interpolation. Interpolation is avoided in the following example by enclosing the script content in single quotes.

The AddScript method can be used in conjunction with any of the other methods used here to build a complex set of commands.

 The Invoke and BeginInvoke methods

The Invoke method used with each of the following examples executes the code immediately and synchronously. The BeginInvoke method is used to execute asynchronously, that is, without waiting for the last operation to complete.

Both the PowerShell instance object and the IASyncResult returned by BeginInvoke must be captured. Assigning the values allows continued access to the instances and is required to retrieve output from the commands:

$psInstance = [PowerShell]::Create().AddCommand('Start-Sleep').AddParameter('Seconds', 300)
$asyncResult = $psInstance.BeginInvoke()

While the job is running, the InvocationStateInfo property of the PowerShell object will show as Running:

PS> $psInstance.InvocationStateInfo

State Reason
----- ------
Running

This state is reflected on the IASyncResult object held in the $asyncResult variable:

PS> $asyncResult

CompletedSynchronously IsCompleted AsyncState AsyncWaitHandle
---------------------- ----------- ---------- ---------------
 False False System.Threading.ManualResetEvent

When the command completes, both objects will reflect that state:

PS> $psInstance.InvocationStateInfo.State
Completed

PS> $asyncResult.IsCompleted
True

Setting either (or both) of these variables to null does not stop the script executing in the PowerShell instance. Doing so only removes the variables assigned, making it impossible to interact with the Runspace:

$psInstance = [PowerShell]::Create().AddScript('
 1..60 | ForEach-Object {
 Add-Content -Path c:\temp\output.txt -Value $_
 Start-Sleep -Seconds 1
 }
')
$asyncResult = $psInstance.BeginInvoke()
$psInstance = $null
$asyncResult = $null

The script continues to execute, filling the output file. The following file may be using Get-Content:

Get-Content c:\temp\output.txt -Wait

If the work of the script is no longer required, the Stop method should be called instead of setting variables to null:

$psInstance = [PowerShell]::Create()
$psInstance.AddCommand('Start-Sleep').AddParameter('Seconds', 120)
$psInstance.Stop()

A terminating error is raised when the Stop method is called. If the output from the instance is retrieved using the EndInvoke method, a The pipeline has been stopped error message will be displayed.

 The EndInvoke method and the PSDataCollection object

EndInvoke is one of two possible ways to get output from a PowerShell instance. The EndInvoke method may be called as follows:

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddScript('1..10').BeginInvoke()
$psInstance.EndInvoke($asyncResult)

If the invocation has not finished, EndInvoke will block execution until it has completed.

The second possible method involves passing a PSDataCollection object to the BeginInvoke method:

$instanceInput = [System.Management.Automation.PSDataCollection[PSObject]]::new()
$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddScript('
 1..10 | ForEach-Object {
 Start-Sleep -Seconds 1
 $_
 }
').BeginInvoke(
 $instanceInput,
 $instanceOutput
)

The $psInstance and $asyncResult variables are still used to determine whether the script has completed. Results are available in $instanceOutput as they become available. Attempting to access $instanceOutput in the console will block execution until the script completes. New values added to the collection will be displayed as they are added.

The unused $instanceInput variable in the preceding example may be populated with values for an input pipeline if required, for example:

$instanceInput = [System.Management.Automation.PSDataCollection[PSObject]](1..10)
$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddCommand('ForEach-Object').AddParameter('Process', { $_ }).BeginInvoke(
 $instanceInput,
 $instanceOutput
)

The AddCommand method was used in the preceding example as ForEach-Object will act on an input pipeline. A script can accept pipeline input within a process block; pipeline input is not implicitly passed to the commands within the script. The following example implements an input pipeline and uses the built-in $_ variable to repeat the numbers from the input pipeline:

$instanceInput = [System.Management.Automation.PSDataCollection[PSObject]](1..10)
$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$asyncResult = $psInstance.AddScript('
 process {
 $_
)
').BeginInvoke(
 $instanceInput,
 $instanceOutput
)

Each of the examples so far has concerned itself with running a single script or a set of commands.

 Running multiple instances

As an individual instance is executing asynchronously with BeginInvoke, several may be started. In each case, both the PowerShell object and the IASyncResult object should be preserved:

$jobs = 1..5 | ForEach-Object {
 $instance = [PowerShell]::Create().AddScript('
 Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)
 ')
 [PSCustomObject]@{
 Id = $instance.InstanceId
 Instance = $instance
 AsyncResult = $instance.BeginInvoke()
 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {
 $this.Instance.InvocationStateInfo.State
 }
}

Each job will continue for a random number of seconds and then complete. As each job completes, the State property created by Add-Member will change to reflect that:

PS> $jobs | Select-Object Id, State

Id State
-- -----
de79dcc3-8092-4592-a89e-271fc2b8b65e Completed
85de5d4d-f754-461d-88da-ac5c7948c546 Running
eb8e0b84-2a47-4379-bd89-e7e523201033 Running
6357a4c3-b6d1-4a9f-8f88-ee3ac0891eb1 Running
3dc050fe-8ff9-4f93-afa9-86768bd3b407 Completed

The following snippet might be used to wait for all of the jobs to complete:

while ($jobs.State -eq 'Running') {
 Start-Sleep -Milliseconds 100
}

If the number of jobs is significantly larger, the system running the jobs might well become overwhelmed.

 Using the RunspacePool object

RunspacePool can be used to overcome the problem of overwhelming a system. The pool can be configured with a minimum and maximum number of threads to execute at any point in time.

The RunspacePool object is created using the RunspaceFactory type, as follows:

[RunspaceFactory]::CreateRunspacePool(1, 5)

RunspacePool must be opened before it can be used. The same pool is set for each of the PowerShell instances that expects to use the pool:

$runspacePool = [RunspaceFactory]::CreateRunspacePool(1, 2)
$runspacePool.Open()
$jobs = 1..10 | ForEach-Object {
 $instance = [PowerShell]::Create().AddScript('Start-Sleep -Seconds 10')
 $instance.RunspacePool = $runspacePool
 [PSCustomObject]@{
 Id = $instance.InstanceId
 Instance = $instance
 AsyncResult = $instance.BeginInvoke()
 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {
 $this.Instance.InvocationStateInfo.State
 }
}

Each of the jobs will show as running, but only two will complete at a time, based on the maximum set for the pool in the following example. After 10 seconds, the state of the jobs will be similar to the following:

PS> $jobs | Select-Object Id, State

Id State
-- -----
63e2ab2d-613a-4c9c-8f21-d93c8a126008 Completed
781e4a08-04d6-4927-986a-e116fb16a852 Completed
1d80c45d-326b-423b-93d9-21703e747a93 Running
6840dfb1-f47d-4977-868f-697fcbb8af7e Running
6f3aa668-f680-40b6-8a94-c9d04693b1ad Running
868f324c-7ba5-4913-83a9-345d8f356aec Running
318a44ec-b390-45a5-a2cc-0272c1e2ad20 Running
ced0f017-1a1c-42d0-9c53-9e09f9c8ace9 Running
9d003c91-6a2b-4d6f-820e-975fffeb57d8 Running
71818997-b55e-41d6-bdf2-e62426036863 Running

When all processing is finished, all objects should be explicitly disposed of to ensure they are closed down:

$jobs.Instance | ForEach-Object Dispose
$runspacePool.Dispose()

After Dispose has been run, the variables might be set to null. Objects that are no longer referenced will be removed by garbage collection. Garbage collection can be run immediately using the following command if a large amount of memory was committed when running the jobs:

[GC]::Collect()

Runspace pools are incredibly useful. To improve the utility of the pool, it can be seeded with modules, functions, and variables before the pool is opened.

 About the InitialSessionState object

InitialSessionState is used by Runspace or RunspacePool to describe a starting point. The InitialSessionState object may have modules, functions, or variables added.

PowerShell provides several different options for creating InitialSessionState. This is achieved using a set of static methods. The most commonly used are CreateDefault and CreateDefault2. For example, CreateDefault2 is used as follows:

$initialSessionState = [InitialSessionState]::CreateDefault2()

The difference between CreateDefault and CreateDefault2 is that CreateDefault includes engine snap-ins, while CreateDefault2 does not.

PowerShell Core does not use snap-ins

PowerShell Core does not include support for snap-ins. The difference between the two methods is therefore not apparent on PowerShell Core.

CreateDefault2 is therefore slightly more lightweight and is more appropriate for more recent versions of PowerShell.

The difference may be shown by creating and comparing the list of snap-ins in each case:

PS> [PowerShell]::Create([InitialSessionState]::CreateDefault()).AddCommand('Get-PSSnapIn').Invoke().Name

Microsoft.PowerShell.Diagnostics
Microsoft.PowerShell.Host
Microsoft.PowerShell.Core
Microsoft.PowerShell.Utility
Microsoft.PowerShell.Management
Microsoft.PowerShell.Security
Microsoft.WSMan.Management

CreateDefault2 only adds the Microsoft.PowerShell.Core snap-in, as follows:

PS> [PowerShell]::Create([InitialSessionState]::CreateDefault2()).AddCommand('Get-PSSnapIn').Invoke().Name

Microsoft.PowerShell.Core

Items can be added to InitialSessionState before Runspace (or RunspacePool) is opened.

 Adding modules and snap-ins

Modules are added using the ImportPSModule method of InitialSessionState:

$initialSessionState = [InitialSessionState]::CreateDefault2()
$initialSessionState.ImportPSModule('Pester')

Several modules can be added with the same method. Modules can be specified by name, in which case the most recent will be used. A module may be specified using a hashtable that describes a name and version information:

$initialSessionState.ImportPSModule(@(
 'NetAdapter'
 @{ ModuleName = 'Pester'; ModuleVersion = '4.6.0' }
))

MaximumVersion and RequiredVersion may also be used with the hashtable.

A snap-in may be imported in Windows PowerShell using the ImportPSSnapIn method. The method requires the name of a single snap-in, and a reference to a variable to hold any warnings raised during import:

$warning = [System.Management.Automation.Runspaces.PSSnapInException]::new()
$initialSessionState.ImportPSSnapIn('WDeploySnapin3.0', [Ref]$warning)

If multiple snap-ins are required, the ImportPSSnapIn method must be called once for each.

 Adding variables

InitialSessionState objects created using CreateDefault2 will include all of the built-in variables with default values. The value of these variables cannot be changed before the session is opened.

Additional variables can be added using the Add method of the Variables property. Variables are defined as a SessionStateVariableEntry object. An example of adding a variable is shown here:

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'Variable',
 'Value',
 'Optional description'
)

$initialSessionState = [InitialSessionState]::CreateDefault2()
$initialSessionState.Variables.Add($variableEntry)

Several overloads are available, each allowing the variable to be defined in greater detail. For example, a variable with the Private scope may be created:

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'PrivateVariable',
 'Value',
 'Optional description',
 [System.Management.Automation.ScopedItemOptions]::Private
)

$initialSessionState.Variables.Add($variableEntry)

Defining a fixed type for a variable is more difficult, the ArgumentTypeConverterAttribute needed to do this is private and difficult to create in PowerShell. To work around this problem, a variable might be created with the required attributes, then SessionStateVariableEntry can be created from the variable:

[ValidateSet('Value1', 'Value2')][String]$ComplexVariable = 'Value1'

$variable = Get-Variable ComplexVariable
$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 $variable.Name,
 $variable.Value,
 $variable.Description,
 $variable.Options,
 $variable.Attributes
)

$initialSessionState.Variables.Add($variableEntry)

Using this approach allows complex variables to be defined within the session.

 Adding functions

Functions and other commands can be added to the InitialSessionState object in much the same way as variables. If a function is within a module, the module should be imported instead.

Functions, as SessionStateFunctionEntry objects, are added to the Commands property of the InitialSessionState object.

Simple functions can be added by defining the body of the function inline, as follows:

$functionEntry = [System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(
 'Write-Greeting',
 'Write-Host "Hello world"'
)

$initialSessionState.Commands.Add($functionEntry)

Functions may be added with scope options in the same way as is done with variables. Scoping is rarely used with functions.

If the function already exists in the current session, the output of Get-Command might be used to fill the SessionStateFunctionEntry object:

function Write-Greeting {
 Write-Host 'Hello world'
}

$function = Get-Command Write-Greeting
$functionEntry = [System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(
 $function.Name,
 $function.Definition
)

$initialSessionState.Commands.Add($functionEntry)

Once the InitialSessionState object is filled with the required objects, it may be used to create a PowerShell instance or a RunspacePool.

 Using the InitialSessionState and RunspacePool objects

The RunspacePool object can be created using RunspaceFactory. RunspacePool can be created with either the minimum and maximum number of concurrent threads, or an InitialSessionState object. Creating the pool using an InitialSessionState object is shown here:

$initialSessionState = [InitialSessionState]::CreateDefault2()
$runspacePool = [RunspaceFactory]::CreateRunspacePool($initialSessionState)

Any extra entries required in the InitialSessionState must either be added using the $intialSessionState variable before RunspacePool is created, or extra entries must be added using $runspacePool.InitialSessionState after RunspacePool is created. Changes cannot be made after RunspacePool has been opened.

If RunspacePool is created with InitialSessionState, the SetMinRunspaces and SetMaxRunspaces methods can be used to adjust the minimum and maximum number of threads. The default value for both the minimum and maximum is 1. The following example changes the maximum:

$runspacePool.SetMaxRunspaces(5)

The GetMinRunspaces and GetMaxRunspaces methods may be used to retrieve the current values.

RunspacePool is then used as shown in the Using the RunspacePool object section.

 Using Runspace-synchronized objects

A number of classes in .NET offer Runspace synchronization. This means that an instance of an object can be made accessible from Runspaces that share a common parent.

The most commonly used Runspace-synchronized object is a hashtable. The hashtable is created using the Synchronized static method of the Hashtable type:

$synchronizedHashtable = [Hashtable]::Synchronized(@{
 Key = 'Value'
})

The synchronized hashtable can be added to an InitialSessionState object and then used within a script or command that is running in a Runspace. The changes made to the hashtable within the runspace are visible outside:

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'synchronizedHashtable',
 $synchronizedHashtable,
 ''
)

$runspace = [RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())
$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()
$psInstance.Runspace = $runspace
$runspace.Open()

$psInstance.AddScript('$synchronizedHashtable.Add("NewKey", "NewValue")').Invoke()

After the script has completed, the key added by the script will be visible in the parent Runspace, the current PowerShell session.

In addition to the Runspace-synchronized hashtable, an ArrayList might be created in a similar manner, as follows:

[System.Collections.ArrayList]::Synchronized([System.Collections.ArrayList]::new())

.NET also offers classes in the System.Collections.Concurrent namespace, which offers similar cross-Runspace access: https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent.

For example, ConcurrentStack might be used as follows:

$stack = [System.Collections.Concurrent.ConcurrentStack[PSObject]]::new()
$stack.Push('Value')

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'stack',
 $stack,
 ''
)

$runspace = [RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())
$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()
$psInstance.Runspace = $runspace
$runspace.Open()

$psInstance.AddScript('
 $value = 0
 if ($stack.TryPop([Ref]$value)) {
 $value
 }
').Invoke()

Each of the collection types in the System.Collections.Concurrent namespace offers similar Try methods to access elements.

 Summary

In this chapter, we briefly explored the job commands built into PowerShell; since they are built in, they are a solid starting point for running asynchronous operations.

Event subscribers are used to reacting to events, or things of interest, that happen. The event commands are used to work with events on .NET objects.

Finally, we looked at how Runspaces and Runspace pools can be used in PowerShell as an efficient method of working asynchronously.

In the next chapter, we will explore the building blocks of larger scripts.

 Section 4: Extending PowerShell

In this section, we will look at adding and implementing new functionality in PowerShell.

The following chapters are included in this section:

	Chapter 16, Scripts, Functions, and Filters

	Chapter 17, Parameters, Validation, and Dynamic Parameters

	Chapter 18, Classes and Enumerations

	Chapter 19, Building Modules

	Chapter 20, Testing

	Chapter 21, Error Handling

 Scripts, Functions, and Filters

Functions can be described as building blocks in PowerShell. Functions are used to break up code into manageable sections. A function should strive to be good at one job. Functions are often used to build scripts; the script uses functions as a means of concisely describing the steps it is taking. Functions are often grouped together in modules. The functions within a module often share a common purpose or act on a single system. A filter is a specialized function, and are briefly explored in this chapter as they have been part of PowerShell since version 1.

This chapter explores the following topics:

	Introducing scripts, functions, and filters

	Begin, Process, and End

	Param, parameters, and CmdletBinding

	ShouldProcess and ShouldContinue

 Introducing scripts, functions, and filters

Scripts, functions, and filters have equivalent functionality: all are considered to be commands. The most significant difference is how the command is stored and presented. A script is saved in a file with a ps1 extension. Functions and filters can be created directly in the console, dot-sourced from a ps1 file, or imported from a module.

The difference between a function and a filter is small and will be described when we explore Begin, Process, and End in this chapter. Filters are otherwise exactly like functions. Using filters is not recommended; they are extremely rare and may confuse others attempting to maintain a piece of code.

 Scripts and Requires

The Requires statement is valid only in scripts and may be used to restrict a script from running if certain conditions are not met. For example, a script may require administrative rights, or certain modules.

The Requires statement must be the first line in the script; comments and other code may not appear before it.

An example of the Requires statement is shown here:

#Requires -RunAsAdministrator -Modules @{ ModuleName = 'TLS'; ModuleVersion = '2.0.0' }

Notice that there is no space between the comment character, #, and the Requires keyword.

PowerShell includes help for the Requires statement:

Get-Help about_Requires

In a script, the Requires statement may be used to declare a need for administrative rights, or certain modules.

 Scripts and using statements

A function may benefit from using statements, provided they are declared in the parent scope. The parent scope includes code run on the console, a script that contains a function, or a module (psm1 file) that contains a function.

Using statements, introduced with PowerShell 5, appear throughout this book. An example of a using statement is shown here:

using assembly System.Xml.Linq
using namespace System.Xml.Linq

 Nesting functions

In the same way that a script can contain functions, a function can contain other functions. This is shown in the following example:

function Outer {
 param (
 $Parameter1
)

 function Inner1 {
 }
 function Inner2 {
 }

 Write-Host 'Hello world'
}

This technique can be used to isolate small repeated sections of code with a function.

Nested functions must appear before they are used, but otherwise can appear anywhere in the body of the function.

The disadvantage of nesting a function in this manner is that it becomes much harder to test as a unit of code. The function only exists in the context of its parent function; it cannot be called from the scope above that. This is an important consideration when developing a function as part of a module.

 Comment-based help

Comment-based help was introduced with PowerShell 2 and allows the developer to provide content for Get-Help without needing to understand and work with the far more complex MAML help files.

About MAML

MAML stands for Microsoft Assistance Markup Language and is an XML format.

MAML must be used for binary modules (modules that contain commands compiled into a dll) that cannot support comment-based help.

The format offers greater control over help content, is used to deliver updateable help, and is the only way to support language localization. Further information on this topic can be found in Microsoft's module developer help content:

https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules.

 Tools such as the PlatyPS module (https://github.com/PowerShell/platyPS) can help. Help content can be written in markdown, which can be used to generate a MAML-based help file.

PowerShell includes help for authoring comment-based help:

Get-Help about_Comment_Based_Help

Comment-based help uses a series of keywords that match up to the different help sections. The most commonly used are listed here:

	.SYNOPSIS

	.DESCRIPTION

	.PARAMETER <Name>

	.EXAMPLE

	.INPUTS

	.OUTPUTS

	.NOTES

	.LINK

.SYNOPSIS and .DESCRIPTION are mandatory when writing help. Each of the other sections is optional.

.PARAMETER, followed by the name of a parameter, will be included once for each parameter.

.EXAMPLE may be used more than once, describing as many examples as desired.

The tag names are not case-sensitive; upper-case is shown here as it is one of the most widely adopted practices. Spelling mistakes in these section names may prevent help appearing altogether; it is important to be careful when writing comment-based help.

Comment-based help may be used with scripts, functions, and filters and is most often placed first in the body of a script. In a script, comment-based help is often written as follows:

<#
.SYNOPSIS
 Briefly describes the main action performed by script.ps1
.DESCRIPTION
 A detailed description of the activities of script.ps1.
#>

In a function, help is most commonly written as follows:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 #>
}

 Parameter help

Parameter help is most often written using the .PARAMETER tag, as shown in the following example:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 .PARAMETER Parameter1
 Describes the purpose of Parameter1.
 .PARAMETER Parameter2
 Describes the purpose of Parameter2.
 #>

 param (
 $Parameter1,
 $Parameter2
)
}

It is also possible to write the help for a parameter above the parameter itself:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 #>

 param (
 # Describes the purpose of Parameter1.
 $Parameter1,

 # Describes the purpose of Parameter2.
 $Parameter2
)
}

One possible advantage of this approach is that it is easy to see which parameters have help and which do not.

Regardless of where help is written for a parameter, Get-Help will read the value:

PS> Get-Help Get-Something -Parameter Parameter1

-Parameter1 <Object>
 Describes the purpose of Parameter1.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? false

 Examples

Get-Help expects examples to start with one or more lines of code, followed by a description of the example, for example:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 .EXAMPLE
 $something = Get-Something
 $something | Do-Something

 Gets something from somewhere.
 #>

 param (
 # Describes the purpose of Parameter1.
 $Parameter1,

 # Describes the purpose of Parameter2.
 $Parameter2
)
}

The help parser is quite simple when it comes to comment-based help. Only the very first line of an example is considered to be code. This can be demonstrated by exploring the object returned by Get-Help based on the preceding example:

PS> (Get-Help Get-Something -Examples).examples[0].example.code
$something = Get-Something

The rest of the code is part of the remark. It is only possible to overcome this parsing problem by writing help in MAML.

 Working with long lines

There are several techniques that can be used when writing scripts to avoid excessively long lines of code. The goal is to avoid needing to scroll to the right when reviewing code. A secondary goal is to avoid littering a script with the tick character, `.

Adding extra line breaks is often a balancing act. Both too many and too few can make it harder to read a script.

Splatting was introduced in the first chapter of this book as a means of dealing with commands that require more than a couple of parameters. It remains an important technique for avoiding excessively long lines.

 Line break after pipe

The most obvious technique is perhaps to add a line break after a pipe, for example:

Get-Process |
 Where-Object Name -match 'po?w(er)?sh(ell)?'

This is useful for long pipelines, but may be counterproductive for short pipelines. For example, the following short pipeline ends with ForEach-Object. The statement is not necessarily long enough to need extra line breaks:

Get-Service | Where-Object Status -eq Running | ForEach-Object {
 # Do work on the service
}

 Line break after an operator

It is possible to add a line break after any of the operators. The most useful place for a line break is often after a logic operator is used to combine several comparisons, for example:

Get-Service | Where-Object {
 $_.Status -eq 'Running' -and
 $_.StartType -eq 'Manual'
}

One of the less obvious operators is the property dereference operator, .. A line break may be added after calling a method of accessing a property. This is shown in the following example:

{ A long string in a script block }.ToString().
 SubString(0, 15).
 Trim().
 Length

 Using the array operator to break up lines

The array operator, @(), can break up arrays that are used as arguments into operators, or values for parameters.

For example, the format operator, -f, may be used in place of sub-expressions or variable interpolation. @() may be used to define an array to hold the arguments for the operator. The following example shows two different ways of creating the same string:

$item = Get-Item C:\Windows\explorer.exe

Sub-expressions and variable interpolation
"The file, $($item.Name), with path $item was last written on $($item.LastWriteTime)"

The format operator
'The file, {0}, with path {1} was last written on {2}' -f @(
 $item.Name
 $item
 $item.LastWriteTime
)

The same approach may be used for replace operations that use particularly long regular expressions. For example, this replace operation attempts to apply a standard format to a UK telephone number. The regular expression benefits from being on a new line:

$ukPhoneNumbers = '+442012345678', '0044(0)1234345678', '+44 (0) 20 81234567', '01234 456789'
$ukPhoneNumbers -replace @(
 '^(?:(?:\+|00)\d{2})?[-]*(?:\(?0\)?[-]*)?([138]\d{1,3}|20)[-]*(\d{3,4})[-]*(\d{3,4})$'
 '+44 $1 $2 $3'
)

@() may also be used with arguments for commands, such as Select-Object:

Get-NetAdapter | Select-Object @(
 'Name'
 'Status'
 'MacAddress'
 LinkSpeed'
 @{ Name = 'IPAddress'; Expression = { ($_ | Get-NetIPAddress).IPAddress }}
)

It is possible to add line breaks into the hashtable that describes the IPAddress property in the preceding example. Doing so may be beneficial if the Expression script grows to be complex.

 Begin, process, and end

A script or function often begins with comment-based help, followed by a param block, and then one or more of the named blocks may be used.

In a script or function, if none of the blocks are declared, content is automatically placed in the end block.

In a filter, if none of the blocks are declared, content is automatically placed in the process block. This is the only difference between a function and a filter.

The named blocks refer to the processing of a pipeline and therefore make the most sense if the command is working on pipeline input.

This difference in default block is shown in the following pipeline example. The function must explicitly declare a process block to use the $_ variable. The filter can leverage the default block:

PS> function first { process { $_ } } # end block by default
PS> filter second { $_ } # process block by default
PS> 1..2 | first # Outputs the value of $_ from explicit process
1
2
PS> 1..2 | second # Outputs the value of $_ from implicit process
1
2

Misuse of begin, process, and end

It is not uncommon to see begin, process, and end blocks used as regions, grouping the code required to set up, run, and tear down a function or script.

Care must be taken if converting such a function to accept pipeline input. It is often the case that all of the content must be moved to the process block to make sense of a function in a pipeline.

It is wise to plan to support an input pipeline for a command. However, using named blocks is optional. If a command is not expected to work on a pipeline, the content can be left to fall into the default block.

 Begin

The begin block runs before pipeline-processing starts. A pipeline that contains several commands will run each of the begin blocks for each command in turn first.

The following example shows a short function with a begin block:

function Show-Pipeline {
 begin {
 Write-Host 'Pipeline start'
 }
}

The content of the begin block runs before the pipeline starts, before any pipeline input is accepted.

If a parameter accepts pipeline input, that input is not available to the begin block.

Begin can be used to create things that are reused by the process block, in essence setting up the initial conditions for a loop.

 Process

The content of the process block runs once for each value received from the pipeline. The built-in $_ variable may be used to access objects in the pipeline within the process block:

function Show-Pipeline {
 begin {
 $position = $myinvocation.PipelinePosition
 Write-Host "Pipeline position ${position}: Start"
 }

 process {
 Write-Host "Pipeline position ${position}: $_"
 $_
 }
}

When an object is passed to the pipeline, the start message will be shown before the numeric value:

PS> $result = 1..2 | Show-Pipeline
Pipeline position 1: Start
Pipeline position 1: 1
Pipeline position 1: 2

Adding Show-Pipeline to the end of the pipeline will show that begin executes twice before process runs:

PS> $result = 1..2 | Show-Pipeline | Show-Pipeline
Pipeline position 1: Start
Pipeline position 2: Start
Pipeline position 1: 1
Pipeline position 2: 1
Pipeline position 1: 2
Pipeline position 2: 2

The $result variable will contain the output of the last Show-Pipeline command.

 End

The end block executes after process has acted on all objects in the input pipeline.

The end block cannot use the $_ automatic variable. Parameters that accept pipeline input will be filled with the last value from the process block:

function Show-Pipeline {
 begin {
 $position = $myinvocation.PipelinePosition
 Write-Host "Pipeline position ${position}: Start"
 }

 process {
 Write-Host "Pipeline position ${position}: $_"
 $_
 }

 end {
 Write-Host "Pipeline position ${position}: End"
 }
}

Running this command in a pipeline shows the end executing after all items in the input pipeline have been processed:

PS> $result = 1..2 | Show-Pipeline
Pipeline position 1: Start
Pipeline position 1: 1
Pipeline position 1: 2
Pipeline position 1: End

Commands that make extensive use of the end block include Measure-Object, ConvertTo-Html, and ConvertTo-Json. Such commands cannot return output until the end because the output is only valid when complete. The same is true of any other command that must gather input during a process, and output something on completion.

A simple command to count the number of elements in an input pipeline is shown here. The process block is unable to determine this; it must run again and again until the input pipeline is exhausted:

function Measure-Item {
 begin {
 $count = 0
 }

 process {
 $count++
 }

 end {
 $count
 }
}

 Named blocks and return

The return keyword may be used to gracefully end the execution of a piece of code.

The return keyword is often confused with return in C#, where it explicitly returns a thing from a method. In PowerShell, return has a slightly different purpose.

When a named block is executing, the return keyword may be used to end the processing of a block early without stopping the rest of the pipeline.

For example, a return statement in the process block ends early in certain cases. The end block will continue to execute as normal:

function Invoke-Return {
 process {
 if ($_ -gt 2) {
 return
 }
 $_
 }

 end {
 'All done'
 }
}

When run, the process block will end early when the condition is met:

PS> 1..10 | Invoke-Return
1
2
All done

 Leaky functions

PowerShell does not have a means of strictly enforcing the output from a script or function.

Any statement—composed of any number of commands, variables, properties, and method calls—may generate output. This output will be automatically sent to the output pipeline by PowerShell as it is generated. Unanticipated output can cause bugs in code.

The following function makes use of the StringBuilder type. Many of the methods on StringBuilder return the StringBuilder instance. This is shown here:

PS> using namespace System.Text
PS> $stringBuilder = [StringBuilder]::new()
PS> $stringBuilder.AppendLine('First')

Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 7

This is useful in that it allows chaining to build up a more complex string in a single statement. The following function makes use of that chaining to build up a string:

using namespace System.Text

function Get-FirstService {
 $service = Get-Service | Select-Object -First 1
 $stringBuilder = [StringBuilder]::new()
 $stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine()
 $stringBuilder.ToString()
}

When the function is run, both the StingBuilder object and the assembled string will be written to the output pipeline:

PS> Get-FirstService

Capacity MaxCapacity Length
-------- ----------- ------
 64 2147483647 37
Name: aciseagent
Status: Running

This example is contrived and writing the function slightly differently would resolve the problem. However, this problem is not unique to the type used here.

When writing a function or script, it is important to be aware of the output of the statements used. If a statement generates output, and that output is not needed, it must be discarded. PowerShell will not automatically discard output from commands in functions and scripts.

There are a number of techniques available for dropping unwanted output.

 The Out-Null command

The Out-Null command can be used at the end of a pipeline to discard the output from a statement.

The Out-Null command is relatively unpopular in Windows PowerShell as it is slow. In PowerShell Core, the speed issue is resolved, since Out-Null is one of the fastest—if not the fastest—of the available options.

Sticking with the StringBuilder example, the unwanted value might have dropped by appending Out-Null, as shown here:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine() | Out-Null
$stringBuilder.ToString()

One criticism that might be leveled against Out-Null is that it appears at the end of the pipeline and is therefore more difficult to see.

 Assigning to null

Assigning a statement to the null variable is a popular way of dropping unwanted output. It has the advantage of being obvious, in that it appears at the beginning of the statement. This method is fast in all versions of PowerShell:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
$null = $stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine()
$stringBuilder.ToString()

 Redirecting to null

Redirection to null, such as Out-Null, can be added at the end of a statement to discard output. This is shown here:

using namespace System.Text
$service = Get-Service | Select-Object -First 1
$stringBuilder = [StringBuilder]::new()
$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine() > $null
$stringBuilder.ToString()

 Casting to Void

It is possible to cast to System.Void to discard output. When using the StringBuilder example, this is a clean approach:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
[Void]$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine()
$stringBuilder.ToString()

However, when used with a command, it requires the use of extra parentheses, which can make it less appealing to use. This example uses Void to suppress the output from the Get-Command command:

[Void](Get-Command Get-Command)

 Param, parameters, and CmdletBinding

The param block must appear before all other code with the exception of attributes. In a script, using statements, if present, must also be written before param.

The param block is used to define the parameters a Script or Function is willing to accept. The keyword is not case-sensitive, so the opening bracket may be placed immediately after (with no space), on the next line, or as shown in this simple example:

param (
 $Parameter1,
 $Parameter2
)

By default, parameters have the System.Object type. This means that you can pass just about anything into a parameter. It may be desirable to restrict values to those of a specific type.

 Parameter types

The type assigned to a parameter is written before the parameter name.

For example, if the function expects a string, the parameter type might be set to [String]:

param (
 [String]$Parameter1
)

Any value passed to the parameter will be converted into a string. Within the function, it is therefore possible to know that the value is of that particular type.

When assigning a type to a parameter, it is important to remember that the type persists until a new type is assigned, or the variable is destroyed. Therefore, values assigned to the parameter within a function will be cast to a string.

 Nullable types

In some rare cases, it may be desirable for a parameter to accept either null or a specific value type. For example, a parameter may need to accept either a date, or null.

A nullable type can be defined for the parameter:

function Test-Nullable {
 param (
 [Nullable[DateTime]]$Date
)
}

The function can be called with a null value for Date:

Test-Nullable -Date $null

Without the nullable type, a type-conversion error message would be thrown.

Not everything is nullable

System.String is not a nullable type. The documentation for Nullable explains why:

https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2.

In PowerShell, this is difficult to see. Assigning null to a variable with a String type will result in an empty string (not null). The result of the following statements is false:

[String]$String = $null

$null -eq $String

 Default values

Parameters may be given default values by using assignment statements in the param block, such as the following, for example:

param (
 [String]$Parameter1 = 'DefaultValue'
)

If the assignment is the result of a command, the command must be placed in parentheses:

param (
 [String]$ProcessName = (Get-Process -Id $PID | Select-Object -ExpandProperty Name)
)

Value types, such as Boolean, or Int32 and other numeric types, are initialized with a default value for that type. For instance, a parameter of the Boolean type can never be null; it will default to false. Numeric values will default to 0. Setting a default false value for a Boolean parameter is therefore unnecessary.

Assigning a default value was the basis for making parameters mandatory in PowerShell 1. The parameter would be assigned a throw statement by default, for example:

param (
 [String]$Parameter1 = (throw 'This parameter is mandatory')
)

This method of making parameters mandatory was replaced in PowerShell 2 by the Mandatory property of the Parameter attribute. The parameter attribute is explored in detail in the next chapter.

 Cross-referencing parameters

When executing a param block, it is possible to cross-reference parameters. That is, the default value of a parameter can be based on the value of another parameter. This is shown here:

function Get-Substring {
 param (
 [String]$String,

 [Int]$Start,

 [Int]$Length = ($String.Length - $Start)
)

 $String.Substring($Start, $Length)
}

The value of the Length parameter will use the default, derived from the first two parameters, unless the user of the function supplies their own value. The order of the parameters is important here: the Start parameter must be created before it can be used in the default value for Length.

 The CmdletBinding attribute

The CmdletBinding attribute is used to turn a function into an advanced function. Advanced functions were introduced with PowerShell 2.

CmdletBinding may be used to do the following:

	Access common parameters, such as ErrorAction, Verbose, and Debug

	Gain access to the built-in pscmdlet variable

	Declare support for WhatIf and Confirm and define the impact level of the command

If a script or function has no parameters, and wishes to make use of the capabilities of CmdletBinding, an empty param block must be declared:

function Test-EmptyParam {
 [CmdletBinding()]
 param ()
}

 Common parameters

With CmdletBinding in place, a script or function may use common parameters. The common parameters are listed in PowerShell's help file:

Get-Help about_commonparameters

For example, the Verbose parameter is made available. Any verbose output written by the command will be displayed without the need to explicitly declare the Verbose parameter within the function:

function Show-Verbose {
 [CmdletBinding()]
 param ()

 Write-Verbose 'Verbose message'
}

The verbose message will be displayed when the command is run with the -Verbose parameter.

In a similar way, parameters such as ErrorAction will effect Write-Error if it is used within the function.

 CmdletBinding properties

The full set of possible values that may be assigned can be viewed by creating an instance of the CmdletBinding object:

PS> [CmdletBinding]::new()

PositionalBinding : True
DefaultParameterSetName :
SupportsShouldProcess : False
SupportsPaging : False
SupportsTransactions : False
ConfirmImpact : Medium
HelpUri :
RemotingCapability : PowerShell
TypeId : System.Management.Automation.CmdletBindingAttribute

For example, the output from the preceding command shows the existence of a PositionalBinding property. Setting this to false disables automatic position binding:

function Test-Binding {
 [CmdletBinding(PositionalBinding = $false)]
 param (
 $Parameter1
)
}

When the preceding function is called, and a value for Parameter1 is given by position, an error will be thrown:

PS> Test-Binding 'value'
Test-Binding : A positional parameter cannot be found that accepts argument 'value'.
At line:1 char:1
+ test-binding 'value'
+ ~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Test-Binding], ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,Test-Binding

The most commonly used properties of CmdletBinding are SupportsShouldProcess and DefaultParameterSetName. DefaultParameterSetName will be explored in the next chapter.

 ShouldProcess and ShouldContinue

ShouldProcess and ShouldContinue become available when a script or function has the CmdletBinding attribute, and the SupportsShouldProcess property is set.

Setting SupportsShouldProcess enables the ShouldProcess parameters, Confirm and WhatIf. These two parameters are used in conjunction with the ShouldProcess method that's exposed on the pscmdlet variable.

 ShouldProcess

ShouldProcess is used to support WhatIf and is responsible for showing confirmation preferences based on the impact level of a command.

ShouldProcess is also used to prompt for confirmation when a command is performing a higher-risk action.

The following example will display a message instead of running the Write-Host statement when the WhatIf parameter is supplied:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

When run using the WhatIf parameter, the command will show the following message:

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "Test-ShouldProcess" on target "SomeObject".

The name of the operation, which defaults to the command name, can be changed using a second overload for ShouldProcess:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject', 'delete')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

This would change the message to the following:

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "delete" on target "SomeObject".

The next overload grants full control over the messages that display:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess(
 'Message displayed using WhatIf',
 'Warning: Deleting SomeObject',
 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

Using the Confirm parameter instead of WhatIf forces the appearance of the second two messages and adds a prompt:

PS> Test-ShouldProcess -Confirm

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

The different responses are automatically available without further code. If the request is within a loop, Yes to All may be used to bypass additional prompts. Replying Yes to All applies to all instances of ShouldProcess in the script or function:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 foreach ($value in 1..2) {
 if ($pscmdlet.ShouldProcess(
 "Would delete SomeObject $value",
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?')) {

 Write-Host "Deleting SomeObject $value" -ForegroundColor Cyan
 }
 }
}

Whether or not the confirmation prompt is displayed depends on the comparison between ConfirmImpact (medium by default), and the value in the $ConfirmPreference variable, which is High by default.

If the impact of the function is raised to High, the prompt will display by default instead of on demand. This is achieved by modifying the ConfirmImpact property of the CmdletBinding attribute:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess, ConfirmImpact = 'High')]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

When the function is executed, the confirmation prompt will show unless the user either uses -Confirm:$false or sets $ConfirmPreference to None.

 ShouldContinue

The ShouldContinue method is also made available when the SupportsShouldProcess property is set in CmdletBinding.

ShouldContinue differs from ShouldProcess in that it always prompts. This technique is used by commands such as Remove-Item to force a prompt when the Recurse parameter is not present and a directory name is passed.

ShouldContinue is rarely necessary, since ShouldProcess is the better option. It is available for the cases where a function must have a confirmation prompt that cannot be bypassed. Using ShouldContinue may make it impossible to run a function without user interaction unless also providing a means to bypass the prompt.

The use of ShouldContinue is similar to ShouldProcess. The most significant difference is that the Yes to All and No to All options are not automatically implemented:

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 $yesToAll = $noToAll = $false
 if ($pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

Running this function will show the confirmation prompt:

PS> Test-ShouldContinue

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

Adding support for Yes to All and No to All means using three extra arguments. The first of these new arguments, hasSecurityImpact, affects whether the default option presented is Yes (when hasSecurityImpact is false) or No (when hasSecurityImpact is true):

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 $yesToAll = $noToAll = $false
 if ($pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?',
 $false,
 [Ref]$yesToAll,
 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

The confirmation prompt will now include the Yes to All and No to All options:

PS> Test-ShouldContinue

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

If necessary, it is possible to provide a means of bypassing the prompt by implementing another switch parameter. For example, a Force parameter might be added:

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param (
 [Switch]$Force
)

 $yesToAll = $noToAll = $false
 if ($Force -or $pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?',
 $false,
 [Ref]$yesToAll,
 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

As the value of Force is evaluated before ShouldContinue, the ShouldContinue method will not run if the Force parameter is supplied.

 Summary

In this chapter, we explored the basic differences between functions, filters, and scripts. We also looked at the structure of comment-based help, and a few strategies to use when working with long lines.

The use of Begin, Process, and End was explored as the starting point of developing a pipeline-capable function.

Parameters were briefly explored and a number of techniques for defining parameter values were introduced.

The CmdletBinding attribute was explored before we dived into the functionality of SupportsShouldProcess.

In the next chapter, we will explore parameters in detail, including pipeline binding, validation, and argument completers.

 Parameters, Validation, and Dynamic Parameters

PowerShell has an extensive parameter handling and validation system that can be used in scripts and functions. The system allows a developer to make parameters mandatory; to define what, if any, positional binding is allowed; to fill parameters from the pipeline; to describe different parameter sets; and to validate the values passed to a parameter. The wealth of options available makes parameter handling a very involved subject.

This chapter explores the following topics:

	The Parameter attribute

	Validating input

	Pipeline input

	Defining parameter sets

	Argument-completers

	Dynamic parameters

 The Parameter attribute

The Parameter attribute is an optional attribute that is used to define the behavior of a parameter within a script or function. Creating an instance of the Parameter object shows the different properties that might be set:

PS> [Parameter]::new()

Position : -2147483648
ParameterSetName : __AllParameterSets
Mandatory : False
ValueFromPipeline : False
ValueFromPipelineByPropertyName : False
ValueFromRemainingArguments : False
HelpMessage :
HelpMessageBaseName :
HelpMessageResourceId :
DontShow : False
TypeId : System.Management.Automation.ParameterAttribute

A few of these properties should be ignored as they are not intended to be set directly, such as HelpMessageBaseName, HelpMessageResourceId, and TypeId.

A number of the more complex properties are explored in other sections in this chapter, such as ParameterSetName, ValueFromPipeline, and ValueFromPipelineByPropertyName.

The Parameter attribute is placed before the parameter itself. The following example shows the simplest use of the Parameter attribute:

[CmdletBinding()]
param (
 [Parameter()]
 $Paramter1
)

Using the Parameter attribute has the side-effect of turning a basic function into an advanced function, even when the CmdletBinding attribute itself is missing. Get-Command may be used to explore whether CmdletBinding is present:

PS> function Test-CmdletBinding {
>> param (
>> [Parameter()]
>> $Parameter1
>>)
>> }
PS> Get-Command Test-CmdletBinding | Select-Object CmdletBinding

CmdletBinding

 True

This means that the common parameters, including Verbose and ErrorAction, are available to any function that uses the Parameter attribute (for any parameter).

Starting with PowerShell 3, Boolean properties, such as Mandatory and ValueFromPipeline, may be written without providing an explicit argument. For example, Parameter1 is made mandatory in the following code:

function Test-Mandatory {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 $Parameter1
)
}

Use of Mandatory = $false

The default value for Mandatory is false; setting an explicit value of a default provides no benefit and may be counterproductive.

Mandatory is significant and stands out, but the value assigned is less significant and, when reading rapidly, it might be assumed to be true simply because the property is present.

 Position and positional binding

Position defaults to -2147483648, the smallest possible value for Int32 (see [Int32]::MinValue). Unless an explicit permission is set, parameters may be bound in the order they are written in the parameter block. Setting the PositionalBinding property of CmdletBinding to false can be used to disable this behavior.

Automatic positional binding is shown in the following example:

function Test-Position {
 [CmdletBinding()]
 param (
 [Parameter()]
 $Parameter1,

 [Parameter()]
 $Parameter2
)

 '{0}-{1}' -f $Parameter1, $Parameter2
}

When called, the command shows that Parameter1 and Parameter2 have been filled with the values supplied using position only:

PS> Test-Position 1 2
1-2

Automatic positional binding is available by default; the Parameter attribute is not required. An explicit definition of position allows greater control and effectively disables automatic positional binding:

function Test-Position {
 param (
 [Parameter(Position = 1)]
 $Parameter1,

 $Parameter2
)
}

Exploring command metadata shows the positional binding is still enabled, but as this is an ordered operation, the default position no longer has meaning. The command metadata is shown as follows, showing that positional binding is still enabled:

PS> [System.Management.Automation.CommandMetadata](Get-Command Test-Position)

Name : Test-Position
CommandType :
DefaultParameterSetName :
SupportsShouldProcess : False
SupportsPaging : False
PositionalBinding : True
SupportsTransactions : False
HelpUri :
RemotingCapability : PowerShell
ConfirmImpact : Medium
Parameters : {[Parameter1, System.Management.Automation.ParameterMetadata], [Parameter2,
System.Management.Automation.ParameterMetadata]}

Attempting to pass a value for Parameter2 by position will raise an error:

PS> Test-Position 1 2
Test-Position : A positional parameter cannot be found that accepts argument '2'.
 At line:1 char:1
 + test-position 1 2
 + ~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Test-Position], ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,Test-Position

PowerShell orders parameters based on the position value. The value must be greater than -2147483648. It is possible, but not advisable, to set Position to a negative value. The accepted practice has numbering starting at either 0 or 1.

 The DontShow property

DontShow may be used to hide a parameter from tab completion and IntelliSense. This property is rarely used, but may be occasionally useful for short recursive functions. The following function recursively calls itself, comparing MaxDepth and CurrentDepth. The CurrentDepth parameter is owned by the function and a user is never expected to supply a value:

function Show-Property {
 [CmdletBinding()]
 param (
 # Show the properties of the specified object.
 [Parameter(Mandatory)]
 [PSObject]$InputObject,

 # The maximum depth when expanding properties of child objects.
 [Int32]$MaxDepth = 5,

 # Used to track the current depth during recursion.
 [Parameter(DontShow)]
 [Int32]$CurrentDepth = 0
)

 $width = $InputObject.PSObject.Properties.Name |
 Sort-Object { $_.Length } -Descending |
 Select-Object -First 1 -ExpandProperty Length

 foreach ($property in $InputObject.PSObject.Properties) {
 '{0}{1}: {2}' -f
 (' ' * $CurrentDepth),
 $property.Name.PadRight($width, ' '),
 $property.TypeNameOfValue

 if ($CurrentDepth -lt $MaxDepth -and $property.Value -and
 -not $property.TypeNameOfValue.IsPrimitive) {

 Show-Property -InputObject $property.Value -CurrentDepth ($CurrentDepth + 1)
 }
 }
}

Marking a parameter as DontShow hides the parameter to a degree, but it does nothing to prevent a user from providing a value for the parameter. In this preceding case, a better approach might be to move the body of the function into a nested function. Alternatively, if the function is part of a module, the recursive code might be moved to a function that is not exported from a module and exposed by a second, tidier, function.

 The ValueFromRemainingArguments property

Setting the ValueFromRemainingArguments property allows a parameter to consume all of the other arguments supplied for a command. This can be used to make an advanced function act in a similar manner to a basic function.

For example, this basic function will fill the Parameter1 parameter with the first argument, and will ignore all others. The extra values are added to the $args automatic variable and are listed in the UnboundArguments property of the $MyInvocation automatic variable:

function Test-BasicBinding {
 param (
 $Parameter1
)

 $MyInvocation.UnboundArguments
}

Calling the function with non-existent parameters will not raise an error. The additional values will be added to the UnboundArguments array (and the $args variable):

PS> Test-BasicBinding -Parameter1 value1 -Parameter2 value2
-Parameter2
Value2

Without a declared parameter in the param block, Parameter2 is just another value, it is not parsed as the name of a parameter. The ValueFromRemainingArguments property can be used to make an advanced function behave in much the same way as the preceding basic function:

function Test-AdvancedBinding {
 [CmdletBinding()]
 param (
 $Parameter1,

 [Parameter(ValueFromRemainingArguments)]
 $OtherArguments
)

 $OtherArguments
}

If the $OtherArguments parameter is not for the normal use of the function, the DontShow property might be added to make it less obvious and intrusive.

 The HelpMessage property

HelpMessage is only applied to Mandatory parameters and is not particularly useful. If a parameter is mandatory and is not passed when a command is called, a prompt for the parameter value will appear. Typing !? in the prompt, instead of a value, will display the help message text:

PS> function Test-HelpMessage {
>> param (
>> [Parameter(Mandatory, HelpMessage = 'Help text for Parameter1')]
>> $Parameter1
>>)
>> }
PS> Test-HelpMessage

cmdlet Test-HelpMessage at command pipeline position 1
Supply values for the following parameters:
(Type !? for Help.)
Parameter1: !?
Help text for Parameter1
Parameter1:

Given that HelpMessage is only visible when explicitly requested in this manner, it is most often ignored entirely. It is better to spend time writing help content for a parameter than writing values for HelpMessage.

 Validating input

PowerShell provides a variety of different ways to tightly define the content for a parameter. Assigning a .NET type to a parameter is the first of these. If a parameter is set as [String], it will only ever hold a value of that type. PowerShell will attempt to coerce any values passed to the parameter into that type.

 The PSTypeName attribute

It is not uncommon in PowerShell to want to pass an object created in one command, as a PSObject (or PSCustomObject), to another. The PSTypeName attribute is able to test the type name assigned to a custom object. Type names are assigned by setting (or adding) a value to the hidden PSTypeName property. There are a number of ways to tag PSCustomObject with a type name. The simplest is to set a value for a PSTypeName property, shown as follows:

$object = [PSCustomObject]@{
 Property = 'Value'
 PSTypeName = 'SomeTypeName'
}

The PSTypeName property remains hidden, but Get-Member will now show the new type name:

PS> $object | Get-Member

TypeName: SomeTypeName

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Property NoteProperty string Property=Value

It is also possible to tweak the PSTypeNames array directory, shown as follows:

$object = [PSCustomObject]@{ Property = 'Value' }

Add to the end of the existing list
$object.PSTypeNames.Add('SomeTypeName')

Or add to the beginning of the list
$object.PSTypeNames.Insert(0, 'SomeTypeName')

Finally, Add-Member can add to PSTypeNames. If used, it adds the new type name at the top of the existing list:

$object = [PSCustomObject]@{ Property = 'Value' }
$object | Add-Member -TypeName 'SomeTypeName'

These tagged types may be tested using the PSTypeName attribute of a parameter, for example:

function Test-PSTypeName {
 [CmdletBinding()]
 param (
 [PSTypeName('SomeTypeName')]
 $InputObject
)
}

This technique is used by many of the WMI-based commands implemented by Microsoft. For example, the Set-NetAdapter command uses a PSTypeName attribute for its InputObject parameter:

(Get-Command Set-NetAdapter).Parameters['InputObject'].Attributes |
 Where-Object TypeId -eq ([PSTypeNameAttribute])

In the case of the WMI-based commands, this is used in addition to a .NET type name, an array of CimInstance. This type of parameter is similar to the following example:

function Test-PSTypeName {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName = 'InputObject (cdxml)')]
 [PSTypeName('Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter')]
 [CimInstance[]]$InputObject
)
}

This technique is incredibly useful when the .NET object type is not sufficiently detailed to restrict input. This is true of PSObject input as much as the CimInstance array type used before.

 Validation attributes

PowerShell offers a number of validation attributes to test the content of arguments passed to parameters. There are two general classes of validation attribute; the first validates the argument as a single object, which tests the value as a whole:

	ValidateNotNull

	ValidateNotNullOrEmpty

	ValidateCount

	ValidateDrive

The second validates enumerated arguments. These validation attributes can be applied to parameters that accept arrays. The validation step applies to each element in the array. The enumerated argument validation attributes are:

	ValidateLength

	ValidatePattern

	ValidateRange

	ValidateScript

	ValidateSet

The validation attributes are documented in about_Functions_Advanced_Parameters with the exception of the newer ValidateDrive attribute, which was introduced with PowerShell 5. The constructor for a validation attribute can be explored to determine the arguments it supports. This may be discovered using the ::new static method in PowerShell 5 and newer, for example, ValidateDrive:

PS> [ValidateDrive]::new

OverloadDefinitions

ValidateDrive new(Params string[] validRootDrives)

 The ValidateNotNull attribute

ValidateNotNull may be used with parameters that are not flagged as mandatory. It is applicable where an object type is capable of accepting null input. Such types include object, CimInstance, and array types. The following is the simplest example of ValidateNotNull:

function Test-ValidateNotNull {
 [CmdletBinding()]
 param (
 [ValidateNotNull()]
 $Parameter1
)
}

As Parameter1 is, by default, set to the Object type, it would ordinarily accept a null value. When applied to an array, it disallows null values but retains the ability to pass an empty array into a function, for example:

function Test-ValidateNotNull {
 [CmdletBinding()]
 param (
 [ValidateNotNull()]
 [String[]]$Parameter1
)
}

If a null value is explicitly passed, an error will be raised:

PS> Test-ValidateNotNull -Parameter1 $null

Test-ValidateNotNull : Cannot validate argument on parameter 'Parameter1'. The argument is null. Provide a valid value for the argument, and then try running the command again.
 At line:1 char:34
 + Test-ValidateNotNull -Parameter1 $null
 + ~~~~~
 + CategoryInfo : InvalidData: (:) [Test-ValidateNotNull], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Test-ValidateNotNull

The ValidateNotNull attribute has no effect on String or numeric types (such as Byte, Int, or Int64).

 The ValidateNotNullOrEmpty attribute

ValidateNotNullOrEmpty extends ValidateNotNull to disallow empty arrays and empty strings:

function Test-ValidateNotNullOrEmpty {
 [CmdletBinding()]
 param (
 [ValidateNotNullOrEmpty()]
 [String]$Parameter1,

 [ValidateNotNullOrEmpty()]
 [Object[]]$Parameter2
)
}

An error will be thrown if either an empty string is supplied for Parameter1, or an empty array is supplied for Parameter2. Like ValidateNotNull, ValidateNotNullOrEmpty has no effect on numeric types.

 The ValidateCount attribute

ValidateCount is used to test the size of an array supplied to a parameter. The attribute expects a minimum and maximum length for the array.

ValidateCount only has meaning when applied to an array-type parameter, for example:

function Test-ValidateCount {
 [CmdletBinding()]
 param (
 [ValidateCount(1, 1)]
 [String[]]$Parameter1
)
}

ValidateCount may also be applied to parameters that accept more advanced array types, such as [System.Collections.ArrayList] or [System.Collections.Generic.List[String]].

 The ValidateDrive attribute

ValidateDrive may be used to test the drive letter provided for a parameter that accepts a path. ValidateDrive handles both relative and absolute paths. A relative path is resolved to a full path before it is tested against the supplied drive letters. When using the ValidateDrive attribute, the parameter type must be String. The parameter cannot be omitted:

function Test-ValidateDrive {
 [CmdletBinding()]
 param (
 [ValidateDrive('C')]
 [String]$Parameter1
)
}

ValidateDrive cannot act on an array of paths; if the parameter type is an array, an error will be thrown stating the path argument is invalid.

 The ValidateLength attribute

ValidateLength can be applied to a String parameter or a parameter that contains an array of strings. Each string will be tested against the minimum and maximum length:

function Test-ValidateLength {
 [CmdletBinding()]
 param (
 [ValidateLength(2, 6)]
 [String[]]$Parameter1
)
}

Any string with a length below the minimum, or above the maximum, will trigger an error.

 The ValidatePattern attribute

ValidatePattern is used to test that a string, or the elements in an array of strings, matches the supplied pattern:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern('^Hello')]
 [String]$Parameter1
)
}

In addition to the pattern argument, ValidatePattern accepts RegexOptions using the Options named parameter, for example:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern('^Hello', Options = 'Multiline')]
 [String]$Parameter1
)
}

The possible values for Options are described by the System.Text.RegularExpressions.RegexOptions enumeration, which is documented in the .NET reference (https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2).

Multiple options may be included as a comma-separated list, for example:

[ValidatePattern('^Hello', Options = 'IgnoreCase, Multiline')]

By default, the IgnoreCase option is set. If you want to make a pattern case-sensitive, the options can be set to None:

[ValidatePattern('^Hello', Options = 'None')]

A criticism that might be leveled against ValidatePattern is that there is no way to customize or define the error message in Windows PowerShell.

PowerShell Core adds an optional ErrorMessage parameter to tackle this problem. The default error message written by ValidatePattern is shown as follows:

PS> function Test-ValidatePattern {
>> [CmdletBinding()]
>> param (
>> [ValidatePattern('^[A-Z]\S+ [A-Z]\S+\.', Options = 'None')]
>> [String]$Greeting
>>)
>> }
PS> Test-ValidatePattern -Greeting 'hello Jim.'

Test-ValidatePattern : Cannot validate argument on parameter 'Greeting'. The argument "hello Jim." does not match the "^[A-Z]\S+ [A-Z]\S+\." pattern. Supply an argument that matches "^[A-Z]\S+ [A-Z]\S+\." and try the command again.
At line:1 char:34
+ Test-ValidatePattern -Greeting 'hello Jim.'
+ ~~~~~~~~~~~~
 + CategoryInfo : InvalidData: (:) [Test-ValidatePattern], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Test-ValidatePattern

In PowerShell Core, an alternative message may be supplied:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern(
 '^[A-Z]\S+ [A-Z]\S+\.',
 Options = 'None',
 ErrorMessage = 'The greeting and name must begin with a capital letter.'
)]
 [String]$Greeting
)
}

 The ValidateRange attribute

ValidateRange tests whether a value, or an array of values, fall within a specified range. ValidateRange is most commonly used to test numeric ranges. However, it is also able to test strings. For example, the z string can be said to be within the A to Z range. This approach is slightly harder to apply when testing strings as the Zz string is greater than Z. The following example uses ValidateRange to test an integer value:

function Test-ValidateRange {
 [CmdletBinding()]
 param (
 [ValidateRange(1, 20)]
 [Int]$Parameter1
)
}

 The ValidateScript attribute

ValidateScript executes an arbitrary block of code against each of the arguments for a parameter. If the argument is an array, each element is tested. One common use for ValidateScript is to test whether a path exists, for example:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript({ Test-Path $_ -PathType Leaf })]
 [String]$Path
)
}

ValidateScript can contain just about anything a developer desires, although it is generally recommended to keep validation scripts short. In PowerShell Core, ValidateScript gains an optional ErrorMessage parameter that replaces the default message, which repeats the failed script to the end user:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript(
 { Test-Path $_ -PathType Leaf },
 ErrorMessage = 'The path supplied must exist and must be a file'
)]
 [String]$Path
)
}

In Windows PowerShell, throw may be used within the script to write a more friendly error message at the cost of a more complex script:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript({
 if (Test-Path $_ -PathType Leaf) {
 $true
 } else {
 throw 'The path supplied must exist and must be a file'
 }
 })]
 [String]$Path
)
}

 The ValidateSet attribute

ValidateSet tests whether the specified argument, or each of an array of arguments, exists in a set of possible values:

function Test-ValidateSet {
 [CmdletBinding()]
 param (
 [ValidateSet('One', 'Two', 'Three')]
 [String]$Value
)
}

The set of values must be hardcoded in the attribute, it cannot be derived from a variable or another command. By default, the set is not case-sensitive. If it is desirable, the set can be made case-sensitive by using the IgnoreCase named parameter:

function Test-ValidateSet {
 [CmdletBInding()]
 param (
 [ValidateSet('One', 'Two', 'Three', IgnoreCase = $false)]
 [String]$Value
)
}

Like ValidatePattern and ValidateSet, ValidateSet gains an optional ErrorMessage parameter in PowerShell Core.

 The Allow attributes

The Allow attributes are most commonly used when a parameter is mandatory. If a parameter is mandatory, PowerShell will automatically disallow assignment of empty values, that is, empty strings and empty arrays. The Allow attributes can be used to modify that behavior. The attributes make it possible to require a parameter, but still allow empty values.

 The AllowNull attribute

AllowNull is used to permit explicit use of $null as a value for a Mandatory parameter:

function Test-AllowNull {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [AllowNull()]
 [Object]$Parameter1
)
}

AllowNull is effective for array parameters, and for parameters that use Object as a type. AllowNull is not effective for string parameters as the null value is cast to an empty string, and an empty string is still not permitted.

 The AllowEmptyString attribute

AllowEmptyString fills the gap, allowing both null and empty values to be supplied for a mandatory string parameter. In both cases, the resulting assignment will be an empty string. It is not possible to distinguish between a value passed as null and a value passed as an empty string:

function Test-AllowEmptyString {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [AllowEmptyString()]
 [String]$Parameter1
)
}

 The AllowEmptyCollection attribute

AllowEmptyCollection, as the name suggests, allows an empty array to be assigned to a mandatory parameter:

function Test-AllowEmptyCollection {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [AllowEmptyCollection()]
 [Object[]]$Parameter1
)
}

This will allow the command to be called with an explicitly empty array:

Test-AllowEmptyCollection -Parameter1 @()

 PSReference parameters

Many of the object types used in PowerShell are reference types. When an object is passed to a function, any changes made to that object will be visible outside the function, irrespective of the output generated by the command. For example, the following function accepts an object as input, then changes the value of a property on that object:

function Set-Value {
 [CmdletBinding()]
 param (
 [PSObject]$Object
)

 $Object.Value = 2
}

When the function is passed an object, the change can be seen on any other variables that reference that object:

PS> $myObject = [PSCustomObject]@{ Value = 1 }
PS> Set-Value $myObject
PS> $myObject.Value
2

Strings, numeric values, and dates, on the other hand, are all examples of value types. Changes made to a value type inside a function will not be reflected in variables that reference that value elsewhere; a new value is created. Occasionally, it is desirable to make a function affect the content of a value type without either returning the value as output or changing the value of a property of an object. The PSReference type, [Ref], can be used to achieve this. The following function normally returns true or false depending on whether Get-Date successfully parsed the date string into a DateTime object:

function Test-Date {
 [CmdletBinding()]
 param (
 [String]$Date,

 [Ref]$DateTime
)

 if ($value = Get-Date $Date -ErrorAction SilentlyContinue) {
 if ($DateTime) {
 $DateTime.Value = $value
 }
 $true
 } else {
 $false
 }
}

When the function is run, a variable that holds an existing DateTime object might be passed as an optional reference. PowerShell can update the date via the reference, changing the value outside of the function:

PS> $dateTime = Get-Date
PS> Test-Date 01/01/2019 -DateTime ([Ref]$dateTime)
true
PS> $dateTime
01 January 2019 00:00:00

The same behavior can be seem with Boolean, string, and numeric types.

 Pipeline input

Using the Parameter attribute to set either ValueFromPipeline or ValueFromPipelineByPropertyName sets a parameter up to fill from the input pipeline.

 About ValueFromPipeline

ValueFromPipeline allows the entire object to be passed into a parameter from an input pipeline. The following function implements an InputObject parameter, which accepts pipeline input by using the ValueFromPipeline property of the Parameter attribute:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject
)

 process {
 'Input object was of type {0}' -f $InputObject.GetType().FullName
 }
}

Remember that values read from an input pipeline are only available in the process block of a script or function. As the default type assigned to a parameter is Object, this will accept any kind of input that might be passed. This behaves in a similar manner to the InputObject parameter for Get-Member, for example.

 Accepting null input

Commands such as Where-Object allow an explicit null value in the input pipeline. To allow null in an input pipeline, the [AllowNull()] attribute would be added to the InputObject parameter. There is a difference between supporting $null | Get-InputObject and implementing pipeline support originating from a command that returns nothing: AllowNull is only needed when an explicit null is in the input pipeline.

In the following example, the Get-EmptyOutput function has no body and will not return anything. This simulates a command that returns nothing because all of the output is filtered out. The Get-InputObject function can take part in a pipeline with Get-EmptyOutput without using AllowNull:

function Get-EmptyOutput { }
function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject
)
}
No output, no error
First | Second

If Get-EmptyOutput were to explicitly return null, which is not a good practice, Get-InputObject would raise a parameter binding error:

PS> function First { return $null }
PS> First | Second
Second : Cannot bind argument to parameter 'InputObject' because it is null.
 At line:1 char:9
 + First | Second
 + ~~~~~~
 + CategoryInfo : InvalidData: (:) [Second], ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationErrorNullNotAllowed,Second

Adding AllowNull would sidestep this error, but Get-InputObject would have to handle a null value internally:

function Get-EmptyOutput { return $null }
function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 [AllowNull()]
 $InputObject
)
 if ($InputObject) {
 # Do work
 }
}
No output, no error
First | Second

If this were real output from a function, it may be better to consider the output from Get-EmptyOutput to be a bug and pass it through Where-Object to sanitize the input, which avoids the need to add AllowNull, for example:

Get-EmptyOutput | Where-Object { $_ } | Get-InputObject

 Input object types

If a type is defined for the InputObject variable, the command will only work if the input pipeline contains that object type. An error will be thrown when a different object type is passed. The following example modifies the command to accept pipeline input from Get-Process; it expects objects of the System.Diagnostics.Process type only:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 [System.Diagnostics.Process]$InputObject
)

 process {
 'Process name {0}' -f $InputObject.Name
 }
}

 Using ValueFromPipeline for multiple parameters

If more than one parameter uses ValueFromPipeline, PowerShell will attempt to provide values to each. The parameter binder can be said to be greedy in this respect. The following function can be used to show that both parameters are filled with the same value if the parameters accept the same type, or if the value can be coerced into that type:

function Test-ValueFromPipeline {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [Int]$Parameter1,

 [Parameter(ValueFromPipeline)]
 [Int]$Parameter2
)

 process {
 'Parameter1: {0}:: Parameter2: {1}' -f $Parameter1, $Parameter2
 }
}

Providing an input pipeline for the command shows the values assigned to each parameter:

PS> 1..2 | Test-ValueFromPipeline
Parameter1: 1 :: Parameter2: 1
Parameter1: 2 :: Parameter2: 2

Filling variables is the job of the parameter binder in PowerShell. Using Trace-Command will show the parameter binder in action:

Trace-Command -Expression { 1 | Test-ValueFromPipeline } -PSHost -Name ParameterBinding

The bind-pipeline section will display messages that show that the value was successfully bound to each parameter. If the two parameters expected different types, the parameter binding will attempt to coerce the value into the requested type. If that is not possible, it will give up on the attempt to fill the parameter. The next example declares two different parameters; both accept values from the pipeline and neither is mandatory:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [System.Diagnostics.Process]$ProcessObject,

 [Parameter(ValueFromPipeline)]
 [System.ServiceProcess.ServiceController]$ServiceObject
)

 process {
 if ($ProcessObject) { 'Process: {0}' -f $ProcessObject.Name }
 if ($ServiceObject) { 'Service: {0}' -f $ServiceObject.Name }
 }
}

The command will, at this point, accept pipeline input from both Get-Process and Get-Service. Each command will fill the matching parameter, Get-Process fills ProcessObject, and Get-Service fills ServiceObject. This design is unusual and perhaps confusing; here, it is only demonstrated because it is possible. A parameter set can be used to make sense of the pattern, which we will explore in the Defining parameter sets section.

 Using PSTypeName

The PSTypeName attribute may also be used to tightly define the objects acceptable for a parameter that uses ValueFromPipeline:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [PSTypeName('CustomTypeName')]
 $InputObject
)

 process {
 $InputObject.Name
 }
}

This function would accept input from an object that declares the matching type name:

[PSCustomObject]@{
 Name = 'Value'
 PSTypeName = 'CustomTypeName'
} | Get-InputObject

A .NET type may also be assigned to the InputObject parameter in addition to PSTypeName. However, in this case, the type would have to be either Object or PSObject. This is effectively pointless as absolutely any object type in PowerShell will satisfy either of those parameter types.

 About ValueFromPipelineByPropertyName

ValueFromPipelineByPropertyName attempts to fill a parameter from the property of an object in the input pipeline. When filling a value by property name, the name and type of the property is important, but not the object that implements the property.

For example, a function might be created to accept a string value from a Name property:

function Get-Name {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Name
)

 process {
 $Name
 }
}

Any command that returns an object which contains a Name property in a string is acceptable input for this function. Additional parameters might be defined, which would further restrict the input object type, assuming the new properties are mandatory:

function Get-Status {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Name,

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Status
)

 process {
 '{0}: {1}' -f $Name, $Status
 }
}

This new function would accept pipeline input from Get-Service, as the output from Get-Service has both Name and Status properties. Using Get-Member against Get-Service would show that the Status property is an enumeration value described by System.ServiceProcess.ServiceControllerStatus. This value is acceptable to the Get-Status function as it can be coerced into a string, which satisfies the Status parameter.

The previous function is not limited to a specific input object type. A PSCustomObject can be created with properties to satisfy the parameters for the Get-Status function:

[PSCustomObject]@{ Name = 'Name'; Status = 'Running' } | Get-Status

As with the ValueFromPipeline input, the parameter binder will attempt to fill as many of the parameters as possible from the input pipeline. Trace-Command, as used when exploring ValueFromPipeline, can be used to show the behavior of the parameter binder.

 ValueFromPipelineByPropertyName and parameter aliases

We have not looked at parameter aliases yet. Any parameter may be given one or more aliases using the Alias attribute, as shown in the following example:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipelineByPropertyName)]
 [Alias('First', 'Second', 'Third')]
 $InputObject
)
}

The alias name is considered when determining whether a property on an input object is suitable to fill a parameter when filling a parameter by property name.

One of the more common uses of this is to provide support for a Path parameter via a pipeline from Get-Item or Get-ChildItem. For example, the following pattern might be used to expose a Path parameter. This is used in the short helper function that imports JSON content from a file:

function Import-Json {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [Alias('PSPath')]
 [String]$Path
)

 process {
 Get-Content $Path | ConvertFrom-Json
 }
}

The PSPath property of the object returned by Get-Item or Get-ChildItem is used to fill the Path parameter from a pipeline. FullName is a possible alternative to PSPath, depending on how the path is to be used.

Converting relative paths to full paths

When using a path parameter, such as the one in the previous example, the following method on the PSCmdlet object can be used to ensure a path is fully qualified whether it exists or not:

$Path = $PSCmdlet.GetUnresolvedProviderPathFromPSPath($Path)

This technique is useful if working with .NET types, which require a path as these are not able to resolve PowerShell paths (either relative or via a PS drive).

The New-TimeSpan command is an example of an existing command that uses the alias to fill a parameter from the pipeline. The Start parameter has an alias of LastWriteTime. When Get-Item is piped into New-TimeSpan, the time since the file or directory was last written will be returned as a TimeSpan via the aliased parameter.

 Defining parameter sets

A parameter set in PowerShell groups different parameters together. In some cases, this is used to change the output of a command; in others, it provides a different way of supplying a piece of information. For example, the output from the Get-Process command changes if the Module parameter or, to a lesser extent, the IncludeUserName parameter are supplied. The Get-ChildItem command also has two parameter sets: one that accepts a Path with wildcard support, and another that accepts a LiteralPath that does not support wildcards. That is, it has two different ways of supplying essentially the same information. Parameter sets are declared using the ParameterSetName property of the Parameter attribute.

The following example has two parameter sets; each parameter set contains a single parameter:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ParameterSetName = 'FirstSetName')]
 $Parameter1,

 [Parameter(ParameterSetName = 'SecondSetName')]
 $Parameter2
)
}

As neither parameter set is the default, attempting to run the command using a positional parameter only will result in an error:

PS> Get-InputObject value
Get-InputObject : Parameter set cannot be resolved using the specified named parameters.
At line:1 char:1
+ Get-InputObject value
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-InputObject], ParameterBindingException
 + FullyQualifiedErrorId : AmbiguousParameterSet,Get-InputObject

This can be resolved by setting a value for the DefaultParameterSetName property in the CmdletBinding attribute:

[CmdletBinding(DefaultParameterSetName = 'FirstSetName')]

Alternatively, an explicit position might be defined for one of the parameters; the set will be selected on the basis of explicit position:

[Parameter(Position = 1, ParameterSetName = 'FirstSetName')]
$Parameter1

The name of the parameter set in use within a function is visible using the ParameterSetName property of the pscmdlet automatic variable, that is $pscmdlet.ParameterSetName. The value may be used to choose actions within the body of a function. The following example shows a possible implementation that tests the value of ParameterSetName. The function accepts the name of a service as a string, a service object from Get-Service, or a service returned from the Win32_Service class. The function finds the process associated with that service:

function Get-ServiceProcess {
 [CmdletBinding(DefaultParameterSetName = 'ByName')]
 param (
 [Parameter(Mandatory, Position = 1, ParameterSetName = 'ByName')]
 [String]$Name,

 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName = 'FromService')]
 [System.ServiceProcess.ServiceController]$Service,

 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName = 'FromCimService')]
 [PSTypeName('Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Service')]
 [CimInstance]$CimService
)

 process {
 if ($pscmdlet.ParameterSetName -eq 'FromService') {
 $Name = $Service.Name
 }
 if ($Name) {
 $params = @{
 ClassName = 'Win32_Service'
 Filter = 'Name="{0}"' -f $Name
 Property = 'Name', 'ProcessId', 'State'
 }
 $CimService = Get-CimInstance @params
 }
 if ($CimService.State -eq 'Running') {
 Get-Process -Id $CimService.ProcessId
 } else {
 Write-Error ('The service {0} is not running' -f $CimService.Name)
 }
 }
}

The previous function accepts several different parameters. Each parameter is ultimately used to get to a value for the $CimService variable (or parameter), which has a ProcessID property associated with the service. Each of the examples so far has shown a parameter that is a member of a single, explicitly declared set. A parameter that does not describe a ParameterSetName is automatically part of every set.

In the following example, Parameter1 is part of every parameter set, Parameter2 is in a named set only:

function Test-ParameterSet {
 [CmdletBinding(DefaultParameterSetName = 'Default')]
 param (
 [Parameter(Mandatory, Position = 1)]
 $Parameter1,

 [Parameter(ParameterSetName = 'NamedSet')]
 $Parameter2
)
}

Get-Command may be used to show the syntax for the command; this shows there are two different parameter sets, both of which require Parameter1:

PS> Get-Command Test-ParameterSet -Syntax

Test-ParameterSet [-Parameter1] <Object> [<CommonParameters>]

Test-ParameterSet [-Parameter1] <Object> [-Parameter2 <Object>] [<CommonParameters>]

Parameters that do not use the Parameter attribute are also automatically part of all parameter sets. A parameter may also be added to more than one parameter set. This is achieved by using more than one Parameter attribute on a parameter:

function Test-ParameterSet {
 [CmdletBinding(DefaultParameterSetName = 'NamedSet1')]
 param (
 [Parameter(Mandatory)]
 $Parameter1,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]
 $Parameter2,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet3')]
 $Parameter3,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]
 [Parameter(ParameterSetName = 'NamedSet3')]
 $Parameter4
)
}

In the preceding example, Parameter1 is in all parameter sets. Parameter2 is in NamedSet2 only. Parameter3 is in NamedSet3 only. Parameter4 is mandatory in NamedSet2, and optional in NamedSet3.

This interplay of parameter sets is complex and difficult to describe without a complex command to use the parameters. Many existing commands use complex parameter sets and their parameter sets may be explored. For example, the parameter block for the Get-Process command may be shown by running the following command:

[System.Management.Automation.ProxyCommand]::GetParamBlock((Get-Command Get-Process))

 Argument-completers

Argument-completers have been around in a number of different forms since PowerShell 2. This section focuses on the implementation of argument-completers available in Windows PowerShell 5 and PowerShell Core.

An argument-completer is used by the tab completion system to provide a value for a parameter when Tab is pressed. For example, the Get-Module command cycles though module names when Tab is pressed after the command name. The argument-completer does not restrict the values that may be supplied; it is only used to offer values, to make the use of a command easier for an end user.

An argument-completer is a script block; the script block should accept the following parameters:

	commandName

	parameterName

	wordToComplete

	commandAst

	fakeBoundParameter

Any of these parameters may be used, but the most important and the most frequently used is wordToComplete.

The following example would suggest words from a fixed list:

param ($commandName, $parameterName, $wordToComplete, $commandAst, $fakeBoundParameter)

$possibleValues = 'Start', 'Stop', 'Create', 'Delete'
$possibleValues | Where-Object { $_ -like "$wordToComplete*" }

Notice that a wildcard, *, has been added on the end of wordToComplete. Arguably, ValidateSet might be a better option in this case as it also feeds tab completion. However, where ValidateSet enforces, ArgumentCompleter suggests. The argument-completer only suggests when the user is using tab to complete a parameter value so it cannot replace ValidateSet or any other parameter validation steps. Unlike ValidateSet, and perhaps more like ValidateScript, the list of possible values used in an argument-completer can be dynamic. That is, the list of possible values can be the result of running another command. PowerShell provides two different ways to assign an argument completer: the ArgumentCompleter attribute or the Register-ArgumentCompleter command.

 The argument-completer attribute

The argument-completer attribute is used much like ValidateScript. The script block used previously is used as an argument for the attribute, shown as follows:

function Test-ArgumentCompleter {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [ArgumentCompleter({
 param ($commandName, $parameterName, $wordToComplete, $commandAst, $fakeBoundParameter)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'
 $possibleValues | Where-Object { $_ -like "$wordToComplete*" }
 })]
 $Action
)
}

When the user types Test-ArgumentCompleter and then presses Tab, the completer offers up each of the possible values with no filtering. If the user were to type Test-ArgumentCompleters, only start and stop would be offered when pressing Tab.

 Using Register-ArgumentCompleter

The Register-ArgumentCompleter command has two advantages over the ArgumentCompleter attribute. First, it can be used to set an argument-completer for a number of parameters across a number of commands at once. And second, it can create argument-completers for native commands; for example, when used as an alternative to the ArgumentCompleter attribute, the command is used as follows:

function Test-ArgumentCompleter {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 $Action
)
}

$params = @{
 CommandName = 'Test-ArgumentCompleter'
 ParameterName = 'Action'
 ScriptBlock = {
 param ($commandName, $parameterName, $wordToComplete, $commandAst, $fakeBoundParameter)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'
 $possibleValues | Where-Object { $_ -like "$wordToComplete*" }
 }
}
Register-ArgumentCompleter @params

The CommandName parameter used for Register-ArgumentCompleter accepts an array of command names. In one step, the completer can be added to several different commands that share a parameter. Register-ArgumentCompleter can also be used to add argument-completion to native commands. The following example offers a steadfast user of the wmic command automatic alias-completion:

Register-ArgumentCompleter -CommandName wmic -Native -ScriptBlock {
 param ($wordToComplete, $commandAst, $cursorPosition)

 wmic /?:BRIEF |
 Where-Object { $_ -cmatch '^([A-Z]{2}\S+)+' } |
 ForEach-Object { $matches[1] } |
 Where-Object {
 $_ -notin 'CLASS', 'PATH', 'CONTEXT', 'QUIT/EXIT' -and
 $_ -like "$wordToComplete*"
 }
}

When using the -Native parameter, the arguments passed to the completer differ; the first argument becomes the word to complete.

 Listing registered argument-completers

While it is possible to register argument-completers, PowerShell does not provide a way of listing them. This is somewhat frustrating as it makes exploration and finding examples more difficult.

The following script makes extensive use of reflection in .NET to explore classes that are not made publicly available, eventually getting to a property that holds the argument-completers:

$localPipeline = [PowerShell].Assembly.GetType('System.Management.Automation.Runspaces.LocalPipeline')
$getExecutionContextFromTLS = $localPipeline.GetMethod(
 'GetExecutionContextFromTLS',
 [System.Reflection.BindingFlags]'Static, NonPublic'
)
$internalExecutionContext = $getExecutionContextFromTLS.Invoke(
 $null,
 [System.Reflection.BindingFlags]'Static, NonPublic',
 $null,
 $null,
 $psculture
)
$customArgumentCompletersProperty = $internalExecutionContext.GetType().GetProperty(
 'CustomArgumentCompleters',
 [System.Reflection.BindingFlags]'NonPublic, Instance'
)
$customArgumentCompletersProperty.GetGetMethod($true).Invoke(
 $internalExecutionContext,
 [System.Reflection.BindingFlags]'Instance, NonPublic, GetProperty',
 $null,
 @(),
 $psculture
)

Native argument-completers are held in a different property and will not be shown by the preceding snippet.

A more refined version of the previous snippet, which also supports the retrieval of native argument-completers, is available as a function at https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b.

 Dynamic parameters

Dynamic parameters allow a developer to define the behavior of parameters when a function is run, rather than hardcoding that behavior in advance in a param block. Dynamic parameters can be used to overcome some of the limitations inherent in a param block. For example, it is possible to change the parameters presented by a command based on the value of another parameter. It is also possible to dynamically write validation, such as dynamically assigning a value for the ValidateSet attribute.

Dynamic parameters remain unpopular in the PowerShell community. They are relatively complex; that is, they are hard to define, and difficult to troubleshoot as they tend to silently fail rather than raising an error. Dynamic parameters have a named block: dynamicparam. If dynamicparam is used, the default blocks for a script or function cannot be used; all code must be contained within explicitly declared named blocks. The CmdletBinding attribute must be explicitly declared when using dynamicparam, parameters will not be created without CmdletBinding, nor will an error message be shown to explain that.

The following example includes an empty dynamicparam block as well as an end block, which would have been implicit if dynamicparam were not present:

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam { }
 end {
 Write-Host 'Function body'
 }
}

If the end block declaration is missing, a syntax error will be displayed. This is shown as follows, it does not state that the problem is the dynamicparam block, or because of a missing named block:

PS> function Test-DynamicParam {
>> [CmdletBinding()]
>> param ()
>> dynamicparam { }
>> Write-Host 'Function body'
>> }
At line:1 char:28
+ function Test-DynamicParam {
+ ~
Missing closing '}' in statement block or type definition.
At line:4 char:1
+ }
+ ~
Unexpected token '}' in expression or statement.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : MissingEndCurlyBrace

The dynamicparam block must output a RuntimeDefinedParameterDictionary object. The dictionary should contain one or more RuntimeDefinedParameter objects.

 Creating a RuntimeDefinedParameter object

A RuntimeDefinedParameter object describes a single parameter. The definition includes the name of the parameter, the parameter type, and any attributes that should be set for that parameter. PowerShell does not include type accelerators for creating RuntimeDefinedParameter; the full name, System.Management.Automation.RuntimeDefinedParameter, must be used. The constructor for RuntimeDefinedParameter expects three arguments: a string, which will be the parameter name, a .NET type for the parameter, and a collection or array of attributes that should be assigned. The attribute collection must contain at least one Parameter attribute.

The following example, which creates a parameter named Action, makes use of a using namespace statement to shorten the .NET type names:

using namespace System.Management.Automation
$parameter = [RuntimeDefinedParameter]::new('Action', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')
)
)

The previous parameter is the equivalent of using the following in the param block:

param (
 [Parameter(Mandatory, Position = 1)]
 [ValidateSet('Start', 'Stop', 'Create', 'Delete')]
 [String]$Action
)

As the attributes are not being placed directly above a variable, each must be created as an independent object instance:

	The shorthand used for the Parameter attribute in the param block cannot be used; Boolean values must be written in full

	The ValidateSet attribute, and other validation attributes, must also be created as a new object rather than using the attribute syntax

The Parameter attribute declaration takes advantage of PowerShell's ability to assign property values to an object using a hashtable. This is feasible because a Parameter attribute can be created without supplying any arguments, that is, [Parameter]::new() can be used to create a Parameter attribute with default values. This technique cannot be used for the validation attributes, as each requires one or more arguments, therefore ::new or New-Object must be used.

As with a normal parameter, RuntimeDefinedParameter can declare more than one parameter attribute. Each Parameter attribute is added to the attribute collection:

using namespace System.Management.Automation
$parameter = [RuntimeDefinedParameter]::new('Action', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1; ParameterSetName = 'First' }
 [Parameter]@{ ParameterSetName = 'Second' }
)
)

Any number of parameters might be created in this manner. Each parameter must have a unique name. Each parameter must be added to a RuntimeDefinedParameterDictionary.

 Using the RuntimeDefinedParameterDictionary

RuntimeDefinedParameterDictionary is the expected output from the dynamicparam block. The dictionary must contain all of the dynamic parameters a function is expected to present.

The following example creates a dictionary and adds a single parameter:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('Action', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }
}

 Using dynamic parameters

Dynamic parameters must be accessed using the PSBoundParameters variable within a function or script; dynamic parameters do not initialize variables of their own.

The value of the Action parameter used in the previous examples must be retrieved by using Action as a key, shown as follows:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('Action', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }

 end {
 Write-Host $psboundparameters['Action']
 }
}

As with parameters from the param block, the $psboundparameters.ContainsKey method may be used to find out whether a user has specified a value for the parameter. Dynamic parameters cannot have a default value; any default values must be created in begin, process, or end.

A dynamic parameter that accepts pipeline input, like a normal parameter that accepts pipeline input, will only have a value within the process and end blocks. The end block will only see the last value in the pipeline. The following example demonstrates this:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('InputObject', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; ValueFromPipeline = $true }
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }

 begin {
 'BEGIN: Input object is present: {0}' -f @(
 $psboundparameters.ContainsKey('InputObject')
)
 }

 process {
 'PROCESS: Input object is present: {0}; Value: {1}' -f @(
 $psboundparameters.ContainsKey('InputObject')
 $psboundparameters['InputObject']
)
 }

 end {
 'END: Input object is present: {0}; Value: {1}' -f @(
 $psboundparameters.ContainsKey('InputObject')
 $psboundparameters['InputObject']
)
 }
}

The function can be used with arbitrary input values, for example:

PS> 1..2 | Test-DynamicParam
BEGIN: Input object is present: False
PROCESS: Input object is present: True; Value: 1
PROCESS: Input object is present: True; Value: 2
END: Input object is present: True; Value: 2

The PSBoundParameters variable, and any other parameters, may be referenced inside the dynamicparam block.

 Conditional parameters

One possible use of dynamic parameters is to change validation based on the value supplied for another parameter. Another use is to change which parameters are available, again based on the value of another parameter.

The following example changes validValues into ValidateSet depending on the value supplied for the Type parameter:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, Position = 1)]
 [ValidateSet('Service', 'Process')]
 [String]$Type,

 [Parameter(Mandatory, Position = 3)]
 [String]$Name
)

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 [String[]]$validValues = switch ($Type) {
 'Service' { 'Get', 'Start', 'Stop', 'Restart' }
 'Process' { 'Get', 'Kill' }
 }
 $parameter = [RuntimeDefinedParameter]::new('Action', [String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 2 }
 [ValidateSet]::new($validValues)
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }
}

Changing validation in this manner is entirely reliant on the user having typed a value for the Type parameter prior to attempting to use Action. Other comparisons can be made in dynamic parameter blocks, for example a parameter might only appear when a certain condition is met. RuntimeDefinedParameterDictionary is valid even if it is empty and no extra parameters need to be added.

 Summary

In this chapter, we looked at working with parameters. We stared with an exploration of the Parameter attribute before moving on to validation techniques. We discussed ValueFromPipeline and ValueFromPipelineByPropertyName when working with pipeline parameters. We briefly looked at parameter sets before moving on to explore argument-completers. Finally, we explored the use of dynamic parameters.

In the next chapter, we will explore the classes and enumerations that were introduced in PowerShell 5.

 Classes and Enumerations

PowerShell 5 introduced support for creating classes and enumerations within PowerShell directly. Prior to this, classes had to be imported from an assembly written in a language such as C#, or dynamically created using the dynamic module builders.

Classes and enumerations are undergoing a great deal of change in PowerShell Core. There are numerous enhancement issues open in the PowerShell project on GitHub that are slowly making their way into PowerShell Core. Examples include the addition of interfaces, support for using validation attributes on properties, and the ability to override getters and setters for properties.

This chapter will explore the following topics:

	Defining an enumeration

	Creating a class

	Argument transformation attribute classes

	Validation attribute classes

	Classes and DSC

 Defining an enumeration

An enumeration is a set of named constants. The .NET framework is full of examples of enumerations. For example, the System.Security.AccessControl.FileSystemRights enumeration describes all of the numeric values that are used to define access rights for files or directories.

Enumerations are also used in PowerShell itself, for example, System.Management.Automation.ActionPreference contains the values for the preference variables, such as ErrorActionPreference and DebugPreference.

Enumerations are created using the enum keyword, and this is followed by a list of values:

enum MyEnum {
 First = 1
 Second = 2
 Third = 3
}

Each name must be unique within the enumeration, and must start with a letter or an underscore. The name may contain numbers after the first character. The name cannot be quoted and cannot contain the hyphen character.

The value does not have to be unique. One or more names in an enumeration can share a single value:

enum MyEnum {
 One = 1
 First = 1
 Two = 2
 Second = 2
}

The style of the preceding enumeration is odd: it defines two sets of names in a single enumeration, which is not a good practice to adopt.

 Enum and underlying types

In languages such as C#, enumerations can be given an underlying type, such as Byte or Int64. In PowerShell 5 and PowerShell Core 6.1 and older, the enumeration type is fixed to Int32. This type is shown using the following command:

PS> enum MyEnum {
>> First = 1
>> }
PS> [MyEnum].GetEnumUnderlyingType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

Any enumeration value may therefore be cast to its underlying type, or any numeric type capable of supporting the value:

[Int][MyEnum]::First

A new feature has been added to PowerShell Core that will grant you the ability to set the underlying type. This feature is likely to appear in PowerShell Core 6.2 but is not available in the preview versions at the time of writing. The notation that will be allowed is shown as follows:

enum MyEnum : UInt64 {
 First = 0
 Last = 18446744073709551615
}

 Automatic value assignment

An enumeration may be created without defining a value for a name. PowerShell will automatically allocate a sequence of values starting from 0. In the following example, the names Zero and One are automatically created with the values 0 and 1, respectively:

enum MyEnum {
 Zero
 One
}

If a value is assigned to a name, the sequence will continue from that point. The following example starts with the value 5; Six will automatically be given the value 6:

enum MyEnum {
 Five = 5
 Six
}

Automatic value assignment supports non-contiguous sets. The sequence may be restarted at any point, or values may be skipped. The following example demonstrates both restarting a sequence and skipping values in a sequence:

enum MyEnum {
 One = 1
 Two
 Five = 5
 Six
 First = 1
 Second
}

This example mixes two potentially different name sets in a single enumeration to demonstrate restarting the numeric sequence. This should be avoided outside of demonstrations as it makes the use of the enumeration ambiguous.

 Enum or ValidateSet

In some cases, only the name of the value is important; enumerations are occasionally used in place of ValidateSet.

Class-based Desired State Configuration (DSC) resources provide one of the more obvious cases for this style. The Ensure parameter has two possible values: Absent and Present. Ensure can be expressed using an enumeration:

enum Ensure {
 Absent
 Present
}

Absent is placed first as this has the value of 0, which might also be interpreted as false when casting to a Boolean:

[Boolean][Ensure]::Absent

The advantage of using an enumeration is that it can be shared across a script or module and would only need to be updated once in the event of a change.

 The flags attribute

By default, an enumeration matches a single value. If the enumeration contains more than one name for a value, the first name will be chosen.

The flags attribute allows a value to describe more than one name. The flags attribute is placed before the enum keyword.

Typically, each value in the enumeration is given a value with a unique bit combination. This is shown in the following enumeration; the bit combination is shown in the comment after the value:

[Flags()]
enum MyEnum {
 First = 1 # 001
 Second = 2 # 010
 Third = 4 # 100
}

Automatic value assignment cannot be reasonably used to assign values for a flags enumeration at the time of writing.

When the flags attribute is present, PowerShell will cast a string that contains two or more names in a comma-separated list to the value that represents that combination:

[Int][MyEnum]'First,Second'

PowerShell will also cast a numeric value into a set of names. A value of 6 can be used to represent the Second and Third flags:

PS> [MyEnum]6
Second, Third

Several enumerations that use the Flags attribute also provide named composite values. For example, the following enumeration contains a name that is used to represent the combination of the first and third flags:

[Flags()]
enum MyEnum {
 First = 1 # 001
 Second = 2 # 010
 Third = 4 # 100
 FirstAndThird = 5 # 101
}

As FirstAndThird explicitly matches the value 5, any value the enumeration converts will use the FirstAndThird name instead of the individual values:

PS> [MyEnum]7
Second, FirstAndThird

PS> [MyEnum]'First, Second, Third'
Second, FirstAndThird

The System.Security.AccessControl.FileSystemRights enumeration makes use of this technique to summarise groups of rights. The Modify name can be represented as the 110000000110111111 binary string. The enumeration names that make up the value of Modify may be displayed by comparing individual bits in the value with other possible values of the enumeration. The following snippet isolates each bit in turn and attempts to convert that single bit into a FileSystemRight name:

$value = [Int64][System.Security.AccessControl.FileSystemRights]::Modify
$i = 0
do {
 if ($bit = $value -band 1 -shl $i++) {
 [System.Security.AccessControl.FileSystemRights]$bit
 }
} until (1 -shl $i -ge $value)

 Using enumerations to convert values

Considering that enumerations are lists of names, each assigned a numeric value. A pair of enumerations to convert between two lists of names, linked only by a common value.

The following example defines two enumerations. The first is a list of values the end user will see, the second holds the internal name required by the code. This simulates, in part, the type of aliasing performed by the wmic command:

enum AliasName {
 OS
 Process
}

enum ClassName {
 Win32_OperatingSystem
 Win32_Process
}

A function might use the AliasName enumeration, as shown here:

function Get-CimAliasInstance {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, Position = 1)]
 [AliasName]$AliasName
)

 Get-CimInstance -ClassName ([ClassName]$AliasName)
}

The command may now be used with the OS argument for the AliasName parameter. This will be converted to Win32_OperatingSystem by way of the enumeration. Get-CimInstance handles converting that value into a string.

A hashtable is a possible alternative way of providing the same lookup mechanism. Using an enumeration would potentially have an advantage if the enumerations used the Flags attribute, or if one of the enumerations was already present.

 Creating a class

A class is used to describe an object. This may be any object, which means that a class in PowerShell might be used for any purpose you could dream up.

Classes in PowerShell are created using the class keyword. The following class contains a single property:

class MyClass {
 [String]$Property = 'Value'
}

The class may be created using either new-object or the ::new() method:

PS> [MyClass]::new()

Property

Value

This snippet creates an instance of the class using the default constructor, displaying the property that was defined for the class.

 Properties

The properties defined in a class may define a .NET type and may have a default value if required. The following class has a single property with the String type:

class MyClass {
 [String]$Property = 'Value'
}

PowerShell automatically adds hidden get and set methods used to access the property, these cannot be overridden or changed at this time (within the class itself).

The get and set methods may be viewed using Get-Member with the Force parameter:

[MyClass]::new() | Get-Member get_*, set_* -Force

 TypeName: MyClass

Name MemberType Definition
---- ---------- ----------
get_Property Method string get_Property()
set_Property Method void set_Property(string)

The property itself may be accessed on an instance of the class:

$instance = [MyClass]::new()
$instance.Property

 Constructors

A constructor is executed when either New-Object or ::new() is used to create an instance of a class. If an explicit constructor is not declared, an implicit constructor is created for the class. The implicit or default constructor does not require arguments:

PS> [MyClass]::new

OverloadDefinitions

MyClass new()

An explicit constructor may be created to handle more complex instantiation scenarios. The constructor must use the same name as the class. The following constructor makes use of the $this reserved variable to access other members of the class:

class MyClass {
 [String]$Property
 MyClass() {
 $this.Property = 'Hello world'
 }
}

Constructors may be overloaded, that is, more than one constructor might be declared. Each constructor must accept a unique set of arguments:

class MyClass {
 [String]$Property

 MyClass() {
 $this.Property = 'Hello world'
 }

 MyClass([String]$greeting) {
 $this.Property = $greeting
 }
}

When the first constructor is used, Property will be set to the default greeting. The second constructor allows the user to define a custom value for Property.

 Methods

A method enacts a change to the object. This may be an internal change, such as opening a connection or stream, or it may take the object and change it into a different form as is the case with the ToString method.

The following class defines a simple ToString method that returns the value of the property:

class MyClass {
 [String]$Property

 MyClass() {
 $this.Property = 'Hello world'
 }

 [String] ToString() {
 return $this.Property
 }
}

When working with methods, and unlike functions in PowerShell, the return keyword is mandatory. Methods do not return output by default. An error will be raised if a method has an output type declared and it does not return output from each code path.

Methods can accept arguments in the same way as constructors. Methods can also be overloaded. For example, the ToString method might be overloaded, providing support for output formatting. An example of this is shown here:

class MyClass {
 [String]$Property = 'Hello world'

 [String] ToString() {
 return '{0} on {1}' -f $this.Property, (Get-Date).ToShortDateString()
 }
 [String] ToString($format) {
 return '{0} on {1}' -f $this.Property, (Get-Date).ToString($format)
 }
}

The arguments supplied will dictate which method implementation is used.

 Inheritance

Classes in PowerShell can inherit from other classes (both classes in PowerShell and classes from the .NET Framework). The properties, constructors, and methods in a base class are available to an inheriting class.

The following example defines two classes – the second inherits from the first:

class MyBaseClass {
 [String]$BaseProperty = 'baseValue'
}
class MyClass : MyBaseClass {
 [String]$Property = 'Value'
}

The BaseProperty property is made available on instances of the child class:

PS> [MyClass]::new()

Property BaseProperty
-------- ------------
Value baseValue

Members may be overridden by re-declaring the member on the inheriting class. The ToString method implementation from the base class is overridden in the following example:

class MyBaseClass {
 [String] ToString() { return 'default' }
}
class MyClass : MyBaseClass {
 [String] ToString() { return 'new' }
}

Unlike C#, PowerShell does not require the use of an override modifier.

 Constructor inheritance

Constructor inheritance allows a child class to tweak a constructor declared on a base class without re-implementing the constructor. The base keyword is used to reference the constructor on the inherited class. The constructor on the base class is executed before the constructor in the inheriting class:

class MyBaseClass {
 [String]$BaseProperty

 MyBaseClass() {
 Write-Host 'Executing base constructor'
 $this.BaseProperty = 'baseValue'
 }
}
class MyClass : MyBaseClass {
 [String]$Property

 MyClass() : base() {
 Write-Host 'Executing child constructor'
 $this.Property = 'value'
 }
}

It is possible to invoke a constructor in the base class with a different overload by passing arguments to the base keyword:

class MyBaseClass {
 [String]$BaseProperty

 MyBaseClass($value) {
 $this.BaseProperty = $value
 }
}
class MyClass : MyBaseClass {
 MyClass() : base('SomeValue') { }
}

The arguments passed to the base keyword may be either variable values, such as the parameters for the constructor on MyClass, fixed values, or expressions that invoke other functions and commands.

This form of inheritance only applies to constructors – the same technique cannot be used for methods.

 Chaining constructors

Constructor chaining avoids the need to repeat the work a single constructor performs. Overloaded methods can be used to simulate constructor-chaining within a class.

In C#, constructor-chaining allows one constructor to call another using the this keyword. This would be similar to the use of the base keyword when invoking an inherited constructor. This form of chaining is not possible in PowerShell; a workaround is required.

Each constructor is given an associated method; the methods call each other depending on the arguments supplied:

class MyClass {
 [String]$FirstProperty
 [String]$SecondProperty

 MyClass() { $this.Initialize() }
 MyClass([String]$First) { $this.Initialize($First) }
 MyClass([String]$First, [String]$Second) { $this.Initialize($First, $Second) }

 [Void] Initialize() { $this.Initialize('DefaultFirst', 'DefaultSecond') }
 [Void] Initialize([String]$First) { $this.Initialize($First, 'DefaultSecond') }

 [Void] Initialize([String]$First, [String]$Second) {
 $this.FirstProperty = $First
 $this.SecondProperty = $Second
 }
}

These methods can be invoked directly on an instance of a class. The Initialize methods are visible to the end user using Get-Member or to IntelliSense and tab completion which may not be desirable.

 The Hidden modifier

The Hidden modifier may be used to hide a property or a method from casual discovery. Members marked as Hidden are still visible when using Get-Member, and may still be invoked. In many respects, this is similar to the DontShow property of the Parameter attribute: it hides the member from IntelliSense and tab completion, but does not prevent use.

In the following example, the Initialize method is hidden:

class MyClass {
 [String]$Property

 MyClass() { $this.Initialize() }

 Hidden [Void] Initialize() {
 $this.Property = 'defaultValue'
 }
}

By default, the Initialize method will be hidden from view. Using Get-Member with the Force parameter will show the method:

PS> [MyClass]::new() | Get-Member Initialize -Force

 TypeName: MyClass

Name MemberType Definition
---- ---------- ----------
Initialize Method void Initialize()

It is not possible to make members private in PowerShell at this time.

 The Static modifier

All of the members demonstrated so far have required creation of an instance of a type using either New-Object or ::new().

Static members may be executed without creating an instance of a type (based on a class).

Classes may implement static properties and static methods using the Static modifier keyword:

class MyClass {
 static [String] $Property = 'Property value'
 static [String] Method() {
 return 'Method return'
 }
}

The static members are invoked as follows:

[MyClass]::Property
[MyClass]::Method()

The Hidden modifier may be used in conjunction with the Static modifier. The modifiers may be used in either order.

 Argument-transformation attribute classes

Argument-transformation attributes may be added to parameters used in scripts and functions. An argument-transformation attribute is used to convert the value of an argument for a parameter. The transformation operation is carried out before PowerShell completes the assignment to the variable, side-stepping type mismatch errors.

A class must be created that inherits from System.Management.Automation.ArgumentTransformationAttribute. The class must implement a Transform method.

The Transform method must accept two arguments with the System.Object and System.Management.Automation.EngineIntrinsics types. The argument names are arbitrary, the names used in the following example follow the naming used in the .NET reference: https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0.

Abstract methods must be implemented in inheriting classes. That the Transform method must be implemented in this class is indicated by the abstract modifier shown in the .NET documentation. The abstract modifier is discussed in the C# reference: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract.

The following example implements an argument-transformation attribute that converts a date string in the yyyyMMddHHmmss format back to DateTime before the assignment to the parameter is completed:

using namespace System.Management.Automation

class DateTimeStringTransformationAttribute : ArgumentTransformationAttribute {
 [Object] Transform(
 [EngineIntrinsics]$engineIntrinsics,
 [Object]$inputData
) {
 $date = Get-Date
 if ($InputData -is [String] -and
 [DateTime]::TryParseExact($inputData, 'yyyyMMddHHmmss', $null, 'None', [Ref]$date)) {

 return $date
 } elseif ($inputData -is [DateTime]) {
 return $inputData
 } else {
 throw 'Unexpected date format'
 }
 }
}

The class does not need to contain anything other than the Transform method implementation. If the transformation is more complex, it may implement other helper methods. The following example moves DateTime.TryParseExact into a new method:

using namespace System.Management.Automation

class DateTimeStringTransformationAttribute : ArgumentTransformationAttribute {
 Hidden [DateTime] $date

 Hidden [Boolean] tryParseExact([String]$value) {
 $parsedDate = Get-Date
 $parseResult = [DateTime]::TryParseExact(
 $value,
 'yyyyMMddHHmmss',
 $null,
 'None',
 [Ref]$parsedDate
)
 $this.date = $parsedDate

 return $parseResult
 }

 [Object] Transform(
 [EngineIntrinsics]$engineIntrinsics,
 [Object]$inputData
) {
 if ($inputData -is [String] -and $this.TryParseExact($inputData)) {
 return $this.date
 } elseif ($inputData -is [DateTime]) {
 return $inputData
 } else {
 throw 'Unexpected date format'
 }
 }
}

The new class may be used with a parameter, as shown here. Note that the Attribute string at the end of the class name may be omitted when it is used:

function Test-Transform {
 param (
 [DateTimeStringTransformation()]
 [DateTime]$Date
)

 Write-Host $Date
}

With this attribute in place, the function can be passed a date and time in a format that would not normally convert:

PS> Test-Transform -Date '20190210090000'
10/02/2019 09:00:00

As implementing a transformation attribute requires either restricting a command to PowerShell 5 or newer, or an implementation using C#, they rarely appear in code.

 Validation attribute classes

PowerShell classes may be used to build custom validation attributes. This might act as an alternative to ValidateScript in some respects.

Validation attributes must inherit from either ValidateArgumentsAttribute or ValidateEnumeratedArgumentsAttribute.

Validators are most often used with parameters in scripts and functions, but they may be used with any variable.

 ValidateArgumentsAttribute

Validators that inherit from ValidateArgumentsAttribute are somewhat difficult to define. The existing validators, such as ValidateNotNullOrEmpty and ValidateCount, catch most of the possible uses. Validation is more often interested in testing whether the value of parameter is an array.

Classes that inherit from ValidateArgumentsAttribute act on an argument as a single entity. If an argument is an array, the validation step applies to the array object rather than the individual elements of the array.

Classes that implement ValidateArgumentsAttribute must inherit from System.Management.Automation.ValidateArgumentsAttribute. The class must implement a Validate method that is marked as abstract in the ValidateArgumentsAttribute class.

The Validate method accepts two arguments with the System.Object and System.Management.Automation.EngineIntrinsics types. This is shown in the .NET reference: https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0.

The following example tests that the argument is not null or whitespace:

using namespace System.Management.Automation

class ValidateNotNullOrWhitespaceAttribute : ValidateArgumentsAttribute {
 [Void] Validate(
 [System.Object]$arguments,
 [EngineIntrinsics]$engineIntrinsics
) {
 if ([String]::IsNullOrWhitespace($arguments)) {
 throw 'The value cannot be null or white space'
 }
 }
}

The use of this validator is demonstrated in the following function:

function Test-Validate {
 [CmdletBinding()]
 param (
 [ValidateNotNullOrWhitespace()]
 [String]$Value
)

 Write-Host $Value
}

This validator example will be more effective when defined as a validator that inherits from ValidateEnumeratedArguments and is implemented in the ValidateElement method.

 ValidateEnumeratedArgumentsAttribute

Classes that inherit from ValidateEnumeratedArgumentsAttribute may be used to test each of the elements in an array (when associated with an array-based parameter), or a single item (when associated with a scalar parameter).

Classes that implement ValidateEnumeratedArgumentsAttribute must inherit from System.Management.Automation.ValidateEnumeratedArgumentsAttribute. The class must implement a Validate method that is marked as abstract in the ValidateEnumeratedArgumentsAttribute class.

The ValidateElement method accepts one argument with the System.Object type. This is shown in the .NET reference: https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0.

The ValidateElement method does not return any output; it either runs successfully or throws an error. The error will be displayed to the end user.

The following validates that an IP address used as an argument falls in a private address range. If the address is not part of a private range, or not a valid IP address, the command will throw an error:

using namespace System.Management.Automation

class ValidatePrivateIPAddressAttribute : ValidateEnumeratedArgumentsAttribute {
 Hidden $ipAddress = [IPAddress]::Empty

 Hidden [Boolean] IsValidIPAddress([String]$value) {
 return [IPAddress]::TryParse($value, [Ref]$this.ipAddress)
 }

 Hidden [Boolean] IsPrivateIPAddress([IPAddress]$address) {
 $bytes = $address.GetAddressBytes()
 $isPrivateIPAddress = switch ($null) {
 { $bytes[0] -eq 192 -and
 $bytes[1] -eq 168 } { $true; break }
 { $bytes[0] -eq 172 -and
 $bytes[1] -ge 16 -and
 $bytes[2] -le 31 } { $true; break }
 { $bytes[0] -eq 10 } { $true; break }
 default { $false }
 }
 return $isPrivateIPAddress
 }

 [Void] ValidateElement([Object]$element) {
 if (-not $element -is [IPAddress]) {
 if ($this.IsValidIPAddress($element)) {
 $element = $this.ipAddress
 } else {
 throw '{0} is an invalid IP address format' -f $element
 }
 }
 if (-not $this.IsPrivateIPAddress($element)) {
 throw '{0} is not a private IP address' -f $element
 }
 }
}

The attribute defined in the preceding code may be used with any parameter to validate IP addressing, as shown in the following short function:

function Test-Validate {
 [CmdletBinding()]
 param (
 [ValidatePrivateIPAddress()]
 [IPAddress]$IPAddress
)

 Write-Host $IPAddress
}

Validation like this can be implemented with ValidateScript, which also inherits from ValidateEnumeratedArgumentsAttribute. ValidateScript can call functions, centralizing the validation code.

 Classes and DSC

Classes in PowerShell exist because of Desired State Configuration (DSC). DSC resources written as PowerShell classes are very succinct; they avoid the repetition inherent in script-based resources. Script-based resources must at least duplicate the param block. Class-based resources also avoid the need for a separately generated schema document and have a simpler module layout.

Class-based DSC resources in a module must be explicitly exported using the DscResourcesToExport key in a module manifest document.

The class must include a DscResource attribute. Each property a user is expected to set must have a DscProperty attribute. At least one property must be the Key property of the DscProperty attribute set. The class must implement the Get, Set, and Test methods.

Class-based resources may use inheritance to simplify an implementation as required; this is especially useful if a group of resources uses the same code to act out changes.

A basic DSC resource is defined as follows:

enum Ensure {
 Absent
 Present
}

[DscResource()]
class MyResource {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [MyResource] Get() { return $this }

 [Void] Set() { }

 [Boolean] Test() { return $true }
}

This resource implements all of the required methods, but it performs no actions.

Like a good function, a good DSC resource should strive to be really good at one thing and one thing only. If a particular item has a variety of configuration options, it is often better to have a set of similar resources than a single resource that attempts to do it all.

The sections that follow will focus on the creation of a short resource that sets the computer description.

This resource will need to make a change to a single registry value. The computer description is set under the HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters key using the svrcomment string value.

The starting point for the resource is shown here:

enum Ensure {
 Absent
 Present
}

[DscResource()]
class ComputerDescription {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [DscProperty()]
 [String]$Description

 Hidden [String] $path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'
 Hidden [String] $valueName = 'svrcomment'

 [ComputerDescription] Get() { return $this }

 [Void] Set() { }

 [Boolean] Test() { return $true }
}

Each of the methods in the class must be implemented for the resource to function.

 Implementing Get

The Get method should evaluate the current state of the resource. The registry key will exist, but the registry value may be incorrect, or may not exist.

The Get method will act as follows:

	If a the value is present, it will set the Ensure property to Present and update the value of the Description property.

	If the value is not present, it will set the Ensure property to Absent only.

The following snippet implements these actions:

[ComputerDescription] Get() {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $this.Ensure = 'Present'
 $this.Description = $key.GetValue($this.valueName)
 } else {
 $this.Ensure = 'Absent'
 }
 return $this
}

The Get method must return an instance of the class. It can either return the existing instance, return $this, or generate a new instance, for instance by returning a hashtable:

[ComputerDescription] Get() {
 $computerDescription = @{}

 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $computerDescription.Ensure = 'Present'
 $computerDescription.Description = $key.GetValue($this.valueName)
 } else {
 $computerDescription.Ensure = 'Absent'
 }
 return $computerDescription
}

The hashtable returned by the preceding function is automatically cast to the class, creating a new instance.

The Get method is only used when explicitly invoked. It is not used by either Set or Test.

 Implementing Set

The Set method deals with making a change, if a change is required. Set can ordinarily assume that Test has been run, and therefore that a change is required.

As the resource allows a user to ensure a value is either present or absent, it must handle the creation and deletion of the value:

[Void] Set() {
 $params = @{
 Path = $this.path
 Name = $this.valueName
 }
 if ($this.Ensure -eq 'Present') {
 New-ItemProperty -Value $this.Description -Type String -Force @params
 } else {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 Remove-ItemProperty @params
 }
 }
}

This version of Set uses the Force parameter of New-ItemProperty to overwrite any existing values of the same name. Using Force also handles cases where the value exists but the value type is incorrect.

 Implementing Test

The Test method is used to determine whether Set should be run. DSC invokes Test before Set. The Test method returns a Boolean value.

The Test method must perform the following tests to ascertain the state of this configuration item:

	When Ensure is present, fail if the value does not exist.

	When Ensure is present, fail if the value exists, but the description does not match the requested value.

	When Ensure is absent, fail if the value name exists.

	Otherwise, pass.

The following snippet implements these tests:

[Boolean] Test() {
 $key = Get-Item $this.Path
 if ($this.Ensure -eq 'Present') {
 if ($key.GetValueNames() -notcontains $this.valueName) {
 return $false
 }
 return $key.GetValue($this.valueName) -eq $this.Description
 } else {
 return $key.GetValueNames() -notcontains $this.valueName
 }
 return $true
}

Each of these methods must be copied back into the resource class.

 Using the resource

The complete class, ComputerDescription, incorporating each of the preceding methods, is shown here:

enum Ensure {
 Absent
 Present
}

[DscResource()]
class ComputerDescription {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [DscProperty()]
 [String]$Description

 Hidden [String] $path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'
 Hidden [String] $valueName = 'svrcomment'

 [ComputerDescription] Get() {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $this.Ensure = 'Present'
 $this.Description = $key.GetValue($this.valueName)
 } else {
 $this.Ensure = 'Absent'
 }
 return $this
 }

 [Void] Set() {
 $params = @{
 Path = $this.path
 Name = $this.valueName
 }
 if ($this.Ensure -eq 'Present') {
 New-ItemProperty -Value $this.Description -Type String -Force @params
 } else {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 Remove-ItemProperty @params
 }
 }
 }

 [Boolean] Test() {
 $key = Get-Item $this.Path
 if ($this.Ensure -eq 'Present') {
 if ($key.GetValueNames() -notcontains $this.valueName) {
 return $false
 }
 return $key.GetValue($this.valueName) -eq $this.Description
 } else {
 return $key.GetValueNames() -notcontains $this.valueName
 }
 return $true
 }
}

DSC will only find the class using Get-DscResource if the following are true:

	The class is saved in a module.

	The module exports the DSC resource.

	The module is in one of the paths in $env:PSMODULEPATH.

	The module path is system-wide, accessible by the Local Configuration Manager (LCM).

The following script creates the files and folders required to achieve under Program Files. The script will require administrative rights:

$modulePath = 'C:\Program Files\WindowsPowerShell\Modules'

$params = @{
 Path = Join-Path $modulePath 'LocalMachine\1.0.0\LocalMachine.psm1'
 ItemType = 'File'
 Force = $true
}
New-Item @params

$params = @{
 Path = Join-Path $modulePath 'LocalMachine\1.0.0\LocalMachine.psd1'
 RootModule = 'LocalMachine.psm1'
 DscResourcesToExport = 'ComputerDescription'
}
New-ModuleManifest @params

The LocalMachine.psm1 file should be edited, adding the Ensure enumeration and the ComputerDescription class.

Once the class is in a module, it can be used with the using module command:

using module LocalMachine

$class = [ComputerDescription]@{
 Ensure = 'Present'
 Description = 'Computer description'
}

Individual methods may be invoked, for example, Get may be run:

PS> $class.Get()

Ensure Description
------ -----------
Absent Computer description

As the module is under a known module path, Get-DscResource should be able to find it immediately:

PS> Get-DscResource ComputerDescription

ImplementedAs Name ModuleName Version Properties
------------- ---- ---------- ------- ----------
PowerShell ComputerDescription LocalMachine 1.0 {Ensure, DependsOn, Description,...

The Invoke-DscResource command may be used to run individual methods without creating a DSC configuration document:

$params = @{
 Name = 'ComputerDescription'
 ModuleName = 'LocalMachine'
 Method = 'Test'
 Property = @{
 Ensure = 'Present'
 Description = 'Some description'
 }
 Verbose = $true
}
Invoke-DscResource @params

Running Invoke-DscResource will require administrative rights. Invoke-DscResource interacts with the LCM to execute the resource and will report back whether or not the configuration item is in the desired state.

 Summary

In this chapter, we explored enumerations and classes in PowerShell. Classes were introduced with PowerShell 5.0 and continue to expand with PowerShell Core.

We covered how to create a class, including defining properties, constructors, and methods.

We looked at a few different uses of classes, starting with argument-transformation attributes and validation attributes, and finishing with class-based DSC resources.

In the next chapter, we will explore building modules, including how modules might be structured during development and assembled into a single file for use.

 Building Modules

Modules were introduced with PowerShell 2. A module groups a set of commands together, most often around a common system, service, or purpose.

PowerShell uses several different types of module, such as manifest, binary, and script. A manifest module is typically made up of a set of nested modules. A binary module uses a compiled library (.dll file) to implement commands. This chapter focuses on script modules.

In this chapter we will cover the following topics:

	Module layout

	Multi-file module layout

	Module scope

	Module initialization and removal

 Technical requirements

The final module content used in this chapter is available on GitHub at https://github.com/indented-automation/LocalMachine.

The content of the repository may be used to experiment with the different layouts explored in this chapter. The content may be used to ensure that any imported module content is functional.

 Module layout

A module consists of a single file with a psm1 extension, known as the root module, which contains all the functions of that module.

A module may include a manifest file with a psd1 extension that contains extended information (metadata) about the module.

The previous chapter ended with the creation of a DSC resource to set a description for a computer. This was made part of a LocalMachine module. The LocalMachine module will be rewritten in this chapter.

If the LocalMachine module still exists under C:\Program Files\WindowsPowerShell\Modules, it can be deleted at this time.

Several modules exist to help with creating the initial layout of a module. The Plaster and PSModuleDevelopment modules are both reasonable examples:

	Plaster: https://github.com/PowerShell/Plaster

	PSModuleDevelopment: https://www.powershellgallery.com/packages/PSModuleDevelopment

 The root module

The root module, a file with a psm1 extension, is given the same name as the module itself and will be nested directly under a folder that bears the module name.

When a module is installed into one of the folders in $env:PSModulePath, it may have the following structure:

Modules
| -- LocalMachine
 | -- LocalMachine.psm1

The module can be imported immediately by passing the path to the LocalMachine folder to Import-Module. If the module content changes, the module should either be removed using Remove-Module, or the Force parameter should be used with Import-Module.

Adding temporary module paths

Environment variables modified using $env are not persistent; the change will disappear when PowerShell is closed. A temporary module path might be added to simplify testing while writing a module:

$env:PSMODULEPATH = 'C:\Workspace;{0}' -f $env:PSMODULEPATH

Modules placed in C:\Workspace may be discovered using Get-Module and Get-Command.

The LocalMachine.psm1 file includes all of the functions that make up the module. The content of LocalMachine.psm1 is shown in the following example; the body of the functions has been omitted in this snippet:

function Get-ComputerDescription { }
function Set-ComputerDescription { }

All of the functions in a module are made available to a user by default. The names of the functions will be shown when Get-Module is run, shown as follows:

PS> Get-Module LocalMachine -ListAvailable

 Directory: C:\Workspace

ModuleType Version Name PSEdition ExportedCommands
---------- ------- ---- --------- ----------------
Script 0.0 LocalMachine Desk {Get-ComputerDescription, Set-ComputerDescription}

The example shows that both of the functions are exported. If either function is run, the module will be automatically imported.

 The Export-ModuleMember command

All of the functions in a module are exported by default. The Export-ModuleMember command may be used to limit this to a named set of commands.

If the Export-ModuleMember command is used, certain functions can be hidden from view:

function Get-ComputerDescription { }
function Set-ComputerDescription { }
function GetRegistryValueInfo { }

Export-ModuleMember -Function Get-ComputerDescription, Set-ComputerDescription

The result of this is a module that has a hidden, or private, GetRegistryValueInfo function.

Naming private functions

 As private functions are not exported, they are not subject to the same discovery rules as exported commands.

My convention is to use verb-noun pairing with approved verbs, but to omit the hyphen.

Module information displayed using Get-Module is cached; if the module content does not display correctly, run Get-Module LocalMachine -ListAvailable -Refresh or restart the PowerShell session.

Wildcards may be used with Export-ModuleMember. Wildcards will affect the autoloader, and explicit names are preferred. For example:

Export-ModuleMember -Function *-ComputerDescription

Export-ModuleMember can be used to export functions, cmdlets, variables, and aliases. It cannot be used to export DSC resources, it cannot be used to version a module, and it cannot provide other information about the module. The module manifest greatly expands on the capabilities of Export-ModuleMember.

 Module manifest

The module manifest is a PowerShell data file that contains metadata for the module. The manifest includes critical information, such as the version number, the files to import, and the commands, aliases, and classes that it contains. The manifest may include the software license and a project URL if they are applicable.

The use of a manifest is mandatory if a module will be published on the PowerShell Gallery or any other repository.

The New-ModuleManifest command may be used to create the manifest from scratch. The following example assumes the module is a C:\workspace path:

$params = @{
 Path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
 RootModule = 'LocalMachine.psm1'
 ModuleVersion = '1.0.0'
 FunctionsToExport = 'Get-ComputerDescription', 'Set-ComputerDescription'
}
New-ModuleManifest @params

This manifest replaces much of the functionality of the Export-ModuleMember command. The manifest can be used to define functions to export; Export-ModuleMember is still required if variables are to be exported.

As with Export-ModuleMember, a wildcard pattern may be used for FunctionsToExport, however, this will make it impossible for the autoloader to do its job consistently.

The New-ModuleManifest command is complemented by Test-ModuleManifest. The Test-ModuleManifest command will import the data file and raise errors if problems are detected with the manifest. The Import-PowerShellDataFile command can also be used to import the content of the manifest.

In theory, in addition to creating a manifest for the first time, New-ModuleManifest can be used to update the content of an existing file. Import-PowerShellDataFile can be used to import the existing content and those values can be passed to New-ModuleManifest:

$path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
$manifest = Import-PowerShellDataFile -Path 'C:\workspace\LocalMachine\LocalMachine.psd1'
$manifest.FunctionsToExport = '*'
New-ModuleManifest -Path 'C:\workspace\LocalMachine\LocalMachine-new.psd1' @manifest

In practice, New-ModuleManifest will not correctly handle the nested PrivateData section. A similar problem applies to the Update-ModuleManifest command that comes with the PowerShellGet module.

The Configuration module on the PowerShell Gallery (https://www.powershellgallery.com/packages/Configuration) provides an alternative. Once installed, the command may be used to tweak content in an existing manifest, as follows:

Install-Module Configuration -Scope CurrentUser

$params = @{
 Path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
 Property = 'RootModule'
 Value = 'LocalMachine.psm1'
}
Update-Metadata @params

The Update-Metadata command cannot write to commented keys in the manifest, and removing comment characters is beyond the scope of Update-Metadata.

 Export-ModuleMember or FunctionsToExport

When using a manifest, the Export-ModuleMember command can be removed. Instead, the FunctionsToExport and the other export fields in manifest can be filled in.

It is possible to use wildcards in the FunctionsToExport field. However, this is a bad practice in production as it defeats the module's autoloader.

 Side-by-side versioning

Multiple versions of the same module can exist on a system. As the version is only defined in the manifest, having a manifest is required to support side-by-side versioning.

When a versioned module is installed, a new folder is added to the hierarchy, as follows:

Modules
| -- LocalMachine
 | -- 1.0.0
 | -- LocalMachine.psd1
 | -- LocalMachine.psm1

Each new version of the module creates a new folder.

The preceding structure is used when a module is installed. The structure is not particularly useful when developing a module, especially if changes are being tracked using a source-control system. Every new release or update to the module would mean renaming the version folder, effectively changing everything.

 Dependencies

A PowerShell module may have one or more dependencies. The dependencies should be included in the module manifest under the RequiredModules key.

Dependencies may be defined using a module name only, or alternatively as a module specification. For example:

RequiredModules = @(
 'Configuration'
 @{ ModuleName = 'Pester'; ModuleVersion = '4.6.0' }
)

The hashtable used in the preceding example may also use the MaximumVersion or RequiredVersion keys. If a module is loaded by name, the latest version will be used.

When publishing a module, the Publish-Module command will attempt to validate stated dependencies. The dependencies should be locally available or publishing may fail.

 Multi-file module layout

PowerShell does not enforce a particular layout for a module in most cases, and there is a great deal of variety in the layout of modules on the internet.

An exception to this is script-based DSC resources. Script-based resources must be placed in a DscResources folder, and each resource is implemented as a separate module under that folder. For example:

LocalMachine
| -- DscResources
| | -- LocalMachine
| | -- ComputerDescription.psd1 (Optional)
| | -- ComputerDescription.psm1
| | -- ComputerDescription.schema.mof
| -- LocalMachine.psd1
| -- LocalMachine.psm1

In some cases, a module will only have a root module file and perhaps a manifest. At the other extreme, a module may split every function in the module into a separate file. Other modules fall anywhere in between these two examples. There are advantages to using either of these approaches which:

	A run-time consideration: A module that has only a single root module file will import much more quickly than a module split into many files.

	A development consideration: It is easier to find content within a module that is split into many files. And it is easier to work on a multi-user project where content is broken down.

One of the most popular multi-file layouts is shown as follows:

LocalMachine (Project folder)
| -- LocalMachine (Module content folder)
 | -- classes
 | | -- ComputerDescription.ps1
 | -- enum
 | | -- Ensure.ps1
 | -- private
 | | -- GetRegistryValueInfo.ps1
 | -- public
 | | -- Get-ComputerDescription.ps1
 | | -- Remove-ComputerDescription.ps1
 | | -- Set-ComputerDescription.ps1
 | -- LocalMachine.psd1
 | -- LocalMachine.psm1

The project folder is most often named after the module. It exists to host content that is not part of the published module, such as source-control specific files (such as .gitignore), readme files, or scripts used to build and test the module.

A popular variation in the preceding structure names the module content folder Source, or Src, instead of using the name of the module. Complex modules will often add sub-folders to each of those used in the preceding example to group common elements together.

 Dot-sourcing module content

When a module is divided in this manner, the root module must contain everything required to load the module content. This is most often achieved by dot-sourcing each of the files in the sub-folders adjacent to the root module. One possible way to do this is to use Get-ChildItem to find all of the ps1 files beneath a certain point and dot-source those.

The following snippet uses this approach:

Get-ChildItem (Join-Path $psscriptroot 'private') {
 . $_.FullName
}
$functionsToExport = Get-ChildItem (Join-Path $psscriptroot 'public') {
 . $_.FullName
 $_.BaseName
}
Export-ModuleMember -Function $functionsToExport

The snippet assumes Export-ModuleMember is to be used, and that the manifest has FunctionsToExport set to *. As the files are named after the functions, the BaseName property of each item is used to build an array of functions to pass to Export-ModuleMember.

The disadvantage of this approach is that it loads all ps1 files without further consideration. Any additional files dropped into the module will load as well. While a module is undergoing development, this behavior may be desirable, but it represents a small risk for anyone installing the module.

An alternative, but higher-maintenance, approach, is to name the files to import instead of allowing any file at all to load. For example:

$private = 'GetRegistryValueInfo'
$public = @(
 'Get-ComputerDescription'
 'Remove-ComputerDescription'
 'Set-ComputerDescription'
)

foreach ($item in $private) {
 . '{0}\private\{1}.ps1' -f $psscriptroot, $item
}
foreach ($item in $public) {
 . '{0}\public\{1}.ps1' -f $psscriptroot, $item
}
Export-ModuleMember -Function $public

With this version, module content is loaded with an explicit name. Additional files that are erroneously placed in the module folder will not be processed.

 Merging module content

Dot-sourcing module content is useful when a module is being developed, it allows a developer to realize the benefits of having module content split into separate files. It is possible to leave the module as it is, it can be published; many popular modules are. To realize the benefit of a single root module file, the content might be merged. This operation can be performed when testing a module, or when preparing a module for release.

There are a number of modules available that can be used to perform this step. For example, the ModuleBuilder module is capable of merging module content. The ModuleBuilder module requires a build.psd1 file in the root of the module (adjacent to LocalMachine.psd1). The build.psd1 file does not need to contain more than an empty hashtable; it can be used to customize the merge process.

With the file present, the following command may be used to merge the module content:

Install-Module ModuleBuilder -Scope CurrentUser

Build-Module -SourcePath C:\Workspace\LocalMachine\LocalMachine\LocalMachine.psd1

If the command is run from the same directory as build.psd1, the SourcePath argument can be omitted. For example:

Set-Location C:\Workspace\LocalMachine\LocalMachine
Build-Module

The resulting module file is placed in the output folder under the project folder. The output path is configurable. The merge process itself is not very complicated. The following script can be used to achieve a similar result when running from the project root folder (C:\Workspace\LocalMachine):

$configuration = @{
 ModuleName = Split-Path $psscriptroot -Leaf
 FoldersToMerge = @(
 'enum*'
 'class*'
 'private*'
 'public*'
)
 FilesToCopy = '*.ps1xml', '*.psd1'
 FilesToExclude = 'build.psd1'
}

try {
 $ErrorActionPreference = 'SilentlyContinue'

 if (Test-Path 'output') {
 Remove-Item 'output' -Recurse -Force
 }
 $outputPath = New-Item 'output' -ItemType Directory

 Push-Location (Join-Path $psscriptroot $configuration.ModuleName) -StackName build

 Get-ChildItem $configuration.FilesToCopy -Exclude $configuration.FilesToExclude |
 Copy-Item -Destination $outputPath -Verbose

 Get-ChildItem $configuration.FoldersToMerge -Directory |
 Get-ChildItem -Filter *.ps1 -File -Recurse |
 Get-Content -Raw |
 ForEach-Object {
 $_.Trim()
 ''
 } |
 Add-Content ('{0}\{1}.psm1' -f $outputPath, $configuration.ModuleName)
} finally {
 Pop-Location -StackName build
}

As a module grows in complexity, it may be desirable to perform additional tasks during the build step. For example, tests might be run, help files might be regenerated, the module might be published. A more extensive build script might perform these actions.

 Module scope

The content of the root module file executes when a module is imported. Functions are imported into the module scope and exported into global scope if they are included in the list of functions to export.

Variables may be created in the module scope, functions within the module may consume those variables. Such variables might be created in the root module, or they may be created when a command is run.

The $Script: scope prefix may be used to explicitly access the scope and it clearly identifies such variables where they are used. Helper functions might be created to provide obvious access to the variable content.

This approach is illustrated in the following example. This pattern is common for modules that interact with services that require an authentication token, such as a REST web service:

function Connect-Service {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Server
)

 $Script:connection = [PSCustomObject]@{
 Server = $Server
 PSTypeName = 'ServiceConnectionInfo'
 }
}

function Get-ServiceConnection {
 [CmdletBinding()]
 param ()

 if ($Script:connection) {
 $Script:connection
 } else {
 throw [InvalidOperationException]::new('Not connected to the service')
 }
}

function Get-ServiceObject {
 [CmdletBinding()]
 param (
 [PSTypeName('ServiceConnectionInfo')]
 $Connection = (Get-ServiceConnection)
)
}

Considering the preceding snippet:

	Connect-Service stores the connection object in the module scope.

	Get-ServiceConnection retrieves that cached connection or throws an error if the connection does not exist.

	The Get-ServiceObject and any other function use that cached value as the default value for a Connection parameter. The end user may override that value by providing their own service connection.

Module-scoped variables can also be created by creating a variable in the root module file.

 Accessing module scope

It is possible to access module scope from the global scope by passing a module information object to the call operator.

The following snippet is used to demonstrate accessing module scope. The module consists of one public function, one private function, and a module-scoped variable:

function GetModuleServiceConnection {
 [CmdletBinding()]
 param ()

 $Script:connection
 }

function Connect-ModuleService {
 [CmdletBinding()]
 param (
 [String]$Name
)

 $Script:connection = $Name
}

$Script:connection = 'DefaultConnection'

Export-ModuleMember -Function Connect-ModuleService

The following snippet should be saved to a file named ModuleService.psm1, then the module should be imported using Import-Module .\ModuleService.psm1.

By default, only the Connect-ModuleService function is available. The value of the script/module-scoped connection variable may be retrieved as follows:

PS> & (Get-Module ModuleService) { $connection }
DefaultConnection

If the Connect-ModuleService command is used, the value returned by the preceding command will change. The same approach may be used to interact with functions that are not normally exported by the module. For example, the GetModuleServiceConnection function can be called:

& (Get-Module ModuleService) { GetModuleServiceConnection }

Finally, as the command is executing in the scope of the module, this technique may be applied to list the commands within the module, as follows:

& (Get-Module ModuleService) { Get-Command -Module ModuleService }

This technique is useful when debugging modules that heavily utilize module scope.

 Initializing and removing modules

The content of the root module executes every time a module is imported. A root module file may be used to perform initialization steps, perhaps filling cache files, importing static data, or setting a default configuration. These steps are extra code that must be added to the root module, perhaps at the beginning or end of the file.

If a module is being built, and the root module is automatically generated, the additional content would need to be drawn in by the merge script. The ModuleBuilder module, introduced when exploring merging content in this chapter, achieves this by using the Prefix and Suffix parameters. Values for this parameter may be supplied when running Build-Module or added to the build.psd1 file. These parameters allow the developer to inject the content of a named script at the beginning (prefix), or end (suffix), of the root module file.

 The ScriptsToProcess key

The RequiredAssemblies and RequiredModules keys of the module manifest both execute before the root module is imported, accounting for normal prerequisites.

In rare cases, it is desirable to run commands in the users scope before importing the module. The ScriptsToProcess key in the module manifest is present for this purpose. Scripts placed here are executed in the users scope and cannot access commands and variables internal to the module.

 The OnRemove event

The ModuleInfo object provides access to an OnRemove event handler. This event is triggered if the module is removed from the user's session using the Remove-Module command. The event is not triggered if the session is closed. This event handler may be used to trigger a cleanup of the artifacts created by the module, if any are required.

The following module creates a global variable in the user's scope. Exporting the variable from the module using VariablesToExport and Export-ModuleMember may have been a better approach, the variable would have been automatically removed. An OnRemove handler is added to the module to forcefully remove the global variable with the module and the handler is created in the root module file:

$Global:VariableName = 'Value'
$executionContext.SessionState.Module.OnRemove = {
 if (Test-Path variable:VariableName) {
 Remove-Variable VariableName -Scope Global
 }
}

If the preceding module content is placed in TestOnRemove.psm1, and the module file is imported, the VariableName variable will be present:

PS> Get-Variable VariableName

Name Value
---- -----
VariableName Value

When the module is removed, using Remove-Module, the variable is removed as well:

PS> Remove-Module TestOnRemove
PS> Test-Path variable:VariableName
False

Remove-Module and the OnRemove event handler cannot overcome limitations such as the inability to unload assemblies. If the module contains an assembly, .dll file, and that is loaded by the module; the assembly will remain loaded until the PowerShell session is closed.

 Summary

This chapter explored the creation of modules, starting with a basic module that contained only a root module, extending upward into modules that contained a number of functions. We explored using modules with many files while developing as well as merging a module for publication. Finally, working inside module scope, we looked at initialization and removal.

In the next chapter, we will explore static analysis and unit testing with Pester to validate and verify the behavior of a module before it is publicly released.

 Testing

The goal of testing in PowerShell is to ensure that the code works as intended. Automatic testing ensures that this continues to be the case as code is changed over time.

Testing often begins before code is ready to execute. PSScriptAnalyzer can look at code and provide advice on best practices. This is known as static analysis.

Unit tests pick up when the code is ready to execute. Tests may exist before the code when you are following practices such as Test-Driven Development (TDD). A unit test focuses on the smallest parts of a script, function, module, or class. A unit test strives to validate the inner workings of a unit of code, ensuring that conditions evaluate correctly, that it terminates or returns where it should, and so on.

Testing might extend into systems and acceptance testing, although this often requires a test environment to act against. Acceptance testing may include black-box testing, used to verify that a command accepts known parameters and generates an expected set of results. Black-box testing, as the name suggests, does not concern itself with understanding how a block of code arrives at a result.

The following topics will be covered in this chapter:

	Static analysis

	Testing with Pester

 Technical requirement

Pester version 4.6.0 is required by this chapter.

 Static analysis

Static analysis is the process of evaluating code without executing it. In PowerShell, static analysis makes use of an Abstract Syntax Tree (AST): a tree-like representation of a block of code. AST was introduced with PowerShell 3.

 AST

The AST in PowerShell is available for any script block; an example is as follows:

{ Write-Host 'content' }.Ast

The script block that defines a function can be retrieved via Get-Command:

function Write-Content { Write-Host 'content' }
(Get-Command Write-Content).ScriptBlock

Or, the script block defining a function can be retrieved using Get-Item:

function Write-Content { Write-Host 'content' }
(Get-Item function:\Write-Content).ScriptBlock

It is possible to work down through the content of the script block using AST. For example, the first argument for the Write-Host command might be accessed, as follows:

{ Write-Host 'content' }.Ast.
 Endblock.
 Statements.
 PipelineElements.
 CommandElements[1]

The preceding approach is rough, and simply extracts the second command element from the first statement in the end block.

A visual approach
The ShowPSAst module, available in the PowerShell Gallery, may be used to visualize the AST tree. Install the module with: Install-Module ShowPSAst -Scope CurrentUser.

It can be run against a function, a module, a script block, and so on: Show-Ast { Write-Host 'content' }.

Rather than following the tree so literally, it is possible to execute searches against the tree. For example, the Write-Host command is not necessarily a sensible inclusion; a search for occurrences of the command can be constructed as follows:

{ Write-Host 'content' }.Ast.FindAll(
 {
 param ($ast)

 $ast -is [Management.Automation.Language.CommandAst] -and
 $ast.GetCommandName() -eq 'Write-Host'
 },
 $true
)

In the preceding example, the FindAll method expects two arguments.

The first argument is a script block; a predicate. The predicate accepts a single argument: a node from the tree. A parameter may be declared to give the argument a name; alternatively, the node can be referenced using $args[0]. The argument is tested by a comparison that will return true or false.

The second argument is used to decide whether the search should extend to include nested script blocks.

 Tokenizer

In addition to the AST, PowerShell can also convert a script into a series of tokens, each representing an element of a script.

In PowerShell 2, the Tokenize static method of System.Management.Automation.PSParser may be used; an example is as follows:

$script = @'
A short script
if ($true) {
 Write-Host 'Hello world'
}
'@
$errors = @()
$tokens = [System.Management.Automation.PSParser]::Tokenize($script, [Ref]$errors)

The tokens array contains objects describing each part of the script. The first of these is shown as follows; it describes the comment at the start of the script:

Content : # A short script
Type : Comment
Start : 0
Length : 16
StartLine : 1
StartColumn : 1
EndLine : 1
EndColumn : 17

With PowerShell 3, two static methods on the System.Management.Automation.Language.Parser Parser type may be used: ParseInput and ParseFile. The two methods return an AST; tokens are returned via a reference to an array. An example is as follows:

$script = @'
A short script
if ($true) {
 Write-Host 'Hello world'
}
'@
$tokens = $errors = @()
$ast = [System.Management.Automation.Language.Parser]::ParseInput(
 $script,
 [Ref]$tokens,
 [Ref]$errors
)

The token that's returned is structured differently from the token returned by the Tokenize method in PowerShell 2. The comment token is shown as follows:

Text : # A short script
TokenFlags : ParseModeInvariant
Kind : Comment
HasError : False
Extent : # A short script

Both AST nodes and the PowerShell 3 token objects are used by PSScriptAnalyzer.

 PSScriptAnalyzer

The evaluation of elements in the AST is the method used by the PSScriptAnalyzer tool. The tool can be installed using the following code:

Install-Module PSScriptAnalyzer -Scope CurrentUser

PSScriptAnalyzer can be used to inspect a script with the Invoke-ScriptAnalzyer command. For example, the tool will flag warnings and errors about use of the Password parameter and variable, as it is not considered to be a good practice:

[CmdletBinding()]
param (
 [Parameter(Mandatory)]
 [String]$Password
)

$credential = [PSCredential]::new(
 '.\user',
 ($Password | ConvertTo-SecureString -AsPlainText -Force)
)
$credential.GetNetworkCredential().Password

The script is saved to a file named Show-Password.ps1, and the analyzer is run against the file , as shown here:

PS> Invoke-ScriptAnalyzer .\Show-Password.ps1 | Format-List

RuleName : PSAvoidUsingConvertToSecureStringWithPlainText
Severity : Error
Line : 9
Column : 18
Message : File 'Show-Password.ps1' uses ConvertTo-SecureString with plaintext. This will expose
 secure information. Encrypted standard strings should be used instead.

RuleName : PSAvoidUsingPlainTextForPassword
Severity : Warning
Line : 3
Column : 5
Message : Parameter '$Password' should use SecureString, otherwise this will expose
 sensitive information. See ConvertTo-SecureString for more information.

The script analyzer raises one error and one warning. The error notes that ConvertTo-SecureString is used, exposing information that is supposed to be secure.

The warning suggests that password parameters should accept SecureString values rather than a plain text string.

 Suppressing rules

It is rarely realistic to expect any significant piece of code to pass all of the tests that PSScriptAnalyzer will throw at it.

Individual tests can be suppressed at the function, script, or class level. The following demonstrative function creates a PSCustomObject:

function New-Message {
 [CmdletBinding()]
 param (
 $Message
)

 [PSCustomObject]@{
 Name = 1
 Value = $Message
 }
}

Running PSScriptAnalyzer against a file containing the function will show the following warning:

PS> Invoke-ScriptAnalyzer -Path .\New-Message.ps1 | Format-List

RuleName : PSUseShouldProcessForStateChangingFunctions
Severity : Warning
Line : 1
Column : 10
Message : Function 'New-Message' has verb that could change system state. Therefore, the function
 has to support 'ShouldProcess'.

Given that this function creates a new object in the memory, and does not change the system state, the message might be suppressed. This is achieved by adding a SuppressMessage attribute before a param block:

function New-Message {
 [Diagnostics.CodeAnalysis.SuppressMessage(
 'PSUseShouldProcessForStateChangingFunctions',
 ''
)]
 [CmdletBinding()]
 param (
 $Message
)

 [PSCustomObject]@{
 Name = 1
 Value = $Message
 }
}

VS Code snippets

 VS Code will offer to automatically complete the suppress message attribute when starting to type the word suppress.

Rules are often suppressed as it becomes evident one will be triggered. The list of rules may be viewed using the Get-ScriptAnalyzerRule command.

 Custom script analyzer rules

The script analyzer utility allows custom rules to be defined and used. Custom rules might be used to test for personal or organization-specific conventions when striving for a consistent style; such conventions may not necessarily be widely adopted best practices.

Script analyzer rules must be defined in a module psm1 file. The path to the module file may be passed in by using the CustomRulePath parameter, or may be defined in a script analyzer configuration file.

 Creating a custom rule

A script analyzer rule is a function within a module. A script analyzer allows rules to be written to evaluate AST nodes or tokens.

The name of the function is arbitrary. The community examples use the verb measure; however, use of this verb is not mandatory and does not affect discovery. The script analyzer engine examines each function in the custom rule module, looking for parameters following a particular style. If the such a parameter is found, the function is deemed to be a rule.

If a rule is expected to act based on an AST node, the first parameter name must end with ast. The parameter must use an AST type, such as System.Management.Automation.Language.ScriptBlockAst.

If a rule is expected to act based on a token, the first parameter name must end with token and must accept an array of tokens.

 AST-based rules

Script analyzer rules are often very simple; it is not always necessary for a rule to perform complex AST searches.

The following example evaluates the named blocks dynamicparam, begin, process, and end. If such a block is declared in a function, script, or script block, and it is empty, the rule will respond. The rule only accepts NamedBlockAst nodes; the script analyzer only passes matching nodes to the rule, and therefore, the rule itself does not have to worry about handling other node types:

using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic
using namespace System.Management.Automation.Language

function PSAvoidEmptyNamedBlocks {
 [CmdletBinding()]
 [OutputType([Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic.DiagnosticRecord])]
 param (
 [NamedBlockAst]$ast
)

 if ($ast.Statements.Count -eq 0) {
 [DiagnosticRecord]@{
 Message = 'Empty {0} block.' -f $ast.BlockKind
 Extent = $ast.Extent
 RuleName = $myinvocation.MyCommand.Name
 Severity = 'Warning'
 }
 }
}

The rule returns DiagnosticRecord when it is triggered. The record is returned by the script analyzer as long as the rule is not suppressed.

 Token-based rules

Rules based on tokens evaluate an array of tokens to make a decision. The following example looks for empty single-line comments in a block of code. Comments are not a part of the syntax tree, so using tokens is the only option:

using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic
using namespace System.Management.Automation.Language

function PSAvoidEmptyComments {
 [CmdletBinding()]
 [OutputType([Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic.DiagnosticRecord])]
 param (
 [Token[]]$token
)

 $ruleName = $myinvocation.MyCommand.Name
 $token.Where{ $_.Kind -eq 'Comment' -and $_.Text.Trim() -eq '#' }.ForEach{
 [DiagnosticRecord]@{
 Message = 'Empty comment.'
 Extent = $_.Extent
 RuleName = $ruleName
 Severity = 'Information'
 }
 }
}

As the name suggests, the rule will trigger when it encounters an empty comment.

 Using custom rules

Custom rules may be used with the CustomRulePath parameter. If the two rules were saved in a Rules.psm1 file, they can be used as follows:

$script = @'
function Get-CurrentProcess {
 [CmdletBinding()]
 param ()

 begin { }
 process { }
 end {
 #
 # Get the current process
 #
 Get-Process -Id $PID
 }
}
'@

Invoke-ScriptAnalyzer -ScriptDefinition $script -CustomRulePath .\Rules.psm1

The script analyzer will show each triggered rule, as follows:

RuleName Severity ScriptName Line Message
-------- -------- ---------- ---- -------
PSAvoidEmptyComments Information 9 Empty comment.
PSAvoidEmptyComments Information 11 Empty comment.
PSAvoidEmptyNamedBlocks Warning 5 Empty Begin block.
PSAvoidEmptyNamedBlocks Warning 6 Empty Process block.

The script analyzer also allows custom rules to be defined by using a configuration file. The configuration file may be either explicitly or implicitly referenced, as described in the script analyzer's documentation (https://github.com/PowerShell/PSScriptAnalyzer).

VS Code allows a settings path to be globally defined (across any PowerShell project) by defining a value for powershell.scriptAnalysis.settingsPath.

 Testing with Pester

The PowerShell Pester module can be used to build unit tests for scripts and functions. Unit tests target the smallest possible unit of code, which, in PowerShell, is likely to be a function or a method in a PowerShell class.

Pester tests are saved in a file name ending with .tests.ps1 and executed using the Invoke-Pester command. Invoke-Pester finds files named *.tests.ps1 under a given path and executes all of the tests in each.

Describe and Should statements may also be entered in the console when exploring syntax, but this is not the normal method of defining and running tests.

While Pester is included with Windows 10, it is not the latest version. The latest version may be installed from PSGallery, as follows:

Install-Module Pester -Force

 Why write tests?

A set of tests can prevent a bug making it out of the development environment, whether as the result of a change, or as a part of a new feature. This is especially important if several people are working on the same project.

Refactoring, or restructuring, existing code has a high chance of introducing bugs. If a script or function already has tests, the risk is reduced. Tests that verify the overall functionality (not necessarily unit tests) should continue to pass after refactoring.

To a degree, tests may also show how a piece of code is expected to work to someone reviewing or looking to contribute to the code.

 What to test

How extensive tests should be is debatable. Striving for 100% code coverage does not necessarily mean that a block of code has been effectively tested.

Consider testing the following:

	Parameters

	Any complex conditions

	Acceptance of different input or expected values, including complex parameter validation

	Exit conditions (especially raised errors or exceptions)

When writing a unit test, resist the temptation to test other functions or commands. A unit test is not responsible for making sure that every command that it calls works. That comes later.

 Describe and It

Groups of tests are written within a Describe block. The Describe block must be given a name. A Describe block is often named after the subject of the tests.

Tests are declared using It, followed by a description. The It statement contains assertions that are declared using Should.

Pester 4

Pester 3 expected assertion keywords (Be, BeLike, and so on) to be written as a bare word; for example: $value | Should -Be 0.

Pester 4 supports the syntax used by Pester 3 as legacy syntax. The assertion names are now also presented as dynamic parameters; for example: $value | Should -Be 0.

This allows tools such as ISE and Visual Studio Code to provide auto completion when Should is typed. The tests that are used as examples in this section use the syntax native to Pester 4.

The following function calculates the square root of a value. This particular function does not draw in information, except from the single parameter; testing is limited to validating output:

function Get-SquareRoot {
 param (
 [Decimal]$Value
)

 if ($Value -lt 0) { throw 'Invalid value' }

 $result = $Value
 $previous = 0
 while ([Math]::Abs($result - $previous) -gt 1e-300) {
 $previous = $result
 $result = ($result + $Value / $previous) / 2
 }
 $result
}

Tests may be written to verify that the function does what it is expected to do, as follows:

Describe Get-SquareRoot {
 It 'Returns a square root of 0 for a value of 0' {
 Get-SquareRoot 0 | Should -Be 0
 }

 It 'Returns simple square root values' {
 Get-Squareroot 1 | Should -Be 1
 Get-SquareRoot 4 | Should -Be 2
 Get-SquareRoot 9 | Should -Be 3
 Get-SquareRoot 16 | Should -Be 4
 }
}

Pester displays the output showing the state of each of the tests:

Describing Get-SquareRoot
 [+] Returns a square root of 0 for a value of 0 43ms
 [+] Returns simple square root values 12ms

Each test, defined using It, returns a single line expressing the result of the test. A test may fail for two reasons, as follows:

	The subject of the test has an error.

	The test has an error.

For example, if an error is injected into the first test, the result will change, showing what about the test failed:

PS> Describe Get-SquareRoot {
>> It 'When the value is 9, returns 3' {
>> Get-SquareRoot 9 | Should -Be 1
>> }
>> }

Describing Get-SquareRoot
 [-] Returns a square root of 0 for a value of 0 42ms
 Expected 1, but got 3.0000000000000000000000000000.
 3: Get-SquareRoot 9 | Should -Be 1

If a single test contains multiple Should assertions, the conditions are evaluated in order until the first fails, or all of them pass.

For example, if two errors are injected into the last test, Pester is expected to indicate the test fails when it reaches the assertion that the square root of 9 is 33:

Describe Get-SquareRoot {
 It 'Returns simple square root values' {
 Get-Squareroot 1 | Should -Be 1
 Get-SquareRoot 4 | Should -Be 2
 Get-SquareRoot 9 | Should -Be 33
 Get-SquareRoot 16 | Should -Be 44
 }
}

Executing the tests shows an error once Pester reaches the third assertion, that the square root of 9 should be 33:

Describing Get-SquareRoot
 [-] Returns simple square root values 30ms
 Expected 33, but got 3.0000000000000000000000000000.
 5: Get-SquareRoot 9 | Should -Be 33

In this context, Pester will never execute the last assertion; the test has already failed.

 Test cases

When the input and output of a function are being repetitively tested, the TestCases parameter of It can be used. Test cases are defined in a hashtable, which is splatted into It as a set of parameters.

The four test cases used in the preceding example might be rewritten as follows:

Describe Get-SquareRoot {
 It 'When the value is <Value>, the square root is <ExpectedResult>' -TestCases @(
 @{ Value = 1; ExpectedResult = 1 }
 @{ Value = 4; ExpectedResult = 2 }
 @{ Value = 9; ExpectedResult = 33 }
 @{ Value = 16; ExpectedResult = 44 }
) {
 param (
 $Value,
 $ExpectedResult
)

 Get-SquareRoot $Value | Should -Be $ExpectedResult
 }
}

The preceding tests still contain errors; the advantage of this approach is that Pester will report a success or failure for each of the test cases individually:

Describing Get-SquareRoot
 [+] Calculates the square root of 1 to be 1 52ms
 [+] Calculates the square root of 4 to be 2 7ms
 [-] Calculates the square root of 9 to be 33 10ms
 Expected 33, but got 3.0000000000000000000000000000.
 10: Get-SquareRoot $Value | Should -Be $ExpectedResult
 [-] Calculates the square root of 16 to be 44 13ms
 Expected 44, but got 4.000000000000000000000000000.
 10: Get-SquareRoot $Value | Should -Be $ExpectedResult

Pester automatically replaces values enclosed in angular braces (< and >) with names from the hashtable describing each test case.

Using test cases can save time spent debugging code and tests, as fewer runs are needed to highlight problems.

 Independent verification

It is common to find that there is more than one way to achieve a result in PowerShell. In the case of the Get-SquareRoot function, .NET has a Math.Sqrt static method that can be used to produce a similar result.

The availability of an alternative approach (which is known to work) allows a result to be dynamically validated, either in place of, or in addition to, statically defined values.

The set of test cases might be adjusted to use Math.Sqrt to verify that the function is working as intended:

Describe Get-SquareRoot {
 It 'When the value is <Value>, the square root is <ExpectedResult>' -TestCases @(
 @{ Value = 81; ExpectedResult = [Math]::Sqrt(81) }
 @{ Value = 9801; ExpectedResult = [Math]::Sqrt(9801) }
 @{ Value = 3686400; ExpectedResult = [Math]::Sqrt(3686400) }
 @{ Value = 212255761; ExpectedResult = [Math]::Sqrt(212255761) }
 @{ Value = 475316482624; ExpectedResult = [Math]::Sqrt(475316482624) }
) {
 param (
 $Value,
 $ExpectedResult
)

 Get-SquareRoot $Value | Should -Be $ExpectedResult
 }
}

Independent verification has limitations if two approaches return different data types. For example, the following assertion will fail, despite using the same input values:

PS> Get-SquareRoot 200 | Should -Be ([Math]::Sqrt(200))
Expected 14.142135623731, but got 14.142135623730950488016887242.
At ...

It may be possible to overcome the limitation of the verification by converting both to the same data type. Whether this action is appropriate depends on the nature of, and reason for, the test.

 Assertions

Pester comes with support for a variety of assertion types. These assertion types are exposed as parameters for Should. Several of these assertion types grant access to additional parameters. These assertions are, for the most part, similar to PowerShell's comparison operators.

Details of the available assertions are available on the Pester wiki, under the description for Should, at https://github.com/pester/Pester/wiki/Should.

Assertions are most frequently used to test the actions and output of the subject of a test. The simplest of these, -Be, was used in the examples for Get-SquareRoot. The -Be assertion is the equivalent of the -eq comparison operator, with one difference: -Be can compare arrays for equality.

Testing for the errors raised by a command is one of the more advanced testing cases.

 Testing for errors

The -Throw assertion is used to test whether a block of code throws a terminating error. Throw has a number of different usage scenarios. The simplest is detecting whether a terminating error (of any kind) is thrown at all:

function Invoke-Something {
 throw
}

Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should Throw
 }
}

When testing for terminating errors, the subject of the test is placed in a script block (curly braces).

The next step might be to get Pester to test the error message, to ensure that the right error is thrown:

function Invoke-Something {
 throw 'an error'
}

Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should Throw 'an error'
 }
}

If a module is written with localization in mind, the error message might not be particularly reliable. A trivial change to the message, such as a punctuation change, may break the test. Two alternative approaches are available: testing the exception type and testing the error ID.

Testing the exception type may be useful if the command raises different exception types for each operation. For example, this command raises one of two different exceptions, depending on the value of a parameter:

function Invoke-Something {
 param (
 $value
)

 if ($value -isnot [Int32]) {
 throw [ArgumentException]::new('The value must be an integer')
 }
 if ($value -ge 100) {
 throw [ArgumentOutOfRangeException]::new('The value must be less than 100')
 }
}

Describe Invoke-Something {
 It 'When the value is not an integer, throws an ArgumentException' {
 { Invoke-Something -Value none } | Should -Throw -ExceptionType ArgumentException
 }

 It 'When the value is greater or equal to 100, throws an ArgumentOutOfRange exception' {
 { Invoke-Something -Value 100 } | Should -Throw -ExceptionType ArgumentOutOfRangeException
 }
}

This is bad parameter validation

 The preceding example is contrived. It demonstrates testing errors raised by a common in Pester. This example should not be considered a reasonable way to constrain and validate a parameter value.

Pester also allows for the testing of the fully qualified error ID. For this approach to be beneficial, the subject of the test must define a reasonable set of fully qualified error IDs:

function Invoke-Something {
 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('an error'),
 'AUniqueErrorID',
 'OperationStopped',
 $null
)
 throw $errorRecord
}
Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should -Throw -ErrorId 'AUniqueErrorId'
 }
}

If a function is written such that it writes a non-terminating error (using Write-Error), and the generation of that error must be tested, two possible approaches are available.

The ErrorVariable parameter might be used to capture, and then test, as follows:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 Write-Error 'Error' -ErrorId 'NonTerminating'
}

Describe Invoke-Something {
 It 'Throws a non-terminating error' {
 Invoke-Something -ErrorAction SilentlyContinue -ErrorVariable testError
 $testError.Count | Should -Be 1
 $testError.FullyQualifiedErrorId | Should -Match 'NonTerminating'
 }
}

Or, ErrorAction may be used, influencing whether the error is raised:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 Write-Error 'Error' -ErrorId 'NonTerminating'
}
Describe Invoke-Something {
 It 'Throws a non-terminating error' {
 { Invoke-Something -ErrorAction SilentlyContinue } | Should -Not -Throw -ErrorId 'NonTerminating'
 { Invoke-Something -ErrorAction Stop } | Should -Throw -ErrorId 'NonTerminating'
 }
}

 Context

Context blocks are nested under Describe. Context blocks allowing tests to be grouped together.

Context blocks are useful when there is a fundamental difference in how groups of tests should be handled; for example, where the setup method for each test is more extensive than the parent Describe block.

 Before and after

Pester includes keywords that hold code that will execute before or after either each test or all of the tests. The following keywords are available:

	BeforeAll: Executed once, before all other content

	AfterAll: Executed once, after all other content

	BeforeEach: Executed immediately, before each individual test

	AfterEach: Executed immediately, after each individual test

Each of the keywords should be followed by a script block.

When using Before or After, it is important to be aware of the order in which a section is executed. In the following list, Loose code refers to anything that is not part of a Before, After, or It:

	Describe\BeforeAll

	Describe\Loose code

	Context\BeforeAll

	Context\Loose code

	Describe\BeforeEach

	Context\BeforeEach

	Context\Loose code

	It

	Context\AfterEach

	Describe\AfterEach

	Context\AfterAll

	Describe\AfterAll

It is important to note that if Mocks are created under a Describe block, they are categorized as Loose code in the context of this list. A command called in Describe\BeforeAll will not have access to mocks that are only created further down the list.

Loose code
When using Before or After, consider enclosing Mocks in BeforeAll or It (if Mocks are specific to a single test), to ensure that Mocks are always available where they might be used.

The following function is used to demonstrate how Before and After might be used. The function deletes files in a specified path where the last access time was defined at least a certain number of days ago:

function Remove-StaleFile {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Path,
 [String]$Filter = '*.*',
 [Int32]$MaximumAge = 90
)

 Get-ChildItem $Path -Filter $Filter |
 Where-Object LastWriteTime -lt (Get-Date).AddDays(-$MaximumAge) |
 Remove-Item
}

To test the function, a number of test cases might be constructed. BeforeAll, BeforeEach, and AfterAll might be used to ensure that everything is ready for an individual test. Each of the following elements is contained within a single Describe block.

BeforeAll is used to create a temporary working path:

BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 $Path = 'C:\Temp\StaleFiles'
 $null = New-Item $Path -ItemType Directory
 Push-Location $Path
}

AfterAll is used to clean up:

AfterAll {
 Pop-Location
 Remove-Item C:\Temp\StaleFiles -Recurse -Force
}

BeforeEach is used to create a known set of files before each test executes:

BeforeEach {
 foreach ($extension in $extensions) {
 $item = New-Item "stale$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-92)
 }
 foreach ($extension in $extensions) {
 $item = New-Item "new$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-88)
 }
}

The tests themselves only contain the code required to execute and test the impact of the function:

It 'Removes all files older than 90 days' {
 Remove-StaleFile $Path
 "stale.*" | Should -Not -Exist
 "new.*" | Should -Exist
}

It 'Removes all <Extension> files older than 90 days' -TestCases (
 $extensions | ForEach-Object { @{ Extension = $_ } }
) {
 param ($Extension)

 Remove-StaleFile $Path -Filter "*$Extension"
 "stale$Extension" | Should -Not -Exist
 "stale.*" | Should -Exist
 "new.*" | Should -Exist
}

All of these sections are combined to produce a set of tests describing the behavior of Remove-StaleFile:

Describe Remove-StaleFile {
 BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 $Path = 'C:\Temp\StaleFiles'
 $null = New-Item $Path -ItemType Directory
 Push-Location $Path
 }

 AfterAll {
 Pop-Location
 Remove-Item C:\Temp\StaleFiles -Recurse -Force
 }

 BeforeEach {
 foreach ($extension in $extensions) {
 $item = New-Item "stale$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-92)
 }
 foreach ($extension in $extensions) {
 $item = New-Item "new$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-88)
 }
 }

 It 'Removes all files older than 90 days' {
 Remove-StaleFile $Path

 "stale.*" | Should -Not -Exist
 "new.*" | Should -Exist
 }

 It 'Removes all <Extension> files older than 90 days' -TestCases (
 $extensions | ForEach-Object { @{ Extension = $_ } }
) {
 param ($Extension)

 Remove-StaleFile $Path -Filter "*$Extension"

 "stale$Extension" | Should -Not -Exist
 "stale.*" | Should -Exist
 "new.*" | Should -Exist
 }
}

Pester will run four tests against the Remove-StaleFile function; each should pass.

 TestDrive

When testing commands that work with the filesystem, Pester provides TestDrive. TestDrive is a temporary folder created in the current user's temporary directory.

The folder is created when Describe runs, and is destroyed afterwards.

Using TestDrive simplifies the setup process for the Remove-StaleFile function; for example, BeforeAll might become the following:

BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 Push-Location 'TestDrive:\'
}

AfterAll becomes the following:

AfterAll {
 Pop-Location
}

In the event that a command cannot work with the TestDrive label, as is the case with .NET types and methods, as well as non-PowerShell commands, the full path can be discovered by using Get-Item. This can be executed anywhere inside of a Describe block:

(Get-Item 'TestDrive:\').FullName

 Mock

The ability to mock commands is a prominent feature of Pester. Mocking is used to reduce the scope of a set of tests.

Creating a Mock overrides a command by taking a partial copy. The copy includes the param and dynamicparam blocks, but excludes any command implementations.

Mocks can be created under the Describe or Context keywords.

Commands are mocked by using the Mock keyword:

Describe Subject {
 Mock Get-Date
}

If a command returns a value, a body can be defined for the Mock to simulate the normal operation of the command. In the following example, the string 01/01/2017 is returned in place of a normal response from Get-Date:

Describe Subject {
 Mock Get-Date {
 [DateTime]::new(2017, 1, 1)
 }
}

In the preceding example, the script block is a positional argument for the MockWith parameter. The mock might also be written as follows:

Describe Subject {
 Mock Get-Date -MockWith {
 [DateTime]::new(2017, 1, 1)
 }
}

 Assert-MockCalled

Pester tracks calls made to mocked commands. The number of times a Mock has been called by a command can be tested by using the Assert-MockCalled command. The following function makes a single call to Get-CimInstance:

function Get-OperatingSystemName {
 (Get-CimInstance Win32_OperatingSystem).Caption
}

If a Mock of Get-CimInstance is created, the number of times that the command is called can be tested. In this example, the test asserts that Get-CimInstance is called at least once:

Describe Get-OperatingSystemName {
 BeforeAll {
 Mock Get-CimInstance {
 [PSCustomObject]@{
 Caption = 'OSName'
 }
 }
 }

 It 'Gets the name of the operating system' {
 Get-OperatingSystemName | Should -Be 'OSName'
 Assert-MockCalled Get-CimInstance
 }
}

If a test is to verify that a mocked command is never called, the Times parameter of Assert-MockCalled can be set to 0:

Assert-MockCalled Get-CimInstance -Times 0

If a command is used in several different ways, it might be important to ensure that the command is called a specific number of times. In this instance, the Exactly parameter can be added to ensure that the Mock is called that number of times only:

Assert-MockCalled Get-CimInstance -Times 1 -Exactly

 Parameter filtering

Parameter filters can be applied to mocks to limit the scope of the Mock.

A parameter filter is a script block that tests the parameters passed when the Mock is called. For example, a mock for Test-Path might only apply to a specific path:

Mock Test-Path { $true } -ParameterFilter { $Path -eq 'C:\Somewhere' }

If Pester cannot find a Mock with a matching parameter filter, it will default to a mock without a parameter filter. If there are no mocks available, the real command will be called.

In the following example, when the value of the Path parameter is C:\, the value will be returned from the Mock. Otherwise, the value returned by the real command will be used:

Describe TestPathMocking {
 BeforeAll {
 Mock Test-Path { $false } -ParameterFilter { $Path -eq 'C:\' }
 }

 It 'Uses the mock' {
 Test-Path 'C:\' | Should -Be $false
 }

 It 'Uses the real command' {
 Test-Path 'C:\Windows' | Should -Be $true
 }
}

 Mocking non-local commands

In some cases, it is desirable to mock commands that are not available on the test system. One possible approach in these circumstances is to create a function that reflects the command first, then mock the function.

For example, consider a function that creates and configures a DNS zone with a predefined set of parameter values:

function New-DnsZone {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Name
)

 $params = @{
 Name = $Name
 DynamicUpdate = 'Secure'
 ReplicationScope = 'Domain'
 }
 if (-not (Get-DnsServerZone $Name -ErrorAction SilentlyContinue)) {
 Add-DnsServerPrimaryZone @params
 }
}

It may not be desirable to install the DNS module on a development system when testing the script. To mock and verify that Add-DnsServerPrimaryZone is called, a function must be created first:

Describe CreateDnsZone {
 BeforeAll {
 function Get-DnsServerZone { }
 function Add-DnsServerPrimaryZone { }

 Mock Get-DnsServerZone
 Mock Add-DnsServerPrimaryZone
 }

 It 'When the zone does not exist, calls Add-DnsServerPrimaryZone' {
 New-DnsZone -Name name

 Assert-MockCalled Add-DnsServerPrimaryZone
 }
}

Creating the function first is enough to satisfy the tests, but the approach is basic. The test will not fail if the parameter names that are used are incorrect.

A more advanced function to mock may be created by visiting a system with the command installed and retrieving the following param block:

$command = Get-Command Add-DnsServerPrimaryZone
[System.Management.Automation.ProxyCommand]::GetParamBlock($command)

The first of the parameters from the block is shown as follows:

 [Parameter(ParameterSetName='ADForwardLookupZone', ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='ADReverseLookupZone', ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='FileForwardLookupZone', ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='FileReverseLookupZone', ValueFromPipelineByPropertyName=$true)]
 [ValidateNotNull()]
 [ValidateNotNullOrEmpty()]
 [string]
 ${ResponsiblePerson},

Adding a reasonable parameter block will improve the overall quality of the tests. The tests will fail if a non-existent parameter is used, or if an invalid parameter combination is used.

Stub commands

 I refer to the functions used like this as stub commands, and have written a module that will interrogate other modules and generate a psm1 file, which can be imported by a stub module. This approach is based on, but is more detailed than, the method described previously.

The module is available in the PowerShell Gallery and can be installed as follows: Install-Module Indented.StubCommand -Scope CurrentUser.

 Mocking objects

It is not uncommon for a function to expect to work with the properties and methods of another object returned by a command. Mocked commands must often return rich objects, simulating the value that would normally be returned.

 Fabricating objects

Objects with specific properties can be simulated by creating a PS custom object (or PSObject):

[PSCustomObject]@{
 Property = "Value"
}

Methods can be added to an object using Add-Member:

[PSCustomObject]@{} | Add-Member MethodName -MemberType ScriptMethod -Value { }

This approach can be extended to include objects instantiated by New-Object. The following function creates and uses instances of two different .NET types:

function Write-File {
 $fileStream = New-Object System.IO.FileStream(
 "C:\Temp\test.txt",
 'OpenOrCreate'
)
 $streamWriter = New-Object System.IO.StreamWriter($fileStream)
 $streamWriter.WriteLine("Hello world")
 $streamWriter.Close()
}

The following mocks replace the first call made to New-Object in the preceding script with null. The second call is replaced with an object that supports the methods used by the script:

Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.FileStream' }
Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.StreamWriter' } -MockWith {
 [PSCustomObject]@{} |
 Add-Member WriteLine -MemberType ScriptMethod -Value { } -PassThru |
 Add-Member Close -MemberType ScriptMethod -Value { } -PassThru
}

At this point, it is possible to assert that the function creates each of the objects, but the test is blind to how the methods are used. If it is not desirable to let the methods act on a real object, it may be worth considering what could be done inside of a method implementation to signal activity to Pester.The following example changes the methods to make a change to a script-scoped variable. The variable can be accessed within the other tests. The content of the script-scoped variables is cleared before each test:

Describe Write-File {
 BeforeAll {
 Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.FileStream' }
 Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.StreamWriter' } -MockWith {
 [PSCustomObject]@{} |
 Add-Member WriteLine -MemberType ScriptMethod -PassThru -Value {
 $Script:WriteLine = $args[0]
 } |
 Add-Member Close -MemberType ScriptMethod -PassThru -Value {
 $Script:Close = $true
 }
 }
 }

 BeforeEach {
 $Script:WriteLine = ''
 $Script:Close = $false
 }

 It 'Creates a file stream' {
 Write-File

 Assert-MockCalled New-Object -ParameterFilter { $TypeName -eq 'System.IO.FileStream' }
 Assert-MockCalled New-Object -ParameterFilter { $TypeName -eq 'System.IO.StreamWriter' }
 }

 It 'Writes a line and closes the file stream' {
 Write-File

 $Script:WriteLine | Should -Be 'Hello world'
 $Script:Close | Should -Be $true
 }
}

 Mocking existing members

If an object is completely replaced with a made-up PSCustomObject, the object type is lost; this is important when another command requires an object of a specific type as input. Attempting to override properties and methods on a real instance of the object may be used to work around this problem.

The following snippet creates an instance of an SQL connection object, then overrides the Open method and State properties:

$sqlConnection = [System.Data.SqlClient.SqlConnection]::new()
$sqlConnection | Add-Member State -MemberType NoteProperty -Force -Value 'Closed'
$sqlConnection | Add-Member Open -MemberType ScriptMethod -Force -Value {
 $this.State = 'Open'
}

The State property cannot be set by default, so overriding both is required to simulate use. The normal methods may be seen by looking beneath the PowerShell object; an example is as follows:

PS> $sqlConnection = [System.Data.SqlClient.SqlConnection]::new()
PS> $sqlConnection | Add-Member State -MemberType NoteProperty -Force -Value 'Open'
PS> $sqlConnection.State
Open

PS> $sqlConnection.PSBase.State
Closed

This technique can be used to create a disarmed object of the correct type.

The following function expects an SQL connection object as input:

function Invoke-SqlQuery {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Query,

 [Parameter(Mandatory)]
 [System.Data.SqlClient.SqlConnection]$Connection
)

 try {
 $Connection.Open()

 $sqlCommand = $Connection.CreateCommand()
 $sqlCommand.CommandText = $Query

 $dataTable = New-Object System.Data.DataTable
 $sqlDataAdapter = New-Object System.Data.SqlClient.SqlDataAdapter($sqlCommand)
 $sqlDataAdapter.Fill($dataTable) | Write-Verbose

 $dataTable
 } catch {
 $pscmdlet.ThrowTerminatingError($_)
 } finally {
 if ($Connection.State -eq 'Open') {
 $Connection.Close()
 }
 }
}

To create unit tests for the Invoke-SqlQuery function, an SQL connection object must be created and supplied. In addition, SqlDataAdapter must be mocked.

The tests shown as follows provide a modified SQL connection object, and a version of the data adapter with the Fill method replaced:

Describe Invoke-SqlQuery {
 BeforeAll {
 Mock New-Object -ParameterFilter { $TypeName -like '*SqlDataAdapter' } -MockWith {
 [System.Data.SqlClient.SqlDataAdapter]::new() |
 Add-Member Fill -MemberType ScriptMethod -Force -PassThru -Value {
 $null = $args[0].Columns.Add('ColumnName')
 $row = $args[0].NewRow()
 $row.ColumnName = 'value'
 $args[0].Rows.Add($row)

 $args[0].Rows.Count
 }
 }

 $defaultParams = @{
 Query = 'SELECT * FROM Table1'
 Connection = [System.Data.SqlClient.SqlConnection]::new() |
 Add-Member State -MemberType NoteProperty -Force -PassThru -Value { 'Closed' } |
 Add-Member Open -MemberType ScriptMethod -Force -PassThru -Value {
 $this.State = 'Open'
 } |
 Add-Member Close -MemberType ScriptMethod -Force -PassThru -Value {
 $this.State = 'Closed'
 }
 }
 }

 It 'Executes a query and returns the results' {
 $output = Invoke-SqlQUery @defaultParams

 $output.Rows.Count | Should -Be 1
 $output[0].ColumnName | Should -Be 'value'
 }

 Context 'Error handling' {
 BeforeAll {
 $contextParams = $defaultParams.Clone()
 $contextParams.Connection = $contextParams.Connection |
 Add-Member Open -MemberType ScriptMethod -Force -PassThru -Value {
 throw 'Connection failed'
 }
 }

 It 'When the connection fails, throws an error' {
 { Invoke-SqlQUery @contextParams } | Should -Throw 'Connection failed'
 }
 }
}

 Using New-MockObject

The New-MockObject command provides a way to create an uninitialized version of a type. An instance of an uninitialized type has all of the properties and methods of the initialized instance, but without any of the code behind and potentially without some default values.

It is possible to use New-MockObject to generate an instance of the sqlConnection object used in the previous example. As the object is uninitialized, errors are likely when attempting to use the methods that the type provides:

PS> $sqlConnection = New-MockObject System.Data.SqlClient.SqlConnection
PS> $sqlConnection.Open()
Exception calling "Open" with "0" argument(s): "Object reference not set to an instance of an object."
At line:1 char:1
+ $sqlConnection.Open()
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : NullReferenceException

In this case, the Open and Close methods, and the State property, must still be overridden by using Add-Member before the object can be used. New-MockObject comes into its own when working with objects that you cannot easily create: objects that either have no constructor at all, or are very complex to create otherwise.

For example, the following function expects a CimSession object. New-MockObject provides a convenient way to create a CimSession to satisfy the parameter during testing:

function Get-CurrentUser {
 [CmdletBinding(DefaultParameterSetName = 'UsingComputerName')]
 param (
 [Parameter(ParameterSetName = 'UsingComputerName')]
 [String]$ComputerName,

 [Parameter(Mandatory, ParameterSetName = 'UsingCimSession')]
 [CimSession]$CimSession
)

 (Get-CimInstance Win32_ComputerSystem -Property UserName @psboundparameters).UserName
}

A test may be created that ensures that a CimSession provided to the function is passed on to Get-CimInstance:

Describe Get-CurrentUser {
 Context 'Using a CIM session' {
 BeforeAll {
 Mock Get-CimInstance -ParameterFilter { $CimSession } -MockWith {
 [PSCustomObject]@{ UserName = 'UserFromCimSession' }
 }
 }

 It 'When a CimSession is supplied, passes the CimSession to Get-CimInstance' {
 Get-CurrentUser -CimSession (New-MockObject CimSession) |
 Should -Be 'UserFromCimSession'
 }
 }
}

 Mocking CIM objects

CIM-based commands that accept pipeline input, such as Set-NetAdapter, require a CIM instance with a specific PSTypeName. The PSTypeName is a string property normally hidden from Get-Member.

Exploring the InputObject parameter of Set-NetAdapter shows that it accepts a CIM instance type. Expanding the PSTypeName attribute shows that it also requires an object that includes the type name Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter:

PS> (Get-Command Set-NetAdapter).Parameters['InputObject'].ParameterType.Name
CimInstance[]

PS> (Get-Command Set-NetAdapter).Parameters['InputObject'].Attributes.
>> Where{ $_.TypeId -match 'PSType' }.PSTypeName
Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter

There are two ways to create an object that will satisfy the InputObject parameter of Set-NetAdapter.

The first is to create a ClientOnly instance of the type. This requires the namespace of the class; the namespace is exposed as a property of the object returned by Get-NetAdapter:

PS> Get-NetAdapter | Select-Object CimClass -First 1

CimClass

ROOT/StandardCimv2:MSFT_NetAdapter

The namespace may be used to create the client-only instance with all the properties of a normal net adapter object:

New-CimInstance MSFT_NetAdapter -Namespace ROOT/StandardCimv2 -ClientOnly

The second method omits the namespace. If the namespace is omitted, an object that is visually the same is created:

New-CimInstance MSFT_NetAdapter -ClientOnly

The output of the command is described by a format applied because of the type name. The created object lacks most of the members. Passing the output from each command to Get-Member will show the difference.

If the members are not important, or the real CIM class is not available where the tests are executing, the version without a namespace may be used. The properties needed to satisfy testing may be added by using Add-Member.

 Pester in practice

The following function sets a computer description by modifying values in the registry:

function Set-ComputerDescription {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [AllowEmptyString()]
 [String]$Description
)

 $erroractionpreference = 'Stop'

 try {
 $path = 'HKLM:\System\CurrentControlSet\Services\LanmanServer\Parameters'

 if ((Get-Item $path).GetValue('srvcomment') -ne $Description) {
 if ($Description) {
 Set-ItemProperty $path -Name 'srvcomment' -Value $Description
 } else {
 Remove-ItemProperty $path -Name 'srvcomment'
 }
 }
 } catch {
 throw
 }
}

When the function interacts with the registry, it does so using the following commands:

	Get-Item

	Set-ItemProperty

	Remove-ItemProperty

Testing the actions undertaken by each of the previous commands is not the responsibility of a unit test for Set-ComputerDescription. Unit tests are limited to ensuring that each of the commands has the right parameters, and at the right time. Each of the commands used by the function will be mocked.

The function reacts to a combination of the value of the Description parameter and the current state of the value.

A set of context blocks is appropriate for this division of the test. The difference between the blocks is the response from Get-Item, and is therefore the implementation of the Mock:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }
}

The first context is used to describe what happens when the current description is blank. A Mock for Get-Item is created, which returns a blank result. Tests are added, describing the behavior of the command:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is not set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType ScriptMethod -Value { '' }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'
 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description ''

 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }
 }
}

The previous tests may be enhanced to ensure that Remove-ItemProperty is not called when updating with a new value. Given that the code paths are mutually exclusive, it should not be possible to call both. Extending the test ensures that future logic changes do not inadvertently trigger both commands.

The following context tests the actions that should be taken if a description is set. The Mock for Get-Item is replaced with one that returns a value:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType ScriptMethod -Value {
 return 'Current description'
 }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'

 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description 'Current description'

 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description is empty, removes the value' {
 Set-ComputerDescription -Description ''

 Assert-MockCalled Remove-ItemProperty -Times 1 -Scope It
 }
 }
}

The preceding tests might be enhanced to verify that an error will trigger the catch statement. For example, if Set-ItemProperty were to throw a non-terminating error with ErrorActionPreference set to Stop, a non-terminating error would be raised as a terminating error. The terminating error can be tested, as follows:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Error handling' {
 BeforeAll {
 Mock Set-ItemProperty {
 Write-Error -Message 'Non-terminating error'
 }
 }

 It 'When Set-ItemProperty throws, raises a terminating error' {
 { Set-ComputerDescription -Description 'New description' } | Should Throw
 }
 }
}

The following snippet combines each of the sections described previously:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is not set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType ScriptMethod -Value { '' }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'
 Assert-MockCalled Set-ItemProperty -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description ''
 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }
 }

 Context 'Description is set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType ScriptMethod -Value {
 return 'Current description'
 }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'
 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description 'Current description'
 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description is empty, removes the value' {
 Set-ComputerDescription -Description ''
 Assert-MockCalled Remove-ItemProperty -Times 1 -Scope It
 }
 }

 Context 'Error handling' {
 BeforeAll {
 Mock Set-ItemProperty { Write-Error -Message 'Non-terminating error' }
 }

 It 'When Set-ItemProperty throws, raises a terminating error' {
 { Set-ComputerDescription -Description 'New description' } | Should Throw
 }
 }
}

 Summary

This chapter explored static analysis with PSScriptAnalyzer. PSScriptAnalyzer makes use of the AST to examine a script or function. The creation of custom rules for the script analyzer was briefly demonstrated.

Testing with Pester was explored in detail, including the use of the different named blocks. This included a demonstration of building tests for a function.

The next chapter will explore error handling in PowerShell, including terminating and non-terminating errors and the use of try, catch, and finally, the trap statement.

 Error Handling

Errors are used to communicate unexpected conditions or exceptional circumstances. Errors often contain useful information that can be used to diagnose a condition.

PowerShell has two different types of errors, terminating and non-terminating, and several different ways to raise and handle them.

During the course of this chapter, self-contained blocks of code are described as scripts. The terms function, ScriptBlock, and script can be considered interchangeable in the context of error handling.

The following topics are covered in this chapter:

	Error types

	Error actions

	Raising errors

	Catching errors

 Error types

PowerShell defines two different types of errors: terminating and non-terminating errors.

Each command in PowerShell may choose to raise either of these, depending on the operation.

 Terminating errors

A terminating error stops a pipeline processing; once an error is thrown, everything stops. A terminating error might appear as the result of using throw. In the following function, the second Write-Host statement will never execute:

PS> function ThrowError {
>> Write-Host 'First'
>> throw 'Error'
>> Write-Host 'Second'
>> }
PS> ThrowError
First
Error
At line:3 char:5
+ throw 'Error'
+ ~~~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
+ FullyQualifiedErrorId : Error

Terminating errors are typically used to convey that something unexpected and terminal has occurred, such as a catastrophic failure that prevents a script continuing.

 Non-terminating errors

A non-terminating error, a type of informational output, is written without stopping a script. Non-terminating errors are often the result of using the Write-Error command. The following function shows that processing continues after the error:

PS> function WriteError {
>> Write-Host 'First'
>> Write-Error 'Error'
>> Write-Host 'Second'
>> }
PS> WriteError
First
WriteError : Error
At line:1 char:1
+ WriteError
+ ~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,WriteError
Second

Non-terminating errors are used to notify the user that something went wrong, but that it didn't necessarily warrant shutting down a script. A user may choose to stop processing when a non-terminating error is raised.

 Error actions

The ErrorAction parameter and the ErrorActionPreference variable are used to control what happens when a non-terminating error is written.

ErrorAction parameter requires CmdletBinding.

The ErrorAction parameter is only available if a function declares the CmdletBinding attribute. CmdletBinding automatically added is if the Parameter attribute is used.

By default, ErrorAction is set to continue. Any non-terminating errors will be displayed, but a script or function will continue to run.

If ErrorAction is set to SilentlyContinue, errors will be added to the $error automatic variable, but the error won't be displayed.

The following function writes a non-terminating error using Write-Error:

function SilentError {
 [CmdletBinding()]
 param ()

 Write-Error 'Something went wrong'
}
 SilentError -ErrorAction SilentlyContinue

The error is written, but hidden from view. The error may be viewed as the latest entry in the $error variable:

PS> $Error[0]
SilentError : Something went wrong
At line:1 char:1
+ SilentError -ErrorAction SilentlyContinue
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,SilentError

If the error action is set to Stop, a non-terminating error becomes a terminating error, as in the following example:

PS> function StopError {
>> [CmdletBinding()]
>> param ()
>>
>> Write-Error 'Something went wrong'
>> }
PS> StopError -ErrorAction Stop
StopError : Something went wrong
At line:1 char:1
+ StopError -ErrorAction Stop
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,StopError

 Raising errors

When writing a script, it may be desirable to use errors to notify the person running the script of a problem. The severity of the problem will dictate whether an error is non-terminating or terminating.

If a script makes a single change to a large number of diverse, unrelated objects, a terminating error might be frustrating for anyone using the script.

On the other hand, if a script fails to read a critical configuration file, a terminating error is likely the right choice.

 Error records

When an error is raised in PowerShell, an ErrorRecord object is created (explicitly or implicitly).

An ErrorRecord object contains a number of fields that are useful for diagnosing an error. ErrorRecord can be explored using Get-Member. For example, an ErrorRecord will be generated when attempting to divide by 0:

100 / 0
$record = $Error[0]

The ErrorRecord object that was generated includes ScriptStackTrace. ScriptTrackTrace is extremely useful when debugging problems in larger scripts:

PS> $record.ScriptStackTrace
at <ScriptBlock>, <No file>: line 1

The Exception in the error record also includes a .NET stack trace:

PS> $record.Exception.StackTrace
at System.Management.Automation.IntOps.Divide(Int32 lhs, Int32 rhs)
at System.Dynamic.UpdateDelegates.UpdateAndExecute2[T0,T1,TRet](CallSite site, T0 arg0, T1 arg1)
at System.Management.Automation.Interpreter.DynamicInstruction`3.Run(InterpretedFrame frame)
at System.Management.Automation.Interpreter.EnterTryCatchFinallyInstruction.Run(InterpretedFrame frame)

In some cases, the TargetObject property of ErrorRecord might contain the object being worked on.

For example, if the values for a division operation were dynamically set, ErrorRecord might be created to return those values to assist with debugging:

$numerator = 10
$denominator = 0
try {
 $numerator / $denominator
} catch {
 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [Exception]::new($_.Exception.Message),
 'InvalidDivision', # ErrorId
 'InvalidOperation', # ErrorCategory
 [PSCustomObject]@{ # TargetObject
 Numerator = $numerator
 Denominator = $denominator
 }
)
 Write-Error -ErrorRecord $errorRecord
}

The values pushed into ErrorRecord may be viewed by exploring the TargetObject property:

PS> $Error[0].TargetObject

Numerator Denominator
--------- -----------
 10 0

The try-catch statement used previously is covered in detail while exploring try, catch, and finally later in this chapter.

 Write-Error

The Write-Error command can be used to write non-terminating error messages.

The Write-Error command can be used with nothing more than a message:

Write-Error 'Message'

Or it might include additional information, such as a category and error ID to aid diagnosis by the person using the script:

Write-Error -Message 'Message' -Category 'InvalidOperation' -ErrorId 'UniqueID'

The following example shows a non-terminating error that was raised while running a loop:

function Test-Error {
 for ($i = 0; $i -lt 5; $i++) {
 Write-Error -Message "Iteration: $i"
 }
}
Test-Error

The error will be displayed five times without stopping execution.

Setting the value of ErrorAction to Stop will cause Write-Error to throw a terminating error, ending the function within the first iteration of the loop:

PS> function Test-Error {
>> [CmdletBinding()]
>> param ()
>>
>> for ($i = 0; $i -lt 5; $i++) {
>> Write-Error -Message "Iteration: $i"
>> }
>> }
>>
PS> Test-Error -ErrorAction Stop
Test-Error : Iteration: 0
At line:1 char:1
+ Test-Error -ErrorAction Stop
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Test-Error

Alternatively, the error might be silent (SilentlyContinue) or ignored (Ignore), depending on the context in which the error appears.

Setting the ErrorActionPreference variable (either globally or within the function scope) will have the same effect on the Write-Error command.

 throw and ThrowTerminatingError

The throw keyword raises a terminating error, as in the following example:

throw 'Error message'

Existing exception types are documented in the .NET framework; each is ultimately derived from the System.Exception type found in the .NET reference:

https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2

throw may be used with a string or a message, as shown previously. throw may also be used with an exception object:

throw [ArgumentException]::new('Unsupported value')

Or it may be used with ErrorRecord:

throw [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('Invalid operation'),
 'AnErrorID',
 [System.Management.Automation.ErrorCategory]::InvalidOperation,
 $null
)

Commands in binary modules (cmdlets) cannot use throw; it has a different meaning in the languages that might be used to author a cmdlet. Cmdlets use the PSCmdlet.ThrowTerminatingError .NET method.

The ThrowTerminatingError method can be used in PowerShell in conjunction with an ErrorRecord object, provided the CmdletBinding attribute is declared, as in the example:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('Failed'),
 'AnErrorID',
 [System.Management.Automation.ErrorCategory]::OperationStopped,
 $null
)
 $pscmdlet.ThrowTerminatingError($errorRecord)
}

 Error and ErrorVariable

The Error variable is a collection (ArrayList) of handled and unhandled errors raised in the PowerShell session.

Testing the content of error variables

Testing the content of an error variable is not a robust way to test for error conditions.

As the variable fills with both handled and unhandled errors, it's indeterminate at best. Error variables continue to have value when debugging less obvious problems with code.

The error collection can be cleared using the Clear method:

$Error.Clear()

The most recent error is first in the list:

$Error[0]

Errors will be added to the collection except when ErrorAction is set to Ignore.

The ErrorVariable parameter can be used to name a variable that should be used, as well as Error for a specific command. The Error variable, the value in the variable name, is an ArrayList.

The following function writes an Error variable. When ErrorVariable is used, the errors are added to the named variable:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 Write-Error 'Failed'
}
Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyContinue

The errors stored in the variable can be inspected:

PS> $InvokeError
Invoke-Something : Failed
At line:1 char:1
+ Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyCont ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Invoke-Something

ErrorVariable is never null

If no errors occur, the variable will still be created as an ArrayList, but the list will contain no elements. That the list exists means using the variable as an implicit Boolean is flawed, that is, the $null -eq $InvokeError statement will return false.

The Count property might be inspected instead, using $InvokeError.Count -eq 0.

Error messages written to an ErrorVariable are duplicated in Error:

PS> $error[0]
Invoke-Something : Failed
At line:1 char:1
+ Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyCont ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Invoke-Something

 Catching errors

PowerShell provides two different ways to handle terminating errors: using try-catch-finally, or using trap.

 try, catch, and finally

PowerShell 2.0 introduced try-catch-finally as a means of handling terminating errors.

 try

A try block must be followed by either one or more catch blocks, a finally block, or both. Each of the following patterns is valid:

try { <script> } catch { <script> }
try { <script> } finally { <script> }
try { <script> } catch { <script> } finally { <script }

An error occurring within try will trigger the execution of catch.

 catch

catch is used to respond to terminating errors raised within try. catch can be used to respond to any exception, or a specific set of exception types. Each of the following is valid, if incomplete:

try { } catch { 'Catches any exception' }
try { } catch [ExceptionType] { 'Catch an exception type' }
try { } catch [ExceptionType1], [ExceptionType2] {
 'Catch exception type 1 and 2'
}

In the following example, calling the ToString method on the null variable will throw an exception that triggers catch:

try {
 $null.ToString()
} catch {
 Write-Host 'This exception has been handled'
}

When working with catch, the error record that was thrown is made available by using either the $_ variable or $PSItem:

try {
 $null.ToString()
} catch {
 Write-Host $_.Exception.Message # This is the same as...
 Write-Host $PSItem.Exception.Message # ... this.
}

ForEach-Object and catch

 If ForEach-Object is used, the current object in the pipeline is stored in the $_ variable. For the object from the input pipeline to be available inside catch, it must be assigned to another variable first.

catch statements can be limited to handle specific exception types:

$ErrorActionPreference = 'Stop'
try {
 # If the file does not exist, this will raise an exception of type ItemNotFoundException
 $content = Get-Content C:\doesnotexist.txt
} catch [System.Management.Automation.ItemNotFoundException] {
 Write-Host 'The item was not found'
}

If more than one type of error might be thrown by a block of code, multiple catch statements are supported. In the following example, an unauthorized access exception is thrown in response to an attempt to read a directory like a file:

$ErrorActionPreference = 'Stop' try { Get-ChildItem C:\Windows\System32\Configuration -Filter *.mof | ForEach-Object { $content = $_ | Get-Content } } catch [System.IO.FileNotFoundException] { Write-Host 'The item was not found' } catch [System.Management.Automation.ItemNotFoundException] { Write-Host 'Access denied' }

In a similar manner, catch statements can be layered, starting with the most specific error type, working down to a broader condition. The first matching catch block will be used:

using namespace System.Management.Automation

try {
 throw [ItemNotFoundException]::new('Item not found')
} catch [ItemNotFoundException] {
 Write-Host 'Item not found exception thrown'
} catch {
 Write-Host 'Error thrown'
}

 finally

The finally block will invoke whether an error is thrown or not. This makes it ideal for handling situations where things must always be cleanly closed down.

The following function ignores errors, but will always close down an open SQL connection, whether the ExecuteReader method succeeds or not:

using namespace System.Data.SqlClient

$connectionString = 'Data Source=dbServer;Initial Catalog=dbName'
try {
 $sqlConnection = [SqlConnection]::new($connectionString)
 $sqlConnection.Open()
 $sqlCommand = $sqlConnection.CreateCommand()
 $sqlCommand.CommandText = 'SELECT * FROM Employee'
 $reader = $sqlCommand.ExecuteReader()
} finally {
 if ($sqlConnection.State -eq 'Open') {
 $sqlConnection.Close()
 }
}

When catch is used with finally, the content of finally is executed before errors are returned, but after the body of catch has executed. This is demonstrated by the following example:

try {
 Write-Host "Try"
 throw 'Error'
} catch {
 Write-Host "Catch, after Try"
 throw
} finally {
 Write-Host "Finally, after Catch, before the exception"
}

 Re-throwing errors

An error might be re-thrown within a catch block. This technique can be useful if a try block performs a number of dependent steps in a sequence where one or more might fail.

Re-throwing an error raised by a script can be as simple as using throw in a catch block:

try {
 'Statement1'
 throw 'Statement2'
 'Statement3'
} catch {
 throw
}

ThrowTerminatingError might be used instead, depending on the desired behavior:

function Invoke-Something {
 [CmdletBinding()]
 param ()
 try {
 'Statement1'
 throw 'Statement2'
 'Statement3'
 } catch {
 $pscmdlet.ThrowTerminatingError($_)
 }
}

When an error is re-thrown in this manner, the second instance of the error (within the catch block) is not written to either Error or an error variable. In cases where the error is re-thrown without modification, this doesn't present a problem.

If the re-thrown error attempts to add information, such as an error ID, the modified error record won't be available to error variables, as in the example:

try {
 throw 'Error'
} catch {
 Write-Error -Exception $_.Exception -ErrorId 'GeneratedErrorId' -Category 'InvalidOperation'
}

The error raised in the try block is added to the error variables but isn't displayed in a console (since it's been handled). The second error is displayed on the console but isn't added to error variables.

To resolve this problem, the new error record may return the original exception as an inner exception:

try {
 throw 'Error'
} catch {
 $exception = [InvalidOperationException]::new(
 $_.Exception.Message,
 $_.Exception
)
 Write-Error -Exception $exception -ErrorId 'GeneratedErrorId' -Category 'InvalidOperation'
}

In the case of exception and most, if not all, exception types, the first argument of the constructor is a message, and the second (optional) argument is an inner exception.

Using an inner exception has a number of advantages:

	try-catch statements that test the outcome of the preceding snippet will trigger based on either the exception type or inner exception type

	The other properties of the exception remain available (via the inner exception), such as the stack trace

When using an inner exception, it's important to note that PowerShell can't catch based on the inner exception type in most cases. The following example has three nested exceptions. PowerShell can't react to either the inner or intermediate exceptions:

try {
 throw [InvalidOperationException]::new(
 'OuterException',
 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch [UnauthorizedAccessException] {
 'Inner'
} catch [ArgumentException] {
 'Intermediate'
} catch [InvalidOperationException] {
 'Outer'
}

An exception to this rule is MethodInvocationException. PowerShell raises MethodInvocationException when a method call fails. For example, the DaysInMonth method of the DateTime type will fail if the month number isn't between 1 and 12. The exception raised by PowerShell is MethodInvocationException:

PS> [DateTime]::DaysInMonth(2019, 13)
Exception calling "DaysInMonth" with "2" argument(s): "Month must be between one and twelve.
Parameter name: month"
At line:1 char:2
+ [DateTime]::DaysInMonth(2019, 13)
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : ArgumentOutOfRangeException

However, it's possible to catch the inner exception, ArgumentOutOfRangeException, in this and similar cases:

try {
 [DateTime]::DaysInMonth(2019, 13)
} catch [ArgumentOutOfRangeException] {
 Write-Host 'Out of range'
}

When a command raises an error, and only the inner most exception is interesting, the InnerException property becomes useful. It allows access to each inner exception in turn. In the following example, the property is used to access the intermediate exception:

try {
 throw [InvalidOperationException]::new(
 'OuterException',
 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch {
 Write-Host $_.Exception.InnerException.Message
}

The Exception class (and all derived classes) include a GetBaseException method. This method provides simple access to the innermost exception and is useful when the number of nested exceptions is unknown or variable:

try {
 throw [InvalidOperationException]::new(
 'OuterException',
 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch {
 Write-Host $_.Exception.GetBaseException().Message
}

If and Switch statements may be used inside the catch block to further refine the handling of a specific error.

 Inconsistent error behavior

The different methods PowerShell exposes to terminate a script aren't entirely consistent and may lead to confused behavior.

When throw is used to raise a terminating error, it'll stop the current script and anything that called it. In the following example, child2 will never execute:

$ErrorActionPreference = 'Continue'
function caller {
 child1
 child2
}
function child1 {
 throw 'Failed'
 'child1'
}
function child2 {
 'child2'
}
caller

When the ThrowTerminatingError method is used, processing within child1 stops, but the caller function continues. This is demonstrated as follows:

function caller {
 child1
 child2
}
function child1 {
 [CmdletBinding()]
 param ()

 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [Exception]::new('Failed'),
 'ID',
 'OperationStopped',
 $null
)
 $pscmdlet.ThrowTerminatingError($errorRecord)
 'child1'
}
function child2 {
 'child2'
}

Executing the caller function shows that child2 is executed:

child1 : Failed
At line:2 char:5
+ child1
+ ~~~~~~
+ CategoryInfo : OperationStopped: (:) [child1], Exception
+ FullyQualifiedErrorId : ID,child1
child2

The behavior of the preceding example is equivalent to the behavior seen when calling cmdlets. For example, the ConvertFrom-Json command raises a terminating error when the content it's asked to convert is invalid.

When a cmdlet throws a terminating error within another function, the caller script continues to execute unless ErrorAction is set to Stop. In the following example, ConvertFrom-Json will raise a terminating error, but won't stop the caller function:

function caller {
 ConvertFrom-Json -InputObject '{{'
 child1
}
function child1 {
 'Called'
}
caller

The same behavior is seen when calling .NET methods, shown as follows. The static method, IPAddress.Parse, will raise an exception because the use of the method isn't valid. The function continues on from this error and calls child1:

function caller {
 [IPAddress]::Parse('this is not an IP')
 child1
}
function child1 {
 'Called'
}
caller

The interaction between Throw and ErrorAction is explored in greater detail in the following section, which describes patterns for raising and handling errors.

 throw and ErrorAction

The throw keyword raises a terminating error; terminating errors aren't supposed to be affected by ErrorAction or ErrorActionPreference.

Unfortunately, errors raised by throw are affected by ErrorAction when ErrorAction is set to SilentlyContinue. This behavior is an important consideration when designing commands for others to use.

The following function throws an error first; the second command should never run:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 throw 'Error'
 Write-Host 'No error'
}

Running the function normally shows that the error is thrown, and the second command doesn't execute:

PS> Invoke-Something
Error
At line:5 char:5
+ throw 'Error'
+ ~~~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
+ FullyQualifiedErrorId : Error

If ErrorAction is set to SilentlyContinue, throw will be ignored:

PS> Invoke-Something -ErrorAction SilentlyContinue
No error

Enclosing throw in a try-catch block will trigger catch, ending the script as it should regardless of the ErrorAction setting:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
> throw 'Error'
>> Write-Host 'No error'
>> } catch {
>> Write-Host 'An error occurred'
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue
An error occurred

The problem described here also applies when throw is used within the catch block, although, in this case, the script is still terminated. The script below should result in an error being displayed as the error is terminating, however no error is displayed. The error raised in try does still prevent the script for progressing to the Write-Host command:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
>> throw 'Error'
>> Write-Host 'No error'
>> } catch {
>> throw 'An error occurred'
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue

For scripts that declare the CmdletBinding attribute, ThrowTerminatingError can be used. The ThrowTerminatingError method doesn't suffer from the same problem; it isn't affected by ErrorAction:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
>> throw 'Error'
>> Write-Host 'No error'
>> } catch {
>> $pscmdlet.ThrowTerminatingError($_)
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue
Invoke-Something : Error
At line:12 char:1
+ Invoke-Something -ErrorAction SilentlyContinue
+ ~~
+ CategoryInfo : OperationStopped: (Error:String) [Invoke-Something], RuntimeException
+ FullyQualifiedErrorId : Error,Invoke-Something

In the preceding example, throw is used to raise the original error condition (which will create an error record). ThrowTerminatingError is used to re-throw the terminating error correctly.

If a function doesn't use the CmdletBinding attribute, care should be taken when writing error handling. For example, the following function cannot use ThrowTerminatingError or the ErrorAction parameter, but it's still subject to ErrorActionPreference:

PS> function Invoke-Something {
>> throw 'Error'
>> Write-Host 'No error'
>> }
PS> $ErrorActionPreference = 'SilentlyContinue'
PS> Invoke-Something
No error

Workarounds for this problem for standard functions include using Write-Error with ErrorAction set to Stop, however it's often best to simply add the CmdletBinding attribute and make the function advanced.

The following statements encompass a possible best practice:

	When using throw, ensure throw is within a try block

	Use PSCmdlet.ThrowTerminatingError to raise a terminating error from a script

	Use advanced functions to get most predictable behavior from ErrorAction

 Nesting try-catch-finally

One try-catch-finally statement can be nested beneath another. This is most appropriate when a different approach is required by a smaller section of code.

A script which performs setup actions, then works on a number of objects in a loop, is a good example a script that might benefit from more than one try-catch statement. The script should terminate cleanly if something goes wrong during setup, but it might only notify you if an error occurs within the loop.

The following functions can be used as a working example of such a script. The setup actions might include connecting to a management server of some kind:

function Connect-Server {}

Once the connection is established, a set of objects might be retrieved:

function Get-ManagementObject {
 1..10 | ForEach-Object {
 [PSCustomObject]@{
 Name = $_
 Property = "Value$_"
 }
 }
}

The Set filter accepts an input pipeline and changes a value on the object:

function Set-ManagementObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject,

 $Property
)

 process {
 $InputObject.Property = $Property
 }
}

The following script uses the preceding functions. If a terminating error is raised during either the Connect or Get commands, the script will stop. If a terminating error is raised during Set, the script writes about the error and moves onto the next object:

try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {
 Write-Error -ErrorRecord $_
 } finally {
 $_
 }
 }
} catch {
 throw
}

Changing individual functions to throw errors will show how each block triggers.

 Terminating or non-terminating

One of the challenges of writing error handling is determining whether the error is terminating or non-terminating.

A possible solution is to force all errors to be terminating by setting ErrorActionPreference to Stop.

Setting ErrorActionPreference to Stop is equivalent to adding -ErrorAction Stop to every command that supports it.

When exploring nesting try-catch-finally, the following example was used:

try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {
 Write-Error -ErrorRecord $_
 } finally {
 $_
 }
 }
} catch {
 throw
}

Setting ErrorActionPreference to Stop would remove the need to set an ErrorAction parameter on each of the commands (if those commands wrote non-terminating errors). However, doing so would also cause any informational errors written by Write-Error to completely stop the script.

For a script that implements a process, where the error handling can be strictly defined, the following workaround might be used. ErrorAction for Write-Error is forcefully set to Continue, overriding the value held in the preference variable:

$ErrorActionPreference = 'Stop'
try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {
 Write-Error -ErrorRecord $_ -ErrorAction Continue
 } finally {
 $_
 }
 }
} catch {
 throw
}

Setting ErrorActionPreference to Stop is harder to apply when writing tools, such as when writing the commands used by this script; doing so would remove the choice from the end user.

A need for complex error handling is often a sign that a script should be broken down into smaller units.

 trap

PowerShell 1.0 came with trap. trap is used to catch errors raised anywhere within the scope of the trap declaration. that is, the current scope and any child scopes.

trap is a useful tool for capturing errors that aren't accounted for by try-catch blocks. Much of its use has been superseded by try-catch-finally.

 Using trap

trap is declared in a similar manner to the catch block:

trap { <script> }
trap [ExceptionType] { <script> }
trap [ExceptionType1], [ExceptionType2] { <script> }

A script may contain more than one trap statement, for example:

trap [InvalidOperationException] {
 Write-Host 'An invalid operation'
}
trap {
 Write-Host 'Catch all other exceptions'
}

The ordering of the preceding trap statements doesn't matter; the statement with the most specific error type is used to handle a given error.

PowerShell, as a script-based language normally executes statements in the order written. However, when using a script, function, or script block, the trap statement can appear anywhere; trap doesn't have to appear before the code it acts against. For example, the trap implemented at the bottom of the script block will used when the preceding code raises an error:

& {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'

 trap { Write-Host 'An error occurred' }
}

The error raised by throw causes the trap statement to execute, and then execution stops; Statement3 is never written.

 trap, scope, and continue

By default, if an error is handled by trap, script execution stops. The continue keyword can be used to resume a script at the next statement.

The following example handles the error raised by throw and continues onto the next statement:

& {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'

 trap {
 Write-Host 'An error occurred'
 continue
 }
}

The behavior of continue is dependent on the scope the trap statement is written in. In the preceding example, continue moves onto writing Statement3 as the trap statement, and the statements being executed are in the same scope.

The following script declares a function that throws an error. trap is declared in the parent scope of the function:

& {
 function Invoke-Something {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'
 }

 Invoke-Something
 Write-Host 'Done'

 trap {
 Write-Host 'An error occurred'
 continue
 }
}

The continue keyword is used, but Statement3 isn't displayed. Execution can only continue in the same scope as the trap statement.

 Summary

This chapter explored the different ways to raise and handle errors in PowerShell. Then, we looked at the difference between terminating and non-terminating errors.

We discussed using try-catch-finally, introduced with PowerShell 2, as the preferred means of handling terminating errors.

Then we demonstrated the use of trap, the type of error handling available with PowerShell 1, which we can add to our error-handling toolset.

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn PowerShell Core 6.0

David das Neves, Jan-Hendrik Peters

ISBN: 978-1-78883-898-6

	Get to grips with Powershell Core 6.0

	Explore basic and advanced PowerShell scripting techniques

	Get to grips with Windows PowerShell Security

	Work with centralization and DevOps with PowerShell

	Implement PowerShell in your organization through real-life examples

	Learn to create GUIs and use DSC in production

PowerShell Core for Linux Administrators Cookbook

Prashanth Jayaram, Ram Iyer

ISBN: 978-1-78913-723-1

	Leverage the object model of the shell, which is based on .NET Core

	Administer computers locally as well as remotely using PowerShell over OpenSSH

	Get to grips with advanced concepts of PowerShell functions

	Use PowerShell for administration on the cloud

	Know the best practices pertaining to PowerShell scripts and functions

	Exploit the cross-platform capabilities of PowerShell to manage scheduled jobs, Docker containers and SQL Databases

 Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 assets/94e16f61-bfbd-4c48-9397-6ece916f6b2e.png
PowerShell
Core 6.0

assets/1984b010-3091-4fc2-92b2-4f0904136e2a.png
PowerShell Gallery

Statistics

ister | Sign in

Documentation Support

Filter By

Item Types

@ Module
) script

Categories

Cmlet
DSC Resource
Function

Role Capabilty
Workflow

Search for /IS returned 17 items

Displaying results 1 - 17. Sort By| Relevance +

Module

Module

Carbon sy: splatteredbits

Carbon is a PowerShell module for automating the configuration Windows 7. 8, 2008, and 2012 and
automation the installation and configuration of Windows applications, websites, and services. It can
configure and manage: * Local users and groups * IIS websites, virtual directories, and applications * File
system, registry, and certificate pe... More information

73,880 downloads Tags .net acl active-directory certificates com compression computer
credential cryptography directory dsc dsc-resources encryption environment file-system firewall
groups hosts-file http identity s ini installers .. Functions Add-GroupMember Add-
isDefaultDocument Add-TrustedHost Assert-AdminPrivilege Assert-FirewallConfigurable Assert-Service
Clear-DsclocalResourceCache Clear-MofAuthoringMetadata Clear-TrustedHost Complete-job ... DSC

Resources Carbon_EnvironmentVariable Carbon_FirewallRule Carbon_Group Carbon_IniFile
Carbon_Permission Carbon_Privilege Carbon_ScheduledTask Carbon_Service

XWebDeploy gy: owersheiTeam
DSC resources for installing an IS site using the WebDeploy IIS extension

4,461 downloads Tags DesiredStateConfiguration DSC DSCResourceKit DSCResource DSC
Resources xWebDeploy xWebPackageDeploy

cAspNetlisRegistration sy: rosbergiinhares
Module with DSC Resources for ASP.NET IIS registration in Windows versions prior to Windows Server 2012

assets/84b33262-80cd-48a4-8163-2fc571b79a80.png
Ln1,Col 1

Spaces:4 UTF-8 CRLF

Current session: Powershell Core 6-preview (x64)
Restart Current Session

Switch to Windows Powershell (x64)

‘Switch to Windows Powershell (x86)

Switch to Powershell Core 6.0.3 (x64)

‘Open Session Logs Folder

assets/5fc69669-82eb-4670-b7e2-3955f275225d.png
Packb

assets/00c5750b-8665-4206-b907-02eee04f2fa3.png
PowerShell
Core for Linux
Administrators

assets/c5b67cc3-640f-4444-8474-cf04889c1ff5.png
Memorystream(@ytel]) Initalizes a new non-resizable instance of the Memorystream class
based on the specified byte array.

Mermorystream(@ytell, Boolean) | Initalizes a new non-resizable instance of the Memorystream class
based on the specified byte array with the CanWrite property set as
specified.

assets/658aa350-de77-48cb-ab18-c668f5bb871f.png
Constructors

Name
“ StringBuilder(

“ StringBuilder(nt32)

“ StringBuilder(nt32, Int32)
“ StringBuilder(string)

“ StringBuilder(String, Int32)
“ StringBuider(string, Int32,

Int32, Int32)

Initalizes a new instance of the StringBuilder class.
Initalizes a new instance of the StringBulder class using the specified capacity.

Initalizes & new instance of the StringBuider class that starts with a specified capaity and
can grow to a specified maximum.

Initalizes a new instance of the StringBuilder dlass using the specified string.
Initalizes a new instance of the StringBuilder dlass using the specified string and capacity.

Initalizes a new instance of the StringBuilder dlass from the specified substring and
capacity.

assets/3465bdad-b80a-4ea8-a699-751d3ca8d447.png
PS> StaskTrigger = New-ScheduledTaskTrigger -Daily

crdlet New-ScheduledTaskTrigger at command pipeline position 1
Supply values for the following parameters:
At

assets/253cd414-aad5-4e15-9054-6f9f61209021.png
NewFilext Properties

General | Securty Detais Previous Versions

Typeof fie: Text Document (bd)

e
e ot

Size: Obytes

Size on disk: Obytes

PSS P——
PP

T ————

sttes: [JReadarty Dltidden

assets/74b010fe-8575-4191-9747-87fff31c3263.png
Properties

Name

Ascll

BigndianUnicode

BodyName

Codepage

DecoderFallback

Default

Gets an encoding for the ASCI (7-bit) character set.

Gets an encoding for the UTF-16 format that uses the big endian byte order.

When overridden in a derived dlass, gets a name for the current encoding that can
be used with mail agent body tags.

When overridden in a derived class, gets the code page identifier of the current
Encoding.

Gets or sets the Decoderfallback object for the current Encoding object.

Gets an encoding for the operating system's current ANSI code page.

assets/f4ae8768-1882-4cad-acd9-425cd15ab420.png
Properties

Name Description
Capacity Gets or sets the maximum number of characters that can be contained in the memory
allocated by the current instance.
- Chars[Int32] | Gets or sets the character at the specified character position in this instance.
- Length Gets or sets the length of the current StringBuilder object.
- MaxCapacity | Gets the maximum capacity of this instance.

assets/26ef2d3d-dde9-463b-87a8-402a74d05f5e.png
PS C:\Users\Chris> Get-WinModule Pester ~

Pester 4.4.0 Pester provides a framework for runming EDD style Tests to execute and validate PowerShell commands i...
Pester 4.3.1 Pester provides a framework for running EDD style Tests to execute and validate Powershell commands 1...
Pester 4.0.8 Pester provides a framework for running EDD style Tests to execute and validate Powershell commands 1...
Pester 4.0.3 Pester provides a framework for running EDD style Tests to execute and validate Powershell commands 1...
Pester 3.4.0 Pester provides a framework for running EDD style Tests to execute and validate Powershell commands 1...
Pester 3.3.11 Pester provides a framework for running EDD style Tests to execute and validate Powershell commands 1...
PS C:\Users\Chris> Import-winhodule Pester

\Users\Chris> Get-Module Pester

ModuleType Version Name ExportedCommands

Script 1.0 pester {add-assertionOperator, Afterall, AfterEach, AfterEachFeat...

assets/858439ee-fd14-4c93-b887-ce2dc3bbb874.png

assets/f27a97cd-96e6-429f-a9cf-8921bf239422.png
. Permissions for httpi/schemas.microsoft.com/powers... X

tp://schemas microsoft com/powershell/Microsoft PowerShell

(Group or user names:

82 Remote Management Users (TITAN\Remote Management
SRINTERACTIVE

Pemissions for Administrators
FullCortro (Al Operations)
Read(Get Enumerste, Subscribe)
Wite(Put Delete Create)
Execute(nvoke)

Special pemissions.

For special pemmissions or advanced setings. M‘,,,md
ik Advanced.

ooo” ?
DDDDE

[ox [concel || Aonly

assets/dd7e7174-67cc-465a-abd7-3a7f499b6430.png
Fields

Name

s MaxValue | Represents the largest possible value of an Int32. This field is constant.

s Minvalue Represents the smallest possible value of Int32. This field is constant.

assets/acb4ef6c-ca79-4ea7-a8f2-dbb374733a76.png
Methods

o8
o8
o8

o8

o8

o8

Name

ChangeExtension(string, String)

Combine(string, String)

Combine(string, String, String)

Combine(string, String, String,
string)

Combine(String[])

GetDirectoryName(String)

Description

Changes the extension of a path string.

Combines two strings into a path.

‘Combines three strings into a path.

Combines four strings into a path.

‘Combines an array of strings into a path.

Returns the directory information for the specified path string.

assets/da101ede-7c48-4c91-a146-1478be257916.png
2 Neme Datemodfied Type Size

Fer) Bpe/I61035 Fiefolder
U1s1 A1 Fiefolder

assets/080d2edc-019d-47ce-9966-26fe3a0073cf.png
Methods

o8

Name

Equals(Object)

Finalize(

GetallNetworkinterfaces(

GetHashCode

GetlPProperties()

Determines whether the specified object is equal to the current
object,(inherited from Object)

Allows an object to try to free resources and perform other
cleanup operations before it is reclaimed by garbage collection.
(nherited from Object)

Returns objects that describe the network interfaces on the local
computer.

Serves as the default hash function. (inherited from Object)

Returns an obiect that describes the confiquration of this.

assets/32a05ee9-ead1-48ee-8189-00166ec9ea6e.png
Mastering
Windows
PowerShell
Scripting

Third Edition

assets/e8faad23-0d3b-4116-b0a0-9e7e540d2a31.png
PC > Local Disk (C) » Temp > DnsClient 5696dSef-fa2d-4997-04f1-Obc13daa2ac5_en-US HelpContent.cab vio

Name

% dnslookup.dil-helpaml
4 MSFT_DnsClient caxmi-help.xmi

4 MSFT_DnsClientCache.cehami-helpaml

4 MSFT_DnsClientGilobalSetting.cchml-helpmi

4 MSFT_DnsClientServerAddress.ccmi-helpaml

% PS_DnsClientNRPTGlobal v1.0.0.cchmi-helpaml
= PS_DnsClientNrptPolicy v1.0.0.cchml-helpaml

4 PS_DnsClientNRPTRule_v1.0.0.cdml-help.xmi

Size

260K8
260K8
260K8
260K8
260K8
260K8
260K8
280K

Type
XML Source File
XML Source File
XML Source File
XML Source File
XML Source File
XML Source File
XML Source File
XML Source File

Date

21/10/2016 1352
21/10/2016 1352
21/10/2016 1352
21/10/2016 1352
21/10/2016 1352
21/10/2016 1352
21/10/2016 1352
21/10/2016 1352

assets/45a4f992-ed4a-47d6-97d2-d761851ffc09.png
Users\Chris> Senv:psrodu | epath —=p it
sers\Chris\Docunents\powershel1\odules

Progran Files\Powershell\Wodules

program Files\powershel1\6-previen\Modules
WINDOWS\systen32\WindowsPowerShel1\v1. 0\Modules
Users\Chris\Documents\WindowsPowershel1\odules

Progran Files\WindowsPowershell\odules

WINDOWS\systen32\WindowsPower Shel1\v1. 0\oduTes\

Program F1les\WindowsPowershell\Modules\

Program Files (x86)\Wicrosoft SDKs\Azure\PowerShell\Resourcelianager\AzureResour celianager\
:\Progran Files (x86)\Microsoft SDKs\Azure\PowerShell\ServiceHanagement\,

S C:\Users\Chris>

assets/aea9e0e9-041b-417e-b4ec-bcb422a168d3.png
Methods

Name

Append(Boolean)

Append(@yte

Append(Char)

Append(Char*, Int32)

Description

Appends the string representation of a specified Boolean value
to this instance.

Appends the string representation of a specified 8-bit unsigned
integer to this instance.

Appends the string representation of a specified Char object to
this instance.

Appends an array of Unicode characters starting at a specified
‘address to this instance.

assets/320acdda-1d5b-44f0-be15-1a6b4229d842.png

assets/7bb6c601-1339-4832-a55e-2566c488ff71.png
Mapt

